Болезни Военный билет Призыв

30 клеточная мембрана состоит из. Строение клеточной мембраны

Клеточная мембрана.

Клеточная мембрана отделяет содержимое любой клетки от внешней среды, обеспечивая ее целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки - компартменты или органеллы, в которых поддерживаются определенные условия среды.

Строение.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов (жиров), большинство из которых представляет собой так называемые сложные липиды - фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные - наружу. Мембраны - структуры весьма сходные у разных организмов. Толщина мембраны составляет 7-8 нм. (10−9 метра)

Гидрофильность – способность вещества смачиваться водой.
Гидрофобность – неспособность вещества смачиваться водой.

Биологическая мембрана включает и различные белки:
- интегральные (пронизывающие мембрану насквозь)
- полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой)
- поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны).
Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи.

Цитоскелет – клеточный каркас внутри клетки.

Функции.

1) Барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой.

2) Транспортная - через мембрану происходит транспорт веществ в клетку и из клетки.матричная - обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.

3) Механическая - обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях).Большую роль в обеспечение механической функции имеет межклеточное вещество.

4) Рецепторная - некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

Гормоны - биологически активные сигнальные химические вещества.

5) Ферментативная - мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.

6) Осуществление генерации и проведения биопотенциалов.
С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

Нервный импульс волна возбуждения, передающаяся по нервному волокну.

7) Маркировка клетки - на мембране есть антигены, действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Особенности проницаемости.

Клеточные мембраны обладают избирательной проницаемостью: через них медленно проникают разными способами:

  • Глюкоза – основной источник энергии.
  • Аминокислоты - строительные элементы, из которых состоят все белки организма.
  • Жирные кислоты – структурная, энергетическая и др. функции.
  • Глицерол – аставляет организм удерживать воду и уменьшает выработку мочи.
  • Ионы – ферменты для реакций.
Причем сами мембраны в известной мере активно регулируют этот процесс - одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу:

Пассивные механизмы проницаемости:

1) Диффузия.

Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Диффузия- процесс взаимного проникновения молекул одного вещества между молекулами другого.

Осмос процесс односторонней диффузии через полупроницаемую мембрану молекул растворителя в сторону бо́льшей концентрации растворённого вещества.

Мембрана, окружающая нормальную клетку крови, проницаема лишь для молекул воды, кислорода, некоторых из растворенных в крови питательных веществ и продуктов клеточной жизнедеятельности

Активные механизмы проницаемости:

1) Активный транспорт.

Активный транспорт перенос вещества из области низкой концентрации в область высокой.

Активный транспорт требует затрат энергии, так как происходит из области низкой концентрации в область высокую. На мембране существуют специальные белки-насосы, которые активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+), в качестве энергии служат АТФ.

АТФ универсальный источник энергии для всех биохимических процессов. .(подробнее позже)

2) Эндоцитоз.

Частицы, по какой-либо причине не способные пересечь клеточную мембрану, но необходимые для клетки, могут проникнуть сквозь мембрану путем эндоцитоза.

Эндоцитоз процесс захвата внешнего материала клеткой.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами - интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

Строение мембраны

Проницаемость

Активный транспорт

Осмос

Эндоцитоз

Снаружи клетка покрыта плазматической мембраной (или наружной клеточной мембраной) толщиной около 6-10нм.

Клеточная мембрана это плотные пленки из белков и липидов (в основном, фосфолипидов). Молекулы липидов расположены упорядоченно - перпендикулярно к поверхности, в два слоя, так, что их части, интенсивно взаимодействующие с водой (гидрофильные), направлены наружу, а части, инертные к воде (гидрофобные) - внутрь.

Молекулы белка расположены несплошным слоем на поверхности липидного каркаса с обеих его сторон. Часть их погружена в липидный слой, а некоторые проходят через него насквозь, образуя участки, проницаемые для воды. Эти белки выполняют различные функции - одни из них являются ферментами, другие - транспортными белками, участвующими в переносе некоторых веществ из окружающей среды в цитоплазму и в обратном направлении.

Основные функции клеточной мембраны

Одним из основных свойств биологических мембран является избирательная проницаемость (полупроницаемость) - одни вещества проходят через них с трудом, другие легко и даже в сторону большей концентрации Так, для большинства клеток концентрация ионов Na внутри значительно ниже, чем в окружающей среде. Для ионов K характерно обратное соотношение: их концентрация внутри клетки выше, чем снаружи. Поэтому ионы Na всегда стремятся проникнуть в клетку, а ионы K - выйти наружу. Выравниванию концентраций этих ионов препятствует присутствие в мембране особой системы, играющей роль насоса, который откачивает ионы Na из клетки и одновременно накачивает ионы K внутрь.

Стремление ионов Na к перемещению снаружи внутрь используется для транспорта сахаров и аминокислот внутрь клетки. При активном удалении ионов Na из клетки создаются условия для поступления глюкозы и аминокислот внутрь ее.


У многих клеток поглощение веществ происходит также путем фагоцитоза и пиноцитоза. При фагоцитозе гибкая наружная мембрана образует небольшое углубление, куда попадает захватываемая частица. Это углубление увеличивается, и, окруженная участком наружной мембраны, частица погружается в цитоплазму клетки. Явление фагоцитоза свойственно амебам и некоторым другим простейшим, а также лейкоцитам (фагоцитам). Аналогично происходит и поглощение клетками жидкостей, содержащих необходимые клетке вещества. Это явление было названо пиноцитозом .

Наружные мембраны различных клеток существенно отличаются как по химическому составу своих белков и липидов, так и по их относительному содержанию. Именно эти особенности определяют разнообразие в физиологической активности мембран различных клеток и их роль, в жизнедеятельности клеток и тканей.

С наружной мембраной связана эндоплазматическая сеть клетки. При помощи наружных мембран осуществляются различные типы межклеточных контактов, т.е. связь между отдельными клетками .

Для многих типов клеток характерно наличие на их поверхности большого количества выступов, складок, микроворсинок. Они способствуют как значительному увеличению площади поверхности клеток и улучшению обмена веществ, так и более прочным связям отдельных клеток друг с другом.

У растительных клеток снаружи клеточной мембраны имеются толстые, хорошо различимые в оптический микроскоп оболочки, состоящие из клетчатки (целлюлозы). Они создают прочную опору растительным тканям (древесина).

Некоторые клетки животного происхождения тоже имеют ряд внешних структур, находящихся поверх клеточной мембраны и имеющих защитный характер. Примером может быть хитин покровных клеток насекомых.

Функции клеточной мембраны (кратко)

Функция Описание
Защитный барьер Отделяет внутренние органеллы клетки от внешней среды
Регулирующая Производит регуляцию обмена веществ между внутренним содержимым клетки и наружной средой
Разграничивающая (компартментализация) Разделение внутреннего пространства клетки на независимые блоки (компартменты)
Энергетическая - Накопление и трансформация энергии;
- световые реакции фотосинтеза в хлоропластах;
- Всасывание и секреция.
Рецепторная (информационная) Участвует в формировании возбуждения и его проведения.
Двигательная Осуществляет движение клетки или отдельных ее частей.

Клетка — саморегулируемая структурно-функциональная единица тканей и органов. Клеточная теория строения органов и тканей была разработана Шлейденом и Шванном в 1839 г. В дальнейшем с помощью электронной микроскопии и ультрацентрифугирования удалось выяснить строение всех основных органелл животных и растительных клеток (рис. 1).

Рис. 1. Схема строения клетки животных организмов

Главными частями клетки являются цитоплазма и ядро. Каждая клетка окружена очень тонкой мембраной, ограничивающей ее содержимое.

Клеточная мембрана называется плазматической мембраной и характеризуется избирательной проницаемостью. Это свойство позволяет необходимым питательным веществам и химическим элементам проникать внутрь клетки, а излишним продуктам выходить из нее. Плазматическая мембрана состоит из двух слоев липидных молекул с включением в нее специфических белков. Основными липидами мембраны являются фосфолипиды. Они содержат фосфор, полярную головку и два неполярных хвоста из длинноцепочечных жирных кислот. К мембранным липидам относятся холестерин и эфиры холестерина. В соответствии с жидкостно-мозаичной моделью строения, мембраны содержат включения протеиновых и липидных молекул, которые могут перемешаться относительно бислоя. Для каждого типа мембран любой животной клетки характерен свой относительно постоянный липидный состав.

Мембранные белки по структуре подразделяют на два вида: интегральные и периферические. Периферические белки могут удаляться из мембраны без ее разрушения. Имеется четыре типа мембранных белков: транспортные белки, ферменты, рецепторы и структурные белки. Одни мембранные белки обладают ферментативной активностью, другие связывают определенные вещества и способствуют их переносу внутрь клетки. Белки обеспечивают несколько путей передвижения веществ через мембраны: образуют большие поры, состоящие из нескольких белковых субъединиц, которые позволяют перемещаться молекулам воды и ионам между клетками; формируют ионные каналы, специализированные для передвижения ионов некоторых видов через мембрану при определенных условиях. Структурные белки связаны с внутренним липидным слоем и обеспечивают цитоскелет клетки. Цитоскелет придает механическую прочность клеточной оболочке. В различных мембранах на долю белков приходится от 20 до 80% массы. Мембранные белки могут свободно перемещаться в латеральной плоскости.

В мембране присутствуют и углеводы, которые могут ковалентно связываться с липидами или белками. Известно три вида мембранных углеводов: гликолипиды (ганглиозиды), гликопротеиды и протеогликаны. Большинство липидов мембраны находятся в жидком состоянии и обладают определенной текучестью, т.е. способностью перемещаться из одного участка в другой. На внешней стороне мембраны имеются рецепторные участки, связывающие различные гормоны. Другие специфические участки мембраны мог>т распознавать и связывать некоторые чужеродные для данных клеток белки и разнообразные биологически активные соединения.

Внутреннее пространство клетки заполнено цитоплазмой, в которой протекает большинство катализируемых ферментами реакций клеточного метаболизма. Цитоплазма состоит из двух слоев: внутреннего, называемого эндоплазмой, и периферического — эктоплазмы, которая имеет большую вязкость и лишена гранул. В цитоплазме находятся все компоненты клетки или органеллы. Важнейшими из органелл клетки являются — эндоплазматический ретикулум, рибосомы, митохондрии, аппарат Гольджи, лизосомы, микрофиламенты и микротрубочки, пероксисомы.

Эндоплазматический ретикулум представляет собой систему взаимосвязанных каналов и полостей, пронизывающих всю цитоплазму. Он обеспечивает транспорт вешеств из окружающей среды и внутри клеток. Эндоплазматический ретикулум также служит депо для внутриклеточных ионов Са 2+ и служит основным местом синтеза липидов в клетке.

Рибосомы - микроскопические сферические частицы диаметром 10-25 нм. Рибосомы свободно располагаются в цитоплазме или прикрепляются к наружной поверхности мембран эндоплазматической сети и ядерной мембраны. Они взаимодействуют с информационной и транспортной РНК, и в них осуществляется синтез белков. Они синтезируют белки, которые попадают внутрь цистерн или в аппарат Гольджи, и затем выделяются наружу. Рибосомы, свободно располагающиеся в цитоплазме, синтезируют белок для использования самой клеткой, а рибосомы, связанные с эндоплазматическим ретикулумом, производят белок, который выводится из клетки. В рибосомах синтезируются различные функциональные белки: белки-переносчики, ферменты, рецепторы, белки цитоскелета.

Аппарат Гольджи образован системой канальцев, цистерн и пузырьков. Он связан с эндоплазматическим ретикулумом, и поступившие сюда биологически активные вещества хранятся в уплотненном виде в секреторных пузырьках. Последние постоянно отделяются от аппарата Гольджи, транспортируются к клеточной мембране и сливаются с ней, а содержащиеся в пузырьках вещества выводятся из клетки в процессе экзоцитоза.

Лизосомы - окруженные мембраной частицы размером 0,25-0,8 мкм. Они содержат многочисленные ферменты, участвующие в расщеплении белков, полисахаридов, жиров, нуклеиновых кислот, бактерий и клеток.

Пероксисомы сформированы из гладкого эндоплазматического ретикулума, напоминают лизосомы и содержат ферменты, катализирующие разложение пероксида водорода, который расщепляется под влиянием пероксидаз и каталазы.

Митохондрии содержат наружную и внутреннюю мембраны и являются «энергетической станцией» клетки. Митохондрии представляют собой округлые или удлиненные образования с двойной мембраной. Внутренняя мембрана формирует выступающие внутрь митохондрии складки — кристы. В них происходит синтез АТФ, осуществляется окисление субстратов цикла Кребса и множество биохимических реакций. Образованные в митохондриях молекулы АТФ диффундируют во все части клетки. В митохондриях содержится небольшое количество ДНК, РНК, рибосомы, и с их участием происходит обновление и синтез новых митохондрий.

Микрофиламенты представляют собой тонкие белковые нити, состоящие из миозина и актина, и образуют сократительный аппарат клетки. Микрофиламенты участвуют в образовании складок или выпячиваний клеточной мембраны, а также при перемещении различных структур внутри клеток.

Микротрубочки составляют основу цитоскелета и обеспечивают его прочность. Цитоскелет придает клеткам характерные внешний вид и форму, служит местом прикрепления внутриклеточных органелл и различных телец. В нервных клетках пучки микротрубочек участвуют в транспорте веществ из тела клетки к концам аксонов. При их участии осуществляется функционирование митотического веретена во время деления клеток. Они играют роль двигательных элементов в ворсинках и жгутиках у эукариот.

Ядро является основной структурой клетки, участвует в передаче наследственных признаков и в синтезе белков. Ядро окружено ядерной мембраной, содержащей множество ядерных пор, через которые происходит обмен различными веществами между ядром и цитоплазмой. Внутри него находится ядрышко. Установлена важная роль ядрышка в синтезе рибосомной РНК и белков-гистонов. В остальных частях ядра содержится хроматин, состоящий из ДНК, РНК и ряда специфических белков.

Функции клеточной мембраны

В регуляции внутриклеточного и межклеточного обмена важнейшую роль играют клеточные мембраны. Они обладают избирательной проницаемостью. Их специфическое строение позволяет обеспечивать барьерную, транспортную и регуляторную функции.

Барьерная функция проявляется в ограничении проникновения через мембрану растворенных в воде соединений. Мембрана непроницаема для крупных белковых молекул и органических анионов.

Регуляторная функция мембраны состоит в регуляции внутриклеточного метаболизма в ответ на химические, биологические и механические воздействия. Различные воздействия воспринимаются специальными мембранными рецепторами с последующим изменением активности ферментов.

Транспортная функция через биологические мембраны может осуществляться пассивно (диффузия, фильтрация, осмос) или с помощью активного транспорта.

Диффузия - движение газа или растворимого вещества по концентрационному и электрохимическому градиенту. Скорость диффузии зависит от проницаемости клеточной мембраны, а также градиента концентрации для незаряженных частиц, электрического и концентрационного градиентов для заряженных частиц. Простая диффузия происходит через липидный бислой или через каналы. Заряженные частицы движутся согласно электрохимическому градиенту, а незаряженные — химическому градиенту. Например, простой диффузией через липидный слой мембраны проникают кислород, стероидные гормоны, мочевина, спирт и т.д. Через каналы перемещаются различные ионы и частицы. Ионные каналы образованы белками и подразделяются на управляемые и неуправляемые каналы. В зависимости от селективности различают ионоселективные канаты, пропускающие только один ион, и каналы, не обладающие селективностью. Каналы имеют устье и селективный фильтр, а управляемые каналы — и воротный механизм.

Облегченная диффузия - процесс, при котором вещества переносятся через мембрану с помощью специальных мембранных белков- переносчиков. Таким путем в клетку проникают аминокислоты и моносахара. Этот вид транспорта происходит очень быстро.

Осмос - движения воды через мембрану из раствора с более низким в раствор с более высоким осмотическим давлением.

Активный транспорт - перенос веществ против градиента концентрации с помощью транспортных АТФаз (ионных насосов). Этот перенос происходит с затратой энергии.

В большей мере изучены Na + /K + -, Са 2+ - и Н + -насосы. Насосы располагаются на клеточных мембранах.

Разновидностью активного транспорта являются эндоцитоз и экзоцитоз. С помощью этих механизмов транспортируются более крупные вещества (белки, полисахариды, нуклеиновые кислоты), которые не могут переноситься по каналам. Этот транспорт более распространен в эпителиальных клетках кишечника, почечных канальцев, эндотелии сосудов.

При эндоцитозе клеточные мембраны образуют впячивания внутрь клетки, которые отшнуровываясь, превращаются в пузырьки. При экзоцитозе пузырьки с содержимым переносятся к клеточной мембране и сливаются с ней, а содержимое пузырьков выделяется во внеклеточную среду.

Строение и функции клеточной мембраны

Для понимания процессов, обеспечивающих существование электрических потенциалов в живых клетках, прежде всего нужно представлять строение клеточной мембраны и ее свойства.

В настоящее время наибольшим признанием пользуется жидкостно-мозаичная модель мембраны, предложенная С. Сингером и Г. Николсоном в 1972 г. Основу мембраны составляет двойной слой фосфолипидов (бислой), гидрофобные фрагменты молекулы которого погружены в толщу мембраны, а полярные гидрофильные группы ориентированы наружу, т.е. в окружающую водную среду (рис. 2).

Мембранные белки локализованы на поверхности мембраны или могут быть внедрены на различную глубину в гидрофобную зону. Некоторые белки пронизывают мембрану насквозь, и различные гидрофильные группы одного и того же белка обнаруживаются по обе стороны клеточной мембраны. Белки, обнаруженные в плазматической мембране, играют очень важную роль: они участвуют в образовании ионных каналов, играют роль мембранных насосов и переносчиков различных веществ, а также могут выполнять рецептор- ную функцию.

Основные функции клеточной мембраны: барьерная, транспортная, регуляторная, каталитическая.

Барьерная функция заключается в ограничении диффузии через мембрану растворимых в воде соединений, что необходимо для защиты клеток от чужеродных, токсических веществ и сохранения внутри клеток относительного постоянного содержания различных веществ. Так, клеточная мембрана может замедлить диффузию различных веществ в 100 000-10 000 000 раз.

Рис. 2. Трехмерная схема жидкостно-мозаичной модели мембраны Сингера-Николсона

Изображены глобулярные интегральные белки, погруженные в липидный бислой. Часть белков является ионными каналами, другие (гликопротеины) содержат олигосахаридные боковые цепи, участвующие в узнавании клетками друг друга и в межклеточной ткани. Молекулы холестерола вплотную примыкают к фосфолипидным головкам и фиксируют прилегающие участки «хвостов». Внутренние участки хвостов молекулы фосфолипидов не ограничены в своем движении и ответственны за текучесть мембраны (Bretscher, 1985)

В мембране располагаются каналы, через которые проникают ионы. Каналы бывают потенциал зависимыми и потен циалнезависимыми. Потенциалзависимые каналы открываются при изменении разности потенциалов, а потенциалнезависимые (гормонрегулируемые) открываются при взаимодействии рецепторов с веществами. Каналы могут быть открыты или закрыты благодаря воротам. В мембрану встроены два вида ворот: активационные (в глубине канала) и инактивационные (на поверхности канала). Ворота могут находиться в одном из трех состояний:

  • открытое состояние (открыты оба вида ворот);
  • закрытое состояние (закрыты активационные ворота);
  • инактивационное состояние (закрыты инактивационные ворота).

Другой характерной особенностью мембран является способность осуществлять избирательный перенос неорганических ионов, питательных веществ, а также различных продуктов обмена. Различают системы пассивного и активного переноса (транспорта) веществ. Пассивный транспорт осуществляется через ионные каналы с помощью или без помощи белков-переносчиков, а его движущей силой является разность электрохимических потенциалов ионов между внутри- и внеклеточным пространством. Избирательность ионных каналов определяется его геометрическими параметрами и химической природой групп, выстилающих стенки канала и его устье.

В настоящее время наиболее хорошо изучены каналы, обладающие избирательной проницаемостью для ионов Na + , К+ , Са 2+ а также для воды (так называемые аквапорины). Диаметр ионных каналов, по оценкам разных исследований, составляет 0,5-0,7 нм. Пропускная способность каналов может изменяться, через один ионный канал может проходить 10 7 - 10 8 ионов в секунду.

Активный транспорт происходит с затратой энергии и осуществляется так называемыми ионными насосами. Ионные насосы — это молекулярные белковые структуры, встроенные в мембрану и осуществляющие перенос ионов в сторону более высокого электрохимического потенциала.

Работа насосов осуществляется за счет энергии гидролиза АТФ. В настоящее время хорошо изучены Na+/K+ — АТФаза, Са 2+ — АТФаза, Н + — АТФаза, Н + /К + — АТФаза, Mg 2+ — АТФаза, которые обеспечивают перемещение соответственно ионов Na + , К + , Са 2+ , Н+, Mg 2+ изолированно или сопряжено (Na+ и К+; Н+ и К+). Молекулярный механизм активного транспорта до конца не выяснен.

По функциональным особенностям клеточную мембрану можно разделить на 9 выполняемых ей функций.
Функции клеточной мембраны:
1. Транспортная. Производит транспорт веществ из клетки в клетку;
2. Барьерная. Обладает избирательной проницаемостью, обеспечивает необходимый обмен веществ;
3. Рецепторная. Некоторые белки находящиеся в мембране являются рецепторами;
4. Механическая. Обеспечивает автономность клетки и её механических структур;
5. Матричная. Обеспечивает оптимальное взаимодействие и ориентацию матричных белков;
6. Энергетическая. В мембранах действуют системы переноса энергии при клеточном дыхании в митохондриях;
7. Ферментативная. Мембранные белки иногда являются ферментами. Например мембраны клеток кишечника;
8. Маркировочная. На мембране есть антигены (гликопротеины), которые позволяют опознать клетку;
9. Генерирующая. Осуществляет генерацию и проведение биопотенциалов.

Посмотреть как выглядит клеточная мембрана можно на примере строения животной клетки или растительной клетки .

 

На рисунке приведено строение клеточной мембраны.
К компонентам клеточной мембраны можно отнести различные белки клеточной мембраны (глобулярный, переферический, поверхностный), а также липиды клеточной мембраны (гликолипид, фосфолипид). Таже в строении клеточной мембраны присутствуют углеводы, холестерол, гликопротеин и белковая альфа спираль.

Состав клеточной мембраны

К основному составу клеточной мембраны относятся:
1. Белки - отвечающие за разнообразные свойства мембраны;
2. Липиды трёх видов (фосфолипиды, гликолипиды и холестерол) отвечающих за жёсткость мембраны.
Белки клеточной мембраны:
1. Глобулярный белок;
2. Поверхностный белок;
3. Переферический белок.

Основное назначение клеточной мембраны

Основное назначение клеточной мембраны:
1. Регулировать обмен между клеткой и средой;
2. Отделять содержимое любой клетки от внешней среды тем самым обеспечивая её целостность;
3. Внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки - органеллы или компартменты, в которых поддерживаются определённые условия среды.

Структура клеточной мембраны

Структура клеточной мембраны представляют собой двумерный раствор глобулярных интегральных белков, растворенных в жидком фосфолипидном матриксе. Данная модель мембранной структуры была предложена двумя учёными Никольсоном и Сингером в 1972 году. Таким образом, основу мембран составляет бимолекулярный липидный слой, с упорядоченным расположением молекул, что вы могли видеть на .

Краткое описание:

Сазонов В.Ф. 1_1 Строение клеточной мембраны [Электронный ресурс] // Кинезиолог, 2009-2018: [сайт]. Дата обновления: 06.02.2018..__.201_). _Описано строение и функционирование клеточной мембраны (синонимы: плазмалемма, плазмолемма, биомембрана, клеточная оболочка, наружная клеточная оболочка, мембрана клетки, цитоплазматическая мембрана). Эти начальные сведения необходимы как для цитологии, так и для понимания процессов нервной деятельности: нервного возбуждения, торможения, работы синапсов и сенсорных рецепторов.

Клеточная мембрана (плазма лемма или плазмо лемма)

Определение понятия

Клеточная мембрана (синонимы: плазмалемма, плазмолемма, цитоплазматическая мембрана, биомембрана) - это тройная липопротеиновая (т.е. "жиро-белковая") оболочка, отделяющая клетку от окружающей среды и осуществлящая управляемый обмен и связь между клеткой и окружающей её средой.

Главное в этом определении - не то, что мембрана отделяет клетку от среды, а как раз то, что она соединяет клетку с окружающей средой. Мембрана - это активная структура клетки, она постоянно работает.

Биологическая мембрана - это ультратонкая бимолекулярная пленка фосфолипидов, инкрустированная белками и полисахаридами. Эта клеточная структура лежит в основе барьерных, механических и матричных свойств живого организма (Антонов В.Ф., 1996).

Образное представление о мембране

Мне клеточная мембрана представляетсся в виде решетчатого забора с множеством дверей в нём, который окружает некую территорию. Всякая мелкая живность может через этот забор свободно перемещаться туда и обратно. Но более крупные посетители могут входить только через двери, да и то не всякие. У разных посетителей ключи только от своих дверей, и через чужие двери они проходить не могут. Так вот через этот забор постоянно идут потоки посетителей туда и обратно, потому что главная функция мембраны-забора двойная: отделять территорию от окружающего пространства и в то же время соединять её с окружающим пространством. Для этого и существует в заборе множество отверстий и дверей - !

Свойства мембраны

1. Проницаемость.

2. Полупроницаемость (частичная проницаемость).

3. Избирательная (синоним: селективная) проницаемость.

4. Активная проницаемость (синоним: активный транспорт).

5. Управляемая проницаемость.

Как видим, основное свойство мембраны - это её проницаемость по отношению к различным веществам.

6. Фагоцитоц и пиноцитоз.

7. Экзоцитоз.

8. Наличие электрических и химических потенциалов, точнее разности потенциалов между внутренней и наружной сторонами мембраны. Образно можно сказать, что "мембрана превращает клетку в "электрическую батарейку" с помощью управления ионными потоками" . Подробности: .

9. Изменения электрического и химического потенциала.

10. Раздражимость. Специальные молекулярные рецепторы, находящиеся на мембране, могут соединяться с сигнальными (управляющими) веществами, вследствие чего может меняться состояние мембраны и всей клетки. Молекулярные рецепторы запускают биохимические реакции в ответ на соединение с ними лигандов (управляющих веществ). Важно отметить, что сигнальное вещество воздействует на рецептор снаружи, а изменения продолжаются внутри клетки. Получается, что мембрана передала информацию из окружающей среды во внутреннюю среду клетки.

11. Каталитическая ферментативная активность. Ферменты могут быть встроены в мембрану или связаны с её поверхностью (как внутри, так и снаружи клетки), и там они осуществляют свою ферментативную деятельность.

12. Изменение формы поверхности и её площади. Это позволяет мембране образовывать выросты наружу или, наоборот, впячивания внутрь клетки.

13. Способность образовывать контакты с другими клеточными мембранами.

14. Адгезия - способность прилипать к твёрдым поверхностям.

Краткий список свойств мембраны

  • Проницаемость.
  • Эндоцитоз, экзоцитоз, трансцитоз.
  • Потенциалы.
  • Раздражимость.
  • Ферментная активность.
  • Контакты.
  • Адгезия.

Функции мембраны

1. Неполная изоляция внутреннего содержимого от внешней среды.

2. Главное в работе клеточной мембраны - это обмен различными веществами между клеткой и межклеточной средой. Этому служит такое свойство мембраны как проницаемость. Кроме того, мембрана регулирует этот обмен за счёт того, что регулирует свою проницаемость.

3. Ещё одна важная функция мембраны - создание разности химических и электрических потенциалов между её внутренней и наружной сторонами. За счёт этого внутри клетка имеет отрицательный электрический потенциал - .

4. Через мембрану осуществляется также информационный обмен между клеткой и окружающей её средой. Специальные молекулярные рецепторы, расположенные на мембране, могут связываться с управляющими веществами (гормонами, медиаторами, модуляторами) и запускать в клетке биохимические реакции, приводящие к различным изменениям в работе клетки или в её структурах.

Видео: Строение мембраны клетки

Видеолекция: Подробно о строении мембраны и транспорте

Строение мембраны

Клеточная мембрана имеет универсальное трёхслойное строение. Её срединный жировой слой является сплошным, а верхний и нижний белковые слои покрывают его в виде мозаики из отдельных белковых участков. Жировой слой является основой, обеспечивающей обособление клетки от окружающей среды, изолирующей её от окружающей среды. Сам по себе он очень плохо пропускает водорастворимые вещества, но легко пропускает жирорастворимые. Поэтому проницаемость мембраны для водорастворимых веществ (например, ионов), приходится обеспечивать специальными белковыми структурами - и .

Ниже представлены микрофотографии реальных клеточных мембран контактирующих клеток, полученные с помощью электронного микроскопа, а также схематический рисунок, показывающий трёхслойность мембраны и мозаичность её белковых слоёв. Для увеличения изображения кликните на него.

Отдельное изображение внутреннего липидного (жирового) слоя клеточной мембраны, пронизанного интегральными встроенными белками. Верхний и нижний белковые слои удалены, чтобы не мешать рассмотрению липидного двойного слоя

Рисунок выше: Неполное схематичное изображение клеточной мембраны (клеточной оболочки), приведённое в Википедии.

Учтите, что наружный и внутренний белковые слои здесь с мембраны сняты, чтобы нам лучше был виден центральный жировой двойной липидный слой. В реальной клеточной мембране сверху и снизу по жировой плёночке (мелкие шарики на рисунке) плавают большие белковые "острова", и мембрана получается более толстой, трёхслойной: белок-жир-белок . Так что она на самом деле похожа на сэндвич из двух белковых "кусков хлеба" с жирным слоем "масла" посередине, т.е. имеет трёхслойное строение, а не двухслойное.

На этом рисунке маленькие голубые и белые шарики соответствуют гидрофильным (смачиваемым) «головкам» липидов, а присоединённые к ним «ниточки» - гидрофобным (несмачиваемым) «хвостам». Из белков показаны только интегральные сквозные мембранные белки (красные глобулы и желтые спирали). Желтые овальные точки внутри мембраны - это молекулы холестерола Желто-зеленые цепочки бусинок на наружной стороне мембраны - цепочки олигосахаридов , формирующие гликокаликс. Гликокаликс - это как бы углеводный ("сахарный") "пушок" на мембране, образованный торчащими из неё длинными углеводно-белковыми молекулами.

Живая - это маленький «белково-жировой мешочек», заполненный полужидким желеобразным содержимым, которое пронизано плёнками и трубочками.

Стенки этого мешочка образованы двойной жировой (липидной) плёночкой, облепленной изнутри и снаружи белками - клеточной мембраной. Поэтому говорят, что мембрана имеет трёхслойное строение : белки-жиры-белки . Внутри клетки также есть множество подобных жировых мембран, которые делят её внутреннее пространство на отсеки. Такими же мембранами окружены клеточные органеллы: ядро, митохондрии, хлоропласты. Так что мембрана - это универсальная молекулярная структура, свойственная всем клеткам и всем живым организмам.

Слева - уже не реальная, а искусственная модель кусочка биологической мембраны: это мгновенный снимок жирового фосфолипидного бислоя (т.е. двойного слоя) в процессе его молекулярно-динамического моделирования. Показана расчётная ячейка модели - 96 молекул ФХ (ф осфатидилх олина) и 2304 молекулы воды, всего 20544 атомов.

Справа - наглядная модель одиночной молекулы того самого липида, из которых как раз и собирается мембранный липидный бислой. Вверху у него гидрофильная (водолюбивая) головка, а снизу - два гидрофобных (боящихся воды) хвостика. У этого липида есть простое название: 1-стероил-2-докозагексаеноил-Sn-глицеро-3-фосфатидилхолин (18:0/22:6(n-3)cis ФХ), но вам нет нужды его запоминать, если вы только не планируете довести своего преподавателя до обморока глубиной своих познаний.

Можно дать и более точное научное определение клетке:

– это ограниченная активной мембраной, упорядоченная, структурированная неоднородная система биополимеров, участвующих в единой совокупности обменных, энергетических и информационных процессов, и также осуществляющих поддержание и воспроизведение всей системы в целом.

Внутри клетка также пронизана мембранами, а между мембранами находится не вода, а вязкий гель/золь изменяемой плотности. Поэтому взаимодействующие молекулы в клетке не плавают свободно, как в пробирке с водным раствором, а в основном сидят (иммобилизованы) на полимерных структурах цитоскелета или внутриклеточных мембранах. И химические реакции поэтому проходят внутри клетки почти как в твердом теле, а не в жидкости. Наружная мембрана, окружающая клетку, также облеплена ферментами и молекулярными рецепторами, что делает её очень активной частью клетки.

Клеточная мембрана (плазмалемма, плазмолемма) - это активная оболочка, отделяющая клетку от окружающей среды и связывающая её с окружающей средой. © Сазонов В.Ф., 2016.

Из этого определения мембраны следует, что она не просто ограничивает клетку, а активно работает , связывая её с окружающей её средой.

Жир, из которого состоят мембраны, - особенный, поэтому его молекулы принято называть не просто жиром, а «липидами», «фосфолипидами», «сфинголипидами» . Мембранная плёночка является двойной, т. е. она состоит из двух плёночек, слипшихся друг с другом. Поэтому в учебниках пишут, что основа клеточной мембраны состоит из двух липидных слоёв (или из "бислоя ", т.е. двойного слоя). У каждого отдельно взятого липидного слоя одна сторона может смачиваться водой, а другая - не может. Так вот, эти плёночки слипаются друг с другом именно своими несмачивающимися сторонами.

Мембрана бактерий

Оболочка прокариотической клетки грамотрицательных бактерий состоит из нескольких слоёв, показанных на рисунке ниже.
Слои оболочки грамотрицательных бактерий:
1. Внутренняя трёхслойная цитоплазматическая мембрана, которая соприкасается с цитоплазмой.
2. Клеточная стенка, которая состоит из муреина.
3. Наружная трёхслойная цитоплазматическая мембрана, которая имеет такую же систему липидов с белковыми комплексами, как и внутренняя мембрана.
Общение грамотрицательных бактериальных клеток с внешним миром через такую сложную трёхступенчатую структуру не даёт им преимущества в выживании в суровых условиях по сравнению с грамположительным бактериями, имеющими менее мощную оболочку. Они точно так же плохо переносят высокие температуры, повышенную кислотность и перепады давления.

Видеолекция: Плазматическая мембрана. Е.В. Шеваль, к.б.н.

Видеолекция: Мембрана как клеточная граница. А. Иляскин

Важность ионных каналов мембраны

Легко понять, что через мембранную жировую плёнку могут проникать в клетку только жирорастворимые вещества. Это жиры, спирты, газы. Например, в эритроцитх прямо через мембрану легко проходят внутрь и наружу кислород и углекислый газ. А вот вода и водорастворимые вещества (например, ионы) просто так через мембрану не могут пройти внутрь любой клетки. Это значит, что для них нужны специальные отверстия. Но если просто сделать отверстие в жировой плёнке, то оно тут же затянется обратно. Что же делать? Выход в природе был найден: надо сделать специальные белковые транспортные структуры и протянуть их сквозь мембрану. Именно так и получаются каналы для пропускания не растворимых в жире веществ - ионные каналы мембраны клетки.

Итак, для придания своей мембране дополнительных свойства проницаемости для полярных молекул (ионов и воды) клетка синтезирует в цитоплазме специальные белки, которые затем встраиваются в мембрану. Они бывают двух типов: белки-транспортёры (например, транспортные АТФазы) и белки-каналоформеры (образователи каналов). Эти белки встраиваются в двойной жировой слой мембраны и формируют транспортные структуры в виде транспортёров или в виде ионных каналов . Через эти транспортные структуры теперь могут проходить различные водорастворимые вещества, которые по-другому проходить сквозь жировую мембранную плёнку не могут.

Вообще, встроенные в мембрану белки ещё называются интегральными , именно потому что они как бы включаются в состав мембраны и пронизывают её насквозь. Другие белки, не интегральные, образуют как бы острова, «плавающие» по поверхности мембраны: либо по её наружной поверхности, либо по внутренней. Ведь всем известно, что жир является хорошей смазкой и скользить по нему получается легко!

Выводы

1. В целом, мембрана получается трёхслойной:

1) наружный слой из белковых «островов»,

2) жировое двухслойное «море» (липидный бислой), т.е. двойная липидная плёнка,

3) внутренний слой из белковых «островов».

Но есть ещё рыхлый наружный слой - гликокаликс, который образуют торчащие из мембраны гликопротеины. Они являются молекулярными рецепторами, с которыми связываются сигнальные управляющие вещества.

2. В мембрану встроены специальные белковые структуры, обеспечивающие её протицаемость для ионов или других веществ. Не надо забывать, что в некоторых местах жировое море пронизано интегральными белками насквозь. И именно интегральные белки образуют специальные транспортные структуры клеточной мембраны (смотрите раздел 1_2 Транспортные механизмы мембраны). Через них вещества попадают внутрь клетки, а также выводятся из клетки наружу.

3. С любой стороны мембраны (наружной и внутренней), а также внутри мембраны могут располагаться белки-ферменты, которые влияют и на состояние самой мембраны и на жизнь всей клетки.

Так что мембрана клетки - это активная изменчивая структура, которая активно работает в интересах всей клетки и связывает её с окружающим миром, а не просто является "защитной оболочкой". Это - самое важное, что надо знать про клеточную мембрану.

В медицине мембранные белки зачастую используются как “мишени” для лекарственных средств. В качестве таких мишеней выступают рецепторы, ионные каналы, ферменты, транспортные системы. В последнее время кроме мембраны мишенью для лекарственных веществ становятся также гены, спрятанные в клеточном ядре.

Видео: Введение в биофизику клеточной мембраны: Структура мембран 1 (Владимиров Ю.А.)

Видео: История, строение и функции клеточной мембраны: Структура мембран 2 (Владимиров Ю.А.)

© 2010-2018 Сазонов В.Ф., © 2010-2016 kineziolog.bodhy.