Болезни Военный билет Призыв

2 геологическое летоисчисление и геохронологическая таблица. Земная кора и геологическое летоисчисление. Геологическая информация предполагает

7. Геологическая хронология земной коры

Геохронология – последовательность геологических событий во времени, их продолжительность и соподчиненность:

– относительная геохронология отражает естественные этапы в истории развития Земли, основанная на принципе последовательности напластовывания и использует метод биостратиграфических построений;

– абсолютная геохронология определяет возраст и длительность подразделений геохронологической шкалы в промежутках времени, равных современному астрономическому году (в астрономических единицах). Она основана на изучении продуктов радиоактивного распада в минералах.

Геохронологическая (геоисторическая) шкала – иерархическая система геохронологических подразделений, эквивалентных единицам общей стратиграфической шкалы.

Стратиграфическое подразделение (единица) – совокупность горных пород, составляющих определенное единство по комплексу признаков (особенностям вещественного состава, органических остатков), который позволяет выделить ее в разрезе и проследить по площади.

Закономерности развития и образования земной коры изучает историческая геология . Возраст горных пород бывает абсолютным и относительным.

Абсолютный возраст – продолжительность существования (жизни) породы, выраженная в годах. Для его определения применяют методы, основанные на использовании процессов радиоактивных превращений, которые имеют место в некоторых химических элементах (уран, калий, рубидий), входящих в состав пород. Возраст магматических пород, а также химических осадков равен возрасту составляющих их минералов. Другие породы моложе входящих в их состав минералов.

Соотношение количеств совместно находящихся радиоактивного исходного изотопа и образовавшегося из него устойчивого элемента дает представление о возрасте вмещающих их пород. Методы определения абсолютного возраста получили свое название от продуктов радиоактивного распада: урано-свинцовый (свинцовый), гелиевый, калий-аргоновый (аргоновый), калий-кальциевый, рубидиево-стронциевый и др. Так, зная, какое количество свинца образуется из 1 г урана в год, определяя их совместное содержание в данном минерале, можно найти абсолютный возраст минерала и той горной породы, в которой он находится. По углероду 14 С, период полураспада которого равен 5568 лет, можно установить возраст образований, появившихся позднее. Установить абсолютный возраст горных пород можно по геохронологической шкале земной коры (табл.). Определение абсолютного возраста горных пород весьма трудная задача, решение которой стало возможным только в 50-тые годы XX века.

Геохронологическая шкала земной коры

(эонотемы)

Период (система)

Типичные организмы

Абс. возраст, млн. лет

Неохрон (фанерозой)

Кайнозойская Kz («эра новой жизни»)

Четвертичный

(антропогенный) Q

Третичный Tr

Млекопитающиеся, цветковые растения

Палеоген P

Мезозойская

Mz («эра сред-ней жизни»)

Меловой К

Головоногие, моллюски и пресмыкающиеся

Триасовый T

Палеозойская Pz («эра древней жизни»)

Пермский P

Амфибии и споровые

Каменноугольный C

Девонский D

Рыбы, плеченогие

Силурийский S

беспозвоночные

Ордовикский O

Кембрийский Cm

Палеохрон (криптозой)

Протерозойская PR

Редкие остатки примитивных форм

Архейская

(археозойская) AR

Планетарная стадия Земли

Свыше 4500

Чем моложе определяемый возраст минерала, тем большее количество его требуется для анализа, так как не успевают накопиться продукты распада.

Минимальное количество минерала, требуемое для определения их возраста, г

Примерно ожидаемый возраст, млн. лет

При оценке относительного возраста различают более древние и более молодые горные породы. Проще определять относительный возраст у осадочных пород при ненарушенном их залегании (близко к горизонтальному залеганию). При складчатом расположении – иногда невозможно. Затруднительно и при наличии пород, слагающих участки, удаленные друг от друга.

Палеонтология – наука, устанавливающая закономерность развития жизни на Земле путем изучения останков животных и растительных организмов (окаменелости), имеющихся в толщах осадочных пород. Время образования той или иной породы соответствует времени гибели организмов, останки которых оказались захороненными при накоплении осадков. Трилобиты, папоротники, хвощи, лепидофиты, археоцитат, эхиносферит, кальцеола, кистеперые рыбы, каменный уголь …).

При этом используют два метода:

Стратиграфический метод применяют для толщ с ненарушенным горизонтальным залеганием слоев (рис. 11). Этот метод нельзя применить при складчатом расположении слоев. Считают, что нижележащие слои являются более древними, чем вышележащие. Молодым является слой 3 , а слои 1 и 2 более древние.

Рис. 11. Залегание слоев: а) – горизонтальное залегание слоев; б) – в виде складок

Палеонтологический метод позволяет определять возраст осадочных пород по отношению друг к другу независимо от характера залегания слоев и сопоставлять возраст пород, залегающих на различных участках. Каждому отрезку геологического времени соответствует определенный состав жизненных форм.

Все геологическое время разделили на отрезки. Для слоев пород, которые образовались в эти отрезки времени, были предложены свои названия, что позволило создать стратиграфическую шкалу (табл.).

Стратиграфическая шкала

Геохронологическая шкала времени

(геохронологические подразделения)

Стратиграфическая шкала слоев пород*

(единицы общей шкалы)

Эонотема

Эратотема (группа)

Фаза (время)

Зона (хронозона)

Звено (для четвертичной системы)

* - различают и дополнительные единицы: подотдел – часть отдела; надъярус – несколько ярусов; подъярус – часть яруса; подзона – часть зоны

Наиболее крупные промежутки времени – эоны , а толщи пород, образовавшиеся за это время – эонотемы . Каждый эон делят на эры . Каждая эра подразделяется на периоды, периоды – на эпохи , группы – на системы и т.д. Самый короткий отрезок – век. Век – промежуток времени, в течение которого отложилась толща горных пород, образующих ярус. Продолжительность века в палеозое ~ 10 млн. лет, в мезозое и кайнозое ~ 5…6 млн. лет.

Представленная шкала многократно корректируется.

Инженеры-строители должны знать, что понимают под возрастными индексами горных пород и использовать это в своей работе, чтении геологической документации (карт и разрезов) при проектировании зданий и сооружений.

Особый интерес вызывает четвертичный период (табл.).

Схема расчленения четвертичного периода (системы)

Древнечетвертичная

Нижнечетвертичный

Среднечетвертичная

Среднечетвертичный

Позднечетвертичная

Верхнечетвертичный

Современная

Современный

Отложения четвертичного периода распространены почти повсеместно, их толщи содержат останки древнего человека и предметы его обихода. К толщам этих отложений приурочены месторождения россыпного золота и других ценных металлов. Многие породы четвертичного периода являются сырьем для производства строительных материалов. Большое место занимают отложения культурного слоя , появляющегося в результате деятельности человека. Он отличаются значительной рыхлостью и большой неоднородностью. Его наличие может осложнить строительство зданий и сооружений.

Рис. 12. Окаменелости палеогенового и неогенового периодов: а ), б ), в ), г ), д ), е ), и ) – брюхоногие моллюски; ж ), з ), к ), л ) – двустворчатые моллюски

Рис. 13. Окаменелости триасового периода: а ), в ), г ), д ), з ) – двустворчатые моллюски; б ) – брахиопода; е ) – аммонит, ж ) – криноидея

Рис. 14. Окаменелости юрского периода: а ) – устрицы; б ), е ), з ), к ) – аммониты; в ) – белемнит; г ) – посейдония; д ) – двустворчатый моллюск; ж ), и ) – брахиоподы

Рис. 15. Окаменелости мелового периода: а ), е ) – двустворчатые моллюски; б ), в) – белемниты; г ), д ), з ) – аммониты; ж ) – морские ежи

Рис. 16. Окаменелости палеозойской эры: а ) – трилобит; б ), в ), д ), ж ), л) – брахиоподы; г ) – цефалопода; е ) – криноидея; з ) – аммонит; и ) – морской бутон; к ) – сигиллярия

ОПРЕДЕЛЕНИЕ АБСОЛЮТНОГО ВОЗРАСТА ГОРНЫХ ПОРОД

Наиболее распространенный стратиграфический метод основан на принципе перекрывания одних слоев и пачек осадочных пород другими. В связи с развитием органического мира в различных осадках встречаются остатки различных представителей растительного и животного царства, отражающие их эволюцию. На основании этих двух фактов была выработана стратиграфическая шкала, самой крупной единицей которой является эра. Всего выделяется пять эр:

а) археозойская, или архейская (от древнегреческих слов: «архе», начало и «зое», жизнь) – эра начала жизни;

б) протерозойская (от «протерос», первый) – эра первичной жизни;

в) палеозойская (от «паляйос», древний) – эра древней жизни;

г) мезозойская (от «мезос», средний) – эра средней жизни;

д) кайнозойская (от «кайнос», новый) – эра новой жизни.

В свою очередь эры разделены на периоды, а периоды – на эпохи.

Стратиграфическая шкала является относительной: она указывает лишь на последовательность образования горных пород и развитие органического мира. Стратиграфическая шкала наиболее близка к реальной жизни только для наиболее поздних геологических явлений. К таковым относятся ледниковые отложения Северной Европы. Изучение озерных осадков (ленточных глин), позволило довольно точно установить возраст оледенения. Чередование тонких прослоев глинистых и песчаных частиц соответствует зимнему и летнему периодам. Таким образом, подсчитано, что Валдайское оледенение на северо-западе России началось около 90 тыс. лет тому назад. Однако по мере изучения все более древних осадочных отложений такой способ становится все менее и менее совершенным в силу большой измененности первичных осадков.

Также несовершенны и другие приемы оценки геологического времени, в частности по количеству глинистых и песчаных частиц, приносимых реками в океан, и сопоставлению этих величин с общей мощностью осадочных пород.

Точное установление возраста геологических формаций стало возможным только после открытия радиоактивности. Изучение радиоактивных веществ показало, что на скорость радиоактивного распада не влияют ни температура, ни давление, ни электрические и магнитные поля, ни, наконец, действие химических реагентов. Поэтому, зная количество накопившихся продуктов распада радиоактивного вещества и период полураспада их, можно вычислить время, за которое эти продукты распада образовались, т. е. вычислить абсолютное время существования радиоактивного вещества (минерала).

Зная количество продуктов радиоактивного распада, количество нераспавшихся атомов и константу распада, можно вычислить абсолютный возраст образования данного изотопа. Для этого нужно, чтобы конечные продукты распада не покидали радиоактивного вещества и были учтены полностью. Кристаллическая структура минералов является приближенно закрытой системой и продукты распада практически не покидают ее. Чем больше в минерале находится продуктов распада, тем древнее этот минерал.

Поскольку периоды полураспада для изотопов урана, тория и калия очень велики, то продукты радиоактивного распада этих элементов не могут в достаточном количестве (для их точного учета) накопиться за короткий промежуток времени. Поэтому определения возраста по радиоактивным изотопам урана, тория и калия затруднены для молодых геологических образований и практически показывают уверенные значения, начиная с мезозоя.

Для определения абсолютного возраста нужно следить, чтобы образцы пород не были выветрелыми, разрушенными или подвержены механическим деформациям; минералы не должны содержать включений других минералов. Все это нужно для того, чтобы получить материал, не потерявший продуктов радиоактивного распада. Наиболее желателен отбор минералов, имеющих кристаллическую форму, ибо в этом случае мы можем быть наиболее уверенными в сохранности продуктов радиоактивного распада.

В настоящее время для определения абсолютного возраста используют следующие методы определения абсолютного возраста: урано-свинцовый (свинцовый), гелиевый, калий-аргоновый (аргоновый), калий-кальциевый, рубидиево-стронциевый и т. д.

Урано-свинцовый метод. Для определения абсо­лютного возраста урано-свинцовым методом нужно знать весовые количества урана, тория и свинца в минерале, а также изотопный состав свинца. Определение изотопного состава свинца, как, впрочем, и других элементов, производится на специальных приборах – масс-спектрометрах. Природный свинец состоит из четырех изотопов: 204 РЬ, 206 РЬ, 207 РЬ и 208 РЬ; три последних обязаны своим происхождением радиоактивному распаду урана и тория, а 204 РЬ является нерадиогенным, количество его в геологической истории Земли постоянно.

Зная весовое количество урана в минерале, определяемое химически, мы, тем самым, знаем, сколько у нас изотопов 238 U и 235 U, ибо содержание в природном уране в настоящее время всегда равно 0,714 %.

Для определения возраста урано-свинцовым методом могут быть использованы следующие минералы: уранинит, монацит, ортит, циркон, пирохлор, эшинит, ксенотим, самарскит и др. Для приближенного определения возраста можно использовать отношение 207 РЬ/ 206 РЬ, извлекая свинец из таких минералов, как полевые шпаты.

Калий-аргоновый метод основан на ядерном превращении 40 К в 40 Аг и 40 Са. Природный калий состоит из изотопов: 39 К – 93,08 %, 40 К – 0,0119 % и 41 К – 6,91 %. Из них только 40 К является разноактивным изотопом, большая часть его (88 %) превращается в 40 Са и около 12 % – в 40 Аг. Отсюда и возникли калий-кальциевый и калий-аргоновый методы. Калий-аргоновый метод в настоящее время весьма широко распространен. Аргон выделяют из образца на специальных установках прокаливанием при температуре 1200…1400 °С в вакууме. Возраст минерала определяется по отношению 40 Аг/ 40 К. Калий определяется химически дипикриламинатным или тетрафенилборатным методами, а чаще методом фотометрии пламени.

Для определения возраста породы калий-аргоновым методом используют калийсодержащие минералы: мусковит, биотит, глауконит, сильвин, амфиболы. В некоторых случаях, когда трудно выделить отдельные минералы, определяют возраст породы в целом (например, глинистый сланец).

Рубидиево-стронциевый метод дает более надежные результаты, чем калий-аргоновый. Для определения возраста по рубидиево-стронциевому методу могут быть использованы минералы калия, рубидий.

Как уже отмечалось, урано-свинцовый и калий-аргоновый, а также рубидиево-стронциевый методы мало удобны для установления возраста новейших геологических образований.

Для определения наиболее молодых геологических образований применяется радиоуглеродный метод, сущность которого состоит в следующем. В верхних слоях атмо­сферы под действием корпускулярного излучения Солнца на 14 N образуется 14 С. Период полураспада 14 С равен примерно 5500 лет. Через этот промежуток времени количество 14 С распадается наполовину, снова образуя 14 N. Радиоактивный углерод 14 С примешивается в атмосфере к обычному углероду и попадает во все объекты природы (организмы животных, растения, горные породы).

Пока организмы живы, содержание 14 С в них постоянно, благодаря постоянному обмену с окружающей средой. Однако после их смерти обмен со средой прекращается и содержание 14 С начинает уменьшаться. Замеряя количество 14 С, можно определить возраст растительных остатков, прошедший со времени их смерти. Материалом для анализа является хорошо сохранившееся дерево, древесный уголь, торф, карбонатные илы. Этот метод применяется для установления возраста речных террас, морен, торфообразования, а также для датировки археологических памятников.

Погрешность составляет 100 лет. Радиоуглеродным методом устанавливают возраст объектов от 1000 до 30 000 лет.

Наиболее древние значения возраста горных пород и минералов близки к 3,5млрд. лет (Кольский полуостров). Возраст отдельных минералов древних щитов Канады, Южной Африки также близок к 3 млрд. лет. Наиболее древний возраст имеют геологические объекты на щитах, которые считаются древнейшими геологическими структурами Земли. Если возраст гранитов достигает 3,5млрд. лет, то естественно, что возраст земной коры должен быть значительно большим, ибо граниты внедрились в какие-то уже существовавшие породы, а если же они образовались ультраметаморфическим путем, т. е. в результате гранитизации, то, следовательно, гораздо раньше их уже существовали какие-то осадки. Древнейшие горные породы, которые удалось датировать, находятся в горном районе Нэрриер в Австралии. Возраст их 4,2 млрд. лет. В настоящее время считают, что возраст Земли составляет около 4,5млрд. лет. Эти данные хорошо согласуются с данными о возрасте небесных пришельцев-метеоритов, которые не древнее 4,5млрд. лет.

Как показали исследования, возраст горных пород Луны также оказался близким к 4,5млрд. лет. Последнее обстоятельство, как и другие геохимические данные, указывает на единство земного, лунного и метеоритного вещества. Возраст Солнца примерно в десять раз больше возраста Земли.

Считается, что Земле понадобилась 7 миллиардов лет для того, чтобы стать такой, какой мы знаем и видим ее сегодня. За весь период своего существования наша планета накопила бесчисленное количество секретов, особенно о своем первичном формировании. Ученые со всего мира, изучая земную кору, собирают информацию о всевозможных значительных изменениях, когда-либо происходивших на поверхности Земли. Такие данные сортируются в хронологическом порядке и носят название геологические летоисчисления.

Возникновения и развитие

В то время, когда господствовали религиозные учения о божественном акте, который был задействован в формировании Земли, также существовало мнение и о молодом возрасте нашей планеты и Вселенной в целом (считалось, что они образовались одновременно в течение буквально двух дней примерно 6 тысяч лет назад). Это представление безоговорочно принималось древними людьми до появления и стремительного развития таких точных наук, как астрономия, химия и физика.

Со временем мыслители античности и ученые, жившие в эпоху Возрождения, высказывали свою, более реалистичную, точку зрения о том, как формировалась Земля. Согласно их предположениям, основанным на многогранности изменений поверхности и недр планеты, история ее существования значительно превышает 6 тысяч лет. Современные ученые со всего мира пришли к выводу, что Земля окончательно сформировалась более четырех миллиардов лет назад. Стоит сказать, что не все согласны с этим утверждением, поскольку считают, что эта цифра является слишком завышенной.

Планета Земля до нашей эры

Данное временное понятие приобрело известность благодаря Беде Достопочтенному - бенедиктинскому монаху. Он использовал выражения «наша эра» и «до нашей эры» в своих трактатах, после чего с 731 года большинство стран Западной Европы перешли на календарь с таким отсчетом. Данные изменения также затронули и геологические летоисчисления, которые поделены на два неравных периода. Первая, древняя часть, господствовала на планете гораздо дольше второй, ведь именно в то время происходило зарождение и развитие природы от мельчайших живых организмов до громадных океанов.

Земля переживала длительные и грандиозные изменения, дабы создать современному человеку максимально комфортные условия существования. Многолетние исследования земной коры предоставили ученым возможность сформировать общее представление о формировании нашей планеты в целом и зарождении жизни.

Докембрий

Геохронологическая таблица начинается с докембрийского эона, который существовал на Земле от 4,5 миллиарда до 600 миллионов лет назад. В этот период происходило образование в первую очередь земной коры, а позже - воды и суши. Активная вулканическая деятельность происходила на протяжении всего эона.

Катархей

Этот период часто относят к одной из трех частей Докембрия. Вероятно, это ошибочное мнение, поскольку Катархейский эон практически не имеет ничего общего со своим предшественником. В это время не было проявлений вулканической активности, а вместо этого на поверхности Земли господствовала холодная пустыня.

В сутках Катархейского эона было всего шесть часов. Этот период довольно часто сопровождался землетрясениями, сглаживающими ландшафт. Тогда территорию Земли покрывал реголит - первичное вещество темно-серого цвета.

Архей

Автором этого термина в 1872 году стал один из американских ученых. Архей отличается от катархея появлением эрозии и большого количества вулканов. Во времена Архейского эона, который длился 2,5 миллиарда лет, на нашей планете начался процесс эволюции.

Несмотря на то что атмосферы все еще не было, происходило появление анаэробных бактерий, существовавших при отсутствии кислорода. Такие природные ископаемые, как сера, железо, никель и графит сформировались в результате деятельности первых живых организмов.

Протерозой

Геологические события данного эона отмечаются образованием гор с так называемой Со временем они превратились в небольшие холмы. Горные породы протерозоя были богаты на железо, руду и цветные металлы. Что касается образования жизни, то данный эон характеризуется появлением простейших микроорганизмов, грибов и водорослей. На конец протерозоя припадает возникновение моллюсков и червей.

В свою очередь, протерозой включает в себя три долговременных эры:

К концу палеопротерозоя в атмосфере происходит концентрация кислорода современного уровня.

Во время мезопротерозоя, который состоит из калимия, эктазия и стения, достигают своего пика развития водоросли и бактерии. От других эр протерозой отличается самым холодным периодом, во время которого льдом покрыло большую часть Земли.

Неопротерозой включает в себя три этапа: тоний, криогений и эдиакарий. характеризуются образованием первого континента - Родиния, плиты которого вскоре снова разошлись.

Фанерозой

Этим эоном завершается геохронологическая таблица. Фанерозой отличается явным периодом появления большого количества живых организмов, имеющих минеральные скелеты. Предшествующий протерозойский эон называют скрытым, потому что следов развивающейся в то время жизни не было найдено.

Во времена фанерозоя произошли такие крупномасштабные события, как кембрийский взрыв (около 540 миллионов лет назад), а также 5 крупнейших вымираний живых существ за всю историю Земли.

Эпохи фанерозойского эона

Первая из трех частей фанерозоя носит название палеозой. Ее считают эрой древней жизни и делят на семь этапов:

. Кембрий характеризуется формированием умеренного климата. Геологические летоисчисления данного периода отмечаются отсутствием любых изменений в ландшафте, вместо этого происходит зарождение современных видов животных.

. Ордовик . В это время теплый климат распространился по всей территории земного шара, в том числе и в Антарктиде. Также отмечается значительное погружение суши и возникновение рыб.

. Силурийский период характеризуется формированием внутриконтинентальных морей и засушливой низменностью.

. Девону присуще время появления лесов и первых земноводных.

. Нижний карбон отличается значительным распространением акул и папоротникообразных.

. Верхний и средний карбон.

. Пермь - время, когда происходило вымирание большинства древних животных.

Мезозой - вторая часть фанерозойского эона, которая включает в себя три периода: триас, мел и юра. Этот промежуток времени характеризуется появлением, развитием и вымиранием динозавров и зубатых птиц. Геологические летоисчисления мезозоя отмечаются покрытием мелководными морями территории Западной Америки и части Европы. В этот период на Земле сформировались первые кленовые и дубовые леса.

Третья часть фанерозойского эона называется кайнозоем, или временем млекопитающих. В свою очередь, эра новой жизни делится на два этапа:

. Третичный . Начало периода характеризуется теплым климатом, развитием хищников и копытных животных и в то же время вымиранием древнейших млекопитающих. Леса максимально распространились по территории планеты. Около 25 миллионов лет назад появились человекообразные обезьяны. Немного позже, в эпоху плиоцена, возникли первые люди.

. Четвертичный этап насчитывает четыре ледниковых периода. В это время происходит исчезновение крупных млекопитающих и зарождение человеческого общества. По окончании четвертого ледникового периода, климат приобрел нынешний вид. С четвертичного этапа прочно устанавливается главенство человека на всей территории Земли, который длится и до текущего момента.

— учение о хронологической последовательности формирования и возрасте горных пород, слагающих земную кору. Геологические процессы происходят на протяжении многих тысячелетий. Выделение различных этапов и периодов в жизни Земли основано на последовательности накопления осадочных горных пород. Время, в которое накапливалась каждая из пяти групп пород, названо эрой . Последние три эры разделены на периоды, т.к. в отложениях этих времен лучше сохранились останки животных и растений. В эрах были эпохи активизации горообразовательных процессов - складчатости.

Геохронологическая таблица

Эры Периоды Складчатости События
Кайнозойская , 68 млн. лет Четвертичный, 2 млн. лет Альпийская складчатость Формирование современного рельефа под влиянием массового поднятия суши. Оледенение, изменение уровня моря. Происхождение человека.
Неогеновый, 25 млн. лет Мощные вулканические извержения, поднятие гор Альпийской складчатости. Массовое распространение цветковых растений.
Палеогеновый, 41 млн. лет Разрушение гор, затопление молодых платформ морями. Развитие птиц и млекопитающих.
Мезозойская , 170 млн. лет Меловой, 75 млн. лет Мезозойская складчатость Поднятие разрушенных гор, сформировавшихся в Байкальской складчатости. Исчезновение гигантских пресмыкающихся. Происхождение покрытосеменных растений.
Юрский, 60 млн. лет Возникновение разломов на материках, массовый ввод магматических пород. Начало обнажения ложа современных морей. Жаркий влажный климат.
Триасовый, 35 млн. лет Отступление морей и увеличение площади суши. Выветривание и понижение палеозойских гор. Формирование равнинного рельефа.
Палеозойская , 330 млн. лет Пермский, 45 млн. лет Герцинская складчатость Окончание герцинского горообразования, интенсивное развитие жизни в горах. Появление на суше земноводных, простых пресмыкающихся и насекомых.
Каменноугольный, 65 млн. лет Опускание суши. Оледенение на материках Южного полушария. Расширение площадей болот. Появление тропического климата. Интенсивное развитие земноводных.
Девонский, 55 млн. лет Каледонская складчатость Отступление морей. Накопление на суше мощных слоев красного цвета континентального отложения. Преобладание жаркого сухого климата. Интенсивное развитие рыб, выход жизни из моря на сушу. Появление земноводных, открытосеменных растений.
Силурийский, 35 млн. лет Начало каледонской складчатости Поднятие уровня моря, появление рыб.
Ордовикский, 60 млн. лет Сильные извержения вулканов, уменьшение морских бассейнов. Увеличение численности беспозвоночных животных, появление первых беспозвоночных.
Кембрийский, 70 млн. лет Байкальская складчатость Опускание суши и появление больших болотистых массивов. В морях интенсивно развиваются беспозвоночные.
Протерозойская, 2 млрд. лет Начало байкальской складчатости Мощные извержения вулканов. Формирование фундаментов древних платформ. Развитие бактерий и синезеленых водорослей.
Архейская, 1 млрд. лет Начало формирования материковой земной коры и усиление магматических процессов. Мощные извержения вулканов. Первое появление жизни - период бактерий.

Возраст горных пород

Различают относительный и абсолютный возраст горных пород . Относительный возраст легко устанавливается в случае горизонтального залегания пластов горных пород в пределах одного вскрытия. Абсолютный возраст пород определить достаточно сложно. Для этого пользуются методом радиоактивного распада ряда элементов, принцип которого не меняется под действием внешних условий и идет с постоянной скоростью. Этот метод внедрили в науку в начале XX века Пьер Кюри и Эрнест Резерфорд. В зависимости от конечных продуктов распада выделяют свинцовый, гелиевый, аргоновый, кальциевый, стронциевый и радиоуглеродный методы.

План лекции.

7.1. Основные этапы эволюции Земли.

7.2. Относительный возраст горных пород и методы его определения.

7.3. Понятие об абсолютном возрасте горных пород.

7.1. Основные этапы эволюции Земли

Всю историю Земли можно подразделить на два этапа: догеологический и геологический.

ДОГЕОЛОГИЧЕСКИЙ ЭТАП (космический, планетарный) охватывает промежуток времени от момента возникновения Земли как планеты до начала формирования земной коры. Его история не может быть восстановлена геологическими методами, и наши знания о нем основываются на общих представлениях о развитии Земли как одной из планет Солнечной системы. Главным содержанием догеологической эволюции Земли явилось расслоение ее вещества на оболочки-геосферы, завершившиеся образованием атмосферы и гидросферы. Данный процесс протекал параллельно с прогрессивным уплотнением родоначального сгущения.

Разогрев, следовавший за уплотнением, усиленный радиоактивными процессами, способствовал и ускорял процесс расслоения вещества Земли.

Легкие газы были рассеяны в мировом пространстве. Однако некоторые газы и летучие вещества были захвачены мантией Земли и затем "выжаты" к поверхности под действием возрастающих температур и давлений. Удаление этих веществ привело к образованию атмосферы.

В составе первичной атмосферы Земли преобладали углекислый газ и пары воды, поэтому она была непроницаема для солнечных лучей. Разогрев земной поверхности происходил за счет внутренней теплоты, регенируемой в процессе сжатия, гравитационной дифференциации вещества и радиоактивного распада. За счет внутренней теплоты поддерживалась изотермическая обстановка в нижних слоях атмосферы. Поэтому не могли иметь места гидрометеорологические процессы в современном смысле.

ГЕОЛОГИЧЕСКИЙ ЭТАП охватывает отрезок от начала формирования земной коры до настоящего времени, когда на планете проявляются две основные группы процессов - эндогенные и экзогенные.

С появлением экзогенных процессов поверхность Земли становится ареной развития процессов разрушения, транспортировки продуктов разрушения и формирования толщ осадочных горных пород. Единство, в котором действуют экзогенные и эндогенные процессы, делает возможным последующие превращения осадочных пород, т.е. явления метаморфизма, магмообразования, вулканизма, что постепенно и постоянно усложняет строение земной коры. В результате формируется сложнопостроенная неоднородная по составу земная кора современного облика.

Сложный процесс развития земной коры реконструируется на основе изучения сохранившихся от этого процесса геологических документов: вещество земной коры, т.е. минералов и горных пород; геологических тел, структурных форм различного порядка; остатков животных и растительных организмов, захороненных в земной коре.

Для того чтобы разобраться в сложных сочетаниях горных пород, извлечь из этого практически важные сведения, необходимо уметь определять последовательность образования слагающих земную кору геологических объектов - горных пород.

7.2. Относительный возраст горных пород и методы его определения

ОТНОСИТЕЛЬНЫЙ ВОЗРАСТ устанавливает последовательность геологических образований, в частности горных пород, в ходе геологической истории. Среда методов определения относительного возраста выделяют геологостратиграфические и биостратиграфические. К первой группе принадлежат стратиграфический и минералого-петрографический методы.

СТРАТИГРАФИЧЕСКИЙ МЕТОД основан на изучении последовательности напластования осадочных пород. Основное его правило заключается в том, что в ненарушенных толщах горных пород перекрывающие слои всегда моложе подстилающих. Если в геологических разрезах встречаются секущие тела магматических пород, то действует правило: секущее тело моложе тех, которые оно пересекает.

Главным недостатком этого метода является то, что с его помощью затруднительно сопоставлять удаленные друг от друга разрезы горных пород, а также породы, залегание которых осложнено тектоническими нарушениями.

МИНЕРАЛОГО-ПЕТРОГРАФИЧЕСКИЙ МЕТОД основан на определении относительного возраста отдельных слоев горных пород по характерным особенностям их состава и строения. Этот метод параллелизации слоев применим только в близко расположенных точках, и становится ненадежным в удаленных друг от друга геологических разрезах. Установлено, что часто горные породы одинакового возраста имеют разный состав и, наоборот, одновозрастные породы могут различаться по петрографическому составу, что указывает на различие в условиях их формирования. БИОСТРАТИГРАФИЧЕСКИЕ ПАЛЕОНТОЛОГИЧЕСКИЕ МЕТОДЫ основаны на изучении остатков органических форм, заключенных в осадочных породах в виде окаменелостей и отпечатков организмов, т.е. палеонтологических остатков, содержащихся в горных породах. Органическая жизнь в истории Земли развивалась постепенно - от простейших примитивных форм к более высокоорганизованным современным формам. Поэтому остатки организмов, захороненные в осадках в виде отпечатков и окаменелостей, могут служить надежным основанием для определения относительного возраста горных пород: горные породы, заключающие остатки наиболее примитивных организмов, будут древнее пород, содержащих остатки более высокоорганизованных растений и животных. Выяснено, что для пород определенного геологического возраста более характерны не отдельные окаменелости и отпечатки, а особые группы органических остатков, соответствующие ассоциациям (биоценозам) организмов, сменяющих друг друга в геологическом времени. Ведущая роль принадлежит руководящим ископаемым. Для них характерно: 1)быстрая эволюция во времени и, следовательно, ограниченное вертикальное распространение в геологических разрезах; 2)широкое распространение по площади.

Среди указанных методов важное значение имеют микропалеонтологический, основанный на изучении простейших микроорганизмов, И спорово - пыльцевой анализ, объектом изучения которого являются микроскопические растительные остатки: наружные оболочки спор и зерна цветочной пыльцы.

Часто при определении возраста возникает необходимость применения комплекса методов, но даже и в этом случае в земной коре существуют толщи, возраст которых неустановлен.

В ходе изучения истории земной коры была разработана периодизация ее истории, созданы единая для всего земного шара СТРАТИГРАФИЧЕСКАЯ и соответствующая ей ГЕОХРОНОЛОГИЧЕСКАЯ ШКАЛА.

Стратиграфические и соответствующие им геохронологические подразделения следующие:

СТРАТИГРАФИЧЕСКИЕ ГЕОХРОНОЛОГИЧЕСКИЕ

Эонотема Эон

Группа (эратема) Эра

Система Период

Отдел Эпоха

Стратиграфические подразделения применяются для обозначения комплексов слоев горных пород, а геохронологическая - для обозначения времени, в течение которого эти- комплексы накопились.

ЭОНОТЕМИ - наиболее крупные стратиграфические подразделения, образование которых происходило в течение нескольких геологических эр. Выделяют две эонотемы: фанерозойскую (греч. «фанерос» - явный, «зоэ» - жизнь), объединяющий палеозойскую, мезозойскую и кайнозойскую группы, и криптозойскую (греч. «криптос» -скрытый), объединяющий протерозойскую и архейскую группы.

ГРУППЫ - крупные подразделения стратиграфической шкалы - это комплексы отложений, образовавшихся в течение одной эры. Они охватывают крупные эры развития земной коры. Это нашло в названиях групп: архейская («археос»-древнейший), протерозойская («протерос»-первичный), палеозойская («палеос»-древний), мезозойская («мезос»-средний), кайнозойская («кайнос»-новый).

Группы делятся на системы , объединяющие отложения, образовавшиеся в течение одного периода. Названия систем связаны с названием тех мест, где соответствующие отложения впервые были установлены и описаны. Например, девонская система названа по имени графства Девоншир в Англии, каменноугольная - по широкому распространению в ней отложений угля. Палеозойская группа состоит из шести систем: кембрийская, ордовикская, силурийская, девонская, каменноугольная и пермская. В мезозойскую входят: триасовая, юрская и меловая. Кайнозойская состоит из палеогеновой, неогеновой и четвертичной систем. Архей и протерозой не имеют общепринятых подразделений для всей планеты. Обычно эти группы называют докембрием. Еще более дробными подразделениями являются ОТДЕЛЫ и ЯРУСЫ. Каждую систему подразделяют на три отдела: нижний, средний и верхний.

Наряду с международной шкалой, используются вспомогательные подразделения - СЕРИИ, СВИТЫ, ПАЧКИ. На геологических картах породы различного возраста окрашиваются в соответствующие общепринятые цвета и обозначаются определенными индексами.

7.3. Понятие об относительном возрасте горных пород

Во многих случаях для решения вопросов теоретической и практической геологии необходимо установить АБСОЛЮТНЫЙ возраст пород, выраженный в обычных единицах времени.

Исторически первыми для этих целей были применены ГЕОЛОГИЧЕСКИЕ методы, большинство из которых основано на изучении скорости геологических процессов. При этом полагается, что скорость процессов неизменна во времени. Например, был сделан подсчет возраста земной коры по суммарной мощности морских осадочных пород. При этом подсчете исходят из постулата постоянной скорости накопления осадков - 1 м в 7 тыс. лет.

СОЛЕВОЙ метод основан на предположении, что все соли Мирового океана возникли за счет солей, приносимых водами с суши и ежегодный принос солей не менялся со временем. Геологические методы далеки от точности, и в силу многих допущений они являются ненадежными.

Кардинальное решение вопроса определения абсолютного возраста пород стало возможным в XX в., в связи с использованием радиоактивных элементов, содержащихся в минералах.

Все РАДИОЛОГИЧЕСКИЕ методы основаны на явлении самопроизвольного распада радиоактивных элементов и исходят из предпосылки, что скорость этого процесса (период полураспада) для каждого радиоактивного элемента является величиной постоянной. Период полураспада Т, т.е. времени, в течение которого распадается половина атомов данного вещества, определяется:

Где - константа, характеризующая скорость радиоактивного распада; - средняя продолжительность жизни радиоактивных атомов.

Очевидно, что в каждом минерале, содержащим радиоактивный элемент, распад начинается с момента образования минерала. Исходя из Известной скорости распада, зная содержание элемента и продуктов его Распада в минерале, можно установить его возраст.

В настоящее время применяются следующие радиологические методы:

1. Ураново–ториево-свинцовый метод - основан на превращении урана и тория в радиоактивный свинец:

Для вычисления возраста относительно молодых минералов применяется формула:

Изотопы радиоактивных методов определяются с помощью специальных приборов - масс-спектрометров. Этот метод надежен, однако минералы, пригодные для анализа, сравнительно редки.

2. Калий-аргоновый метод основан на том, что изотоп калия с атомной массой 40 в результате захвата ядром электрона с ближайшего к нему К-уровня превращается в аргон . Возраст определяют по отношению . Чем оно больше, тем древнее объект.

Расчетная формула для определения возраста данным методом

имеет вид:

где и найденные весовые количества изотопов аргона и калия.

3.Рубидиево-стронцевый метод - основан на превращении изотопов рубидия с атомной массой 81 в стронций с тем же атомным номе ром. Применяется при определении возраста магматических и метаморфических пород.

4.Углеродистый метод - используется для определения возраста четвертичных отложений и в археологии. Это связано с тем, что период полураспада изотопа углерода составляет всего 5,5-6 тыс. лет. При этом можно определять возраст образований не превышающий50-70 тыс. лет. Изотоп образуется в атмосфере под действием космических лучей и хорошо усваивается растениями, а после их отмирания переходит в горные породы.

Радиологические методы позволили выразить в годах продолжительность наиболее крупных отрезков в истории земной коры. Этими методами установлено, что формирование земной коры началось 3,6-4,5 млрд. лет назад.