Болезни Военный билет Призыв

Анизотропия свойств. Введение, анизотропность - общие свойства кристаллов

(например, физических : упругости , электропроводности , теплопроводности , показателя преломления , скорости звука или света и др.) в различных направлениях внутри этой среды; в противоположность изотропии .

В отношении одних свойств среда может быть изотропна , а в отношении других - анизотропна ; степень анизотропии также может различаться.

Частный случай анизотропии - ортотропия (от др.-греч. ὀρθός - прямой и τρόπος - направление) - неодинаковость свойств среды по взаимно перпендикулярным направлениям.

Примеры

Анизотропия является характерным свойством кристаллических тел (точнее, лишь тех, кристаллическая решетка которых не обладает высшей - кубической - симметрией). При этом свойство анизотропии в простейшем виде проявляется только у монокристаллов. У поликристаллов анизотропия тела в целом (макроскопически) может не проявляться вследствие беспорядочной ориентировки микрокристаллов, или даже совсем не проявляется, за исключением случаев специальных условий кристаллизации, специальной обработки и т. п.

Причиной анизотропности кристаллов является то, что при упорядоченном расположении атомов, молекул или ионов силы взаимодействия между ними и межатомные расстояния (а также некоторые не связанные с ними прямо величины, например, поляризуемость или электропроводность) оказываются неодинаковыми по различным направлениям. Причиной анизотропии молекулярного кристалла может быть также асимметрия его молекул. Макроскопически эта неодинаковость проявляется, как правило, лишь если кристаллическая структура не слишком симметрична.

Помимо кристаллов, естественная анизотропия - характерная особенность многих материалов биологического происхождения, например, деревянных брусков.

Во многих случаях анизотропия может быть следствием внешнего воздействия (например, механической деформации, воздействия электрического или магнитного поля и т. д.). В ряде случаев анизотропия среды может в какой-то степени (а в некоторой слабой степени - часто) сохраняться после исчезновения вызвавшего её внешнего воздействия.

Обменная анизотропия

Обменная анизотропия - особенность петель гистерезиса перемагничивания магнитных материалов, проявляющаяся в несимметричном расположении петли относительно оси ординат .

Анизотропия времени

  • Выражается в существовании необратимых процессов.
  • Философская и естественнонаучная проблема, исторически связанная с началами термодинамики и понятием энтропии .
  • В классической механике время является абсолютной величиной; законы Ньютона инвариантны по отношению к направлению времени.

Напишите отзыв о статье "Анизотропия"

Примечания

См. также

Ссылки

1. Физическая энциклопедия / под ред. Прохорова А. М. - М.: Советская энциклопедия, 1988. - Т. I. - С. 83.

Отрывок, характеризующий Анизотропия

– Нет, Лазареву то какое счастье! 10 франков пожизненного пенсиона.
– Вот так шапка, ребята! – кричал преображенец, надевая мохнатую шапку француза.
– Чудо как хорошо, прелесть!
– Ты слышал отзыв? – сказал гвардейский офицер другому. Третьего дня было Napoleon, France, bravoure; [Наполеон, Франция, храбрость;] вчера Alexandre, Russie, grandeur; [Александр, Россия, величие;] один день наш государь дает отзыв, а другой день Наполеон. Завтра государь пошлет Георгия самому храброму из французских гвардейцев. Нельзя же! Должен ответить тем же.
Борис с своим товарищем Жилинским тоже пришел посмотреть на банкет преображенцев. Возвращаясь назад, Борис заметил Ростова, который стоял у угла дома.
– Ростов! здравствуй; мы и не видались, – сказал он ему, и не мог удержаться, чтобы не спросить у него, что с ним сделалось: так странно мрачно и расстроено было лицо Ростова.
– Ничего, ничего, – отвечал Ростов.
– Ты зайдешь?
– Да, зайду.
Ростов долго стоял у угла, издалека глядя на пирующих. В уме его происходила мучительная работа, которую он никак не мог довести до конца. В душе поднимались страшные сомнения. То ему вспоминался Денисов с своим изменившимся выражением, с своей покорностью и весь госпиталь с этими оторванными руками и ногами, с этой грязью и болезнями. Ему так живо казалось, что он теперь чувствует этот больничный запах мертвого тела, что он оглядывался, чтобы понять, откуда мог происходить этот запах. То ему вспоминался этот самодовольный Бонапарте с своей белой ручкой, который был теперь император, которого любит и уважает император Александр. Для чего же оторванные руки, ноги, убитые люди? То вспоминался ему награжденный Лазарев и Денисов, наказанный и непрощенный. Он заставал себя на таких странных мыслях, что пугался их.
Запах еды преображенцев и голод вызвали его из этого состояния: надо было поесть что нибудь, прежде чем уехать. Он пошел к гостинице, которую видел утром. В гостинице он застал так много народу, офицеров, так же как и он приехавших в статских платьях, что он насилу добился обеда. Два офицера одной с ним дивизии присоединились к нему. Разговор естественно зашел о мире. Офицеры, товарищи Ростова, как и большая часть армии, были недовольны миром, заключенным после Фридланда. Говорили, что еще бы подержаться, Наполеон бы пропал, что у него в войсках ни сухарей, ни зарядов уж не было. Николай молча ел и преимущественно пил. Он выпил один две бутылки вина. Внутренняя поднявшаяся в нем работа, не разрешаясь, всё также томила его. Он боялся предаваться своим мыслям и не мог отстать от них. Вдруг на слова одного из офицеров, что обидно смотреть на французов, Ростов начал кричать с горячностью, ничем не оправданною, и потому очень удивившею офицеров.
– И как вы можете судить, что было бы лучше! – закричал он с лицом, вдруг налившимся кровью. – Как вы можете судить о поступках государя, какое мы имеем право рассуждать?! Мы не можем понять ни цели, ни поступков государя!
– Да я ни слова не говорил о государе, – оправдывался офицер, не могший иначе как тем, что Ростов пьян, объяснить себе его вспыльчивости.
Но Ростов не слушал.
– Мы не чиновники дипломатические, а мы солдаты и больше ничего, – продолжал он. – Умирать велят нам – так умирать. А коли наказывают, так значит – виноват; не нам судить. Угодно государю императору признать Бонапарте императором и заключить с ним союз – значит так надо. А то, коли бы мы стали обо всем судить да рассуждать, так этак ничего святого не останется. Этак мы скажем, что ни Бога нет, ничего нет, – ударяя по столу кричал Николай, весьма некстати, по понятиям своих собеседников, но весьма последовательно по ходу своих мыслей.

АНИЗОТРОПИЯ (anisotropia ; греческий anisos - неравный и tropos - направление) - неоднородность некоторых физических свойств вещества по различным направлениям.

Различают анизотропию оптическую, механическую и электрическую.

Оптическая анизотропия на уровне макромолекул наиболее отчетливо проявляется в дихроизме и гипохромном эффекте белков и нуклеиновых кислот. В основе оптической анизотропии макромолекул лежит упаковка их в упорядоченную спиральную конфигурацию. Характерной оптической анизотропией обладают мышечные волокна, внутри которых с помощью метода двойного лучепреломления (см.) выявляются так наз. анизотропные диски.

Механическая анизотропия характерна для элементов опорно-двигательного аппарата, в частности кости (см. Кость), и выражается в различной механической прочности костной ткани в продольном и поперечном направлениях. Механическую анизотропию кости можно наблюдать визуально с помощью прозрачной объемной пластмассовой модели при приложении к ней механического напряжения, сравнимого по величине и направлению с действующим на кость фактором в условиях организма (метод фотоупругости).

Электрическая анизотропия живых тканей определяется пассивными электрическими свойствами (электрическим сопротивлением и электрической емкостью) клеточных мембран. Наличие электрической анизотропии иллюстрируется тем фактом, что удельный электрический импеданс (см.) живой мышцы, измеренный в продольном направлении, значительно меньше поперечного. Объяснение заключается в том, что электрический ток пересекает различное количество мембран на единицу длины в зависимости от направления (продольного или поперечного). Электрическая анизотропия тканей используется в методе вектор-электрокардиографии.

Анизотропные свойства живых систем характерны для всех уровней структурной организации от биомакромолекул до целого организма.

Анизотропия может быть также естественной или искусственной. Естественную анизотропию обнаруживают некоторые структуры нормальных животных тканей(мышечные,коллагеновые,эластические волокна, кость,фибрин, холестерин и др.), дающие при исследовании в поляризованном свете двойное лучепреломление. Ряд веществ, появляющихся в патологических условиях (гиалин, амилоид и др.), также обладает свойством анизотропии и дихроизма.

Искусственная анизотропия возникает вследствие механических деформаций, химических воздействий и т. д.

Особое место в патологии занимает так называемое анизотропное ожирение - отложения в тканях холестерина или его соединений в результате нарушения липоидного (холестеринового) обмена. Вокруг таких отложений в соединительной ткани возникает специфическая реакция, подобная реакции на инородное тело.

В. В. Серов; В. Ф. Антонов (биофиз.).

АНИЗОТРОПИЯ (от греч. anisos-неравный и tropos-образ, оборот), особенность тел, заключающаяся в том, что свойства их в различных направлениях неодинаковы. Грубой А. обладает, напр., дерево: простым глазом видно, что оно состоит из волокон, вытянутых в одном направлении; поэтому, оно легко раскалывается в этом направлении, а в направлении перпендикулярном может быть только перепилено или перерублено. А. обладает большинство кристаллов, в к-рых она вызывается особым, упорядоченным расположением атомов. А. может проявиться в любых физ. свойствах тела; так, по разным направлениям может оказаться различная упругость, различная сжимаемость, различная теплопроводность и электропроводность. Особенно резко сказывается А. в оптических свойствах тела. Такая оптическая А. свойственна всем кристаллическим системам за исключением т. н. правильной. Луч света, попадая в анизотропный кристалл, распадается на два совершенно разных луча: «обыкновенный» (поляризованный в плоскости главного сечения) и «необыкновенный» (поляризованный перпендикулярно к ней). Оказывается, что скорость распространения света в «необыкновенном» луче сильно зависит от направления. Если в пространстве изобразить скорости света в виде стрелок, направленных из одной точки в различные стороны, и если величину каждой стрелки взять пропорциональной скорости света в данном направлении, то концы всех стрелок будут лежать на некотором эллипсоиде (Гюйгенса). В животных тканях оптическая А. встречается нередко. Примером могут служить: поперечнополосатые мышечные волокна, в к-рых правильно чередуются темные анизотропные участки со светлыми изотропными; костная ткань, дающая ясную картину крестов при исследовании в поляризованном свете, и пр. При растяжении А. может быть обнаруживаема и в таких образованиях, где она в покоющемся состоянии не выступает ясно, например, в клейдающих волокнах соединительной ткани. Подробности А. в животных тканях-см. по отно-ношению к каждой отдельной ткани. Анизотропное вещество мыш-ц ы. Скелетные мышцы состоят из волокон, к-рые под микроскопом обнаруживают чередование светлых и темных поперечных полос. Последние анизотропны, т. е. их вещество имеет различные свойства в разных направлениях. В зависимости от этого, темные полосы обнаруживают при исследовании в поляризованном свете двойное лучепреломление. Мышцы по отношению к поляризованному свету таковы, какими они долиты были быть, если бы они были построены из одноосных положительных кристаллов с длинной осью параллельно оси мышечного волокна. Гладкие мышцы также обнаруживают двойное преломление. Сократимость мышцы связана с анизотропным веществом; доказано, что сократимость и двоякое преломление в мышце появляются при развитии мышечного волокна одновременно. АНИ30ХР0МИЯ (от греч. anisos - неравный и chroma-краска), различная интенсивность окраски эритроцитов, зависящая от неодинакового содержания в них НЬ; А. можно наблюдать на неокрашенных и окрашенных мазках крови, в которых, на ряду с интенсивно окрашенными эритроцитами (гиперхромия), можно встретить красные шарики с нормальным содержанием пигмента или с очень бледно окрашенной периферической зоной (гипохромия). Неравномерное распределение НЬ может встречаться в одном и том же эритроците, - при этом периферия бледно окрашена, а центр представляет интенсивно окрашенный диск, соединенный с периферией тонким мостиком окрашенной плазмы. А. встречается при недостаточности кроветворения или при чрезмерности его после предварит, потери крови.

Введение

Кристаллы - это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, то есть на одном из нескольких определённых регулярных расположений составляющих вещество частиц.

В основе физики твердого тела лежит представление о кристалличности вещества. Все теории физических свойств кристаллических твердых тел основываются на представлении о совершенной периодичности кристаллических решеток. Используя это представление и вытекающие из него положения о симметрии и анизотропии кристаллов, физики разработали теорию электронной структуры твердых тел. Эта теория позволяет дать строгую классификацию твердых тел, определяя их тип и макроскопические свойства. Однако она позволяет классифицировать только известные, исследованные вещества и не позволяет предопределить состав и структуру новых сложных веществ, которые обладали бы заданным комплексом свойств. Эта последняя задача является особо важной для практики, так как ее решение позволило бы создавать материалы по заказу для каждого конкретного случая. При соответствующих внешних условиях свойства кристаллических веществ определяются их химическим составом и типом кристаллической решетки. Изучение зависимости свойств вещества от его химического состава и кристаллической структуры обычно разбивается на следующие отдельные этапы 1) общее изучение кристаллов и кристаллического состояния вещества 2) построение теории химических связей и ее применение к изучению различных классов кристаллических веществ 3) изучение общих закономерностей изменения структуры кристаллических веществ при изменении их химического состава 4) установление правил, позволяющих предопределять химический состав и структуру веществ, обладающих определенным комплексом физических свойств.

Основные свойства кристаллов - анизотропность, однородность, способность к самоогоранению и наличие постоянной температуры плавления.

Анизотропность

кристалл анизотропность самоогоранение

Анизотропность - выражается она в том, что физические свойства кристаллов неодинаковы по разным направлениям. К физическим величинам можно отнести такие параметры - прочность, твердость, теплопроводность, скорость распространения света, электропроводность. Характерным примером вещества с ярко выраженной анизотропностью является слюда. Кристаллические пластинки слюды - легко расщепляются лишь по плоскостям. В поперечных же направлениях расщепить пластинки этого минерала значительно труднее.

Примером анизотропности-является кристалл минерала дистена. В продольном направлении, у дистена твердость равняется 4,5, в поперечном - 6. Минерал дистен (Al 2 O), отличающийся резко различной твердостью по неодинаковым направлениям. Вдоль удлинения кристаллы дистена легко царапаются лезвием ножа, в направлении перпендикулярном удлинению, нож не оставляет никаких следов.

Рис. 1

Минерал кордиерит (Mg 2 Al 3 ). Минерал, алюмосиликат магния и железа. Кристалл кордиерита по трем различным направлениям представляется различно окрашенным. Если из такого кристалла вырезать куб с гранями, то можно заметить следующее. Перпендикулярными этим направлениям, то по диагонали куба (от вершины к вершине наблюдается серовато-синяя окраска, в направлении вертикальном - индигово-синяя окраска, и в направлении поперек куба - желтая.

Рис. 2

Кристалл поваренной соли, которая имеет форму куба. Из такого кристалла можно вырезать стерженьки по различным направлениям. Три из них перпендикулярно граням куба, параллельно диагонали


Каждый из примеров исключительны по своей характерности. Но путём точных исследований, ученым пришли к такому выводу, что все кристаллы в том или ином отношении обладают анизотропностью. Так же твёрдые аморфные образования могут быть и однородными и даже анизотропными (анизотропность, к примеру, может наблюдаться при растягивании или сдавливании стёкол), но аморфные тела не могут сами по себе принимать многогранную форму, ни при каких условиях.

Рис. 3

В качестве примера (рис. 1) анизотропных свойств кристаллических веществ прежде всего следует упомянуть про механическую анизотропность, которая заключается в следующем. Все кристаллические вещества раскалываются не одинаково вдоль различных направлений (слюда, гипс, графит и др.). Аморфные же вещества-во всех направлениях раскалываются одинаково, потому что аморфность характеризуются изотропностью (равносвойственностью) - физические свойства по всем направлениям проявляются одинаково.

Анизотропию теплопроводности легко пронаблюдать на следующем простом опыте. На грань кристалла кварца нанести слой цветного воска и поднести к центру грани накаленную на спиртовке иголку. Образовавшийся талый круг воска вокруг иголки примет форму эллипса на грани призмы или же форму неправильного треугольника на одной из граней головки кристалла. На изотропном же веществе, например, стекле - форма талого воска всегда будет правильным кругом.

Анизотропность проявляется и в том, что при взаимодействии на кристалл какого-либо растворителя, скорость химических реакций различна по различным направлениям. В результате каждый кристалл при растворении в итоге приобретает свои характерные формы.

В конечном итоге причиной анизотропности кристаллов - является то, что при упорядоченном расположении ионов, молекул или атомов силы взаимодействия между ними и межатомные расстояния (а также некоторые не связанные с ними прямо величины, например, электропроводность или поляризуемость) оказываются неодинаковыми по различным направлениям. Причиной анизотропии молекулярного кристалла может быть также асимметрия его молекул, хотелось бы отметить что все аминокислоты, кроме простейшей - глицина, асимметричны.

Любая частичка кристалла имеет строго определенный химический состав. Это свойство кристаллических веществ используется для получения химически чистых веществ. Например, при замораживании морской воды она становится пресной и пригодной для питья. Теперь угадайте, морской лед пресный или соленый?

Анизотропия – это зависимость свойств материала от направления. Материал считаетсяизотропным , когда его свойства во всех направлениях одинаковые. Если же с изменением направления свойства материала изменяются, материал считаетсяанизотропным.

Анизотропия характерна для кристаллов и обусловлена их упорядоченной структурой. В кристаллах в различных направлениях атомы располагаются с различной плотностью, т.е. на различном расстоянии друг от друга, что отражается на силе взаимодействия атомов. Как следствие, свойства кристаллов в различных направлениях оказываются различными. Например, в кубическом кристалле в направлении координатных осей атомы вещества располагаются на расстоянии друг от друга равном а (рис.1). В направлении диагонали атомы располагаются на расстоянии а, а в направлении пространственной диагонали – а
. Очевидно, такой кристалл легче разорвать в направлении пространственной диагонали, чем в направлении координатных осей, где он обнаруживает наибольшую прочность из-за того, что атомы расположены ближе и сильнее взаимодействуют.

Анизотропия распространяется практически на все свойства кристаллов. Так, кристалл в одном направлении лучше, чем в другом может проводить тепло, электрический ток, свет, лучше намагничиваться и т.д. При этом, чем ниже система симметрии кристалла, тем сильнее проявляется анизотропия его свойств.

В аморфных материалах, из-за хаотического внутреннего строения, атомы в различных направлениях располагаются примерно с одинаковой плотностью. В результате свойства данных материалов в различных направлениях оказываются одинаковыми, т.е. вещество оказывается изотропным.

Металлы и сплавы, полученные в обычных условиях, также очень часто обнаруживают равенство свойств в различных направлениях, хотя и являются материалами кристаллическими, а не аморфными. Это объясняется их зернистым строением. Зёрна данных материалов, будучи кристаллами, в различных направлениях обнаруживают различные свойства, однако в целом материал оказывается изотропным, поскольку зёрна случайным образом ориентированы в пространстве и при сложении свойств в каждом направлении получается примерно одна, усреднённая величина. Такую изотропию называют ложной изотропией или квазиизотропией .

Иногда зёрна поликристаллических материалов оказываются ориентированными преимущественно в одном направлении. Например, зёрна металлов и сплавов при пластическом деформировании вытягиваются в направлении деформации. Такое явление называют текстурой . При появлении текстуры свойства кристаллических материалов вновь начинают зависеть от направления, т.е. материал оказывается анизотропным.

1.7 Дефекты кристаллической структуры

Структура реальных кристаллов не является идеально симметричной. В реальных кристаллах всегда имеются те или иные отклонения от периодичности расположения атомов. Эти нарушения порядка называют дефектами кристаллической структуры.

Дефекты кристаллической структуры, в зависимости от размеров, подразделяют на точечные, линейные, поверхностные и объёмные.

Точечные дефекты кристаллической структуры во всех трёх измерениях имеют размеры сравнимые с межатомным расстоянием, т.е. порядка одного нанометра. К точечным дефектам структуры относятся вакансии, межузельные атомы и атомы примесей.

Вакансией называют незанятое атомом свободное место в узле кристаллической решётки.Межузельным называют атом, смещённый из узла кристаллической решётки в положение между узлами (рис.3). Данные дефекты возникают, как правило, парами, поскольку смещение атома в межузельное положение сопровождается появлением вакансии.

Примесные атомы – это инородные атомы, которые размещаются либо в узлах кристаллической решётки (примесные атомы замещения ), либо в межузельном пространстве (примесные атомы внедрения ).

В – вакансия;

МА – межузельный

ПАЗ – примесный атом

замещения;

ПАВ – примесный атом

внедрения.

Рис. 3. Точечные дефекты кристаллической структуры.

Вакансии и межузельные атомы непрерывно появляются в кристаллах за счёт энергии тепловых колебаний атомов. Они относительно свободно перемещаются по кристаллу и могут встречаться друг с другом. При встрече межузельного атома с вакансией возможна рекомбинация, т.е. замещение вакантного места межузельным атомом. Дефекты также могут исчезать на любых свободных поверхностях кристалла: на порах, границах зёрен, микротрещинах, которые называют стоками дефектов . Процессы непрерывной рекомбинации, а также исчезновения дефектов на стоках, уравновешиваются процессами их генерации так, что в кристалле всегда поддерживается некоторая равновесная концентрация точечных дефектов. Чем выше температура кристалла, тем выше эта равновесная концентрация дефектов.

Вакансии и межузельные атомы обычно не оказывают заметного влияния на механические свойства материалов, поскольку искажения, вносимые ими в структуру, имеют очень маленький размер. Однако, при возрастании концентрации данных дефектов до значений, значительно превышающих равновесное, это влияние становиться более заметным. Например, при бомбардировке материалов потоком высокоэнергетичных частиц в их поверхностном слое образуется большое число точечных радиационных дефектов, что приводит к существенному изменению поверхностных свойств материала. Имеются сведения о повышении твёрдости и износостойкости облучённой поверхности. Изменяются и другие характеристики облучённых материалов.

Поскольку все точечные дефекты, и особенно примесные атомы, препятствуют прохождению электрического тока через металлические материалы, возрастание их концентрации в металлах приводит к повышению электросопротивления.

Линейные дефекты кристаллической структуры в двух измерениях имеют размеры, сравнимые с межатомным расстоянием, а в третьем измерении простираются на многие сотни и тысячи периодов кристаллической решётки. К линейным дефектам структуры относяткраевые и винтовые дислокации .

Краевую дислокацию образует край АА"«лишней» атомной полуплоскости, называемой экстраплоскостью (рис. 4).

Рис.4. Краевая дислокация.

Если экстраплоскость располагается в верхней части кристалла, то соответствующую дислокацию обозначают значком «», а если в нижней, то знаком «┬». Вдоль линии дислокации кристаллическая структура материала искажена, однако на расстоянии всего в несколько периодов кристаллической решётки от данной линии искажений структуры уже не наблюдается. Линия краевой дислокации обычно бывает изогнутой, а не прямой. Форма этой линии под воздействием внешних и внутренних факторов может изменяться, так же как и её местоположение в кристалле.

Винтовую дислокацию можно определить как сдвиг одной части кристалла относительно другой его части, происходящий по некоторой плоскости скольжения – ПС (рис.5). ЛиниюL, лежащую в этой плоскости и отделяющую ту её часть, где сдвиг уже произошел от той её части, где сдвиг ещё не происходил, называютлинией винтовой дислокации . Кристалл как бы закручивается в спираль вокруг этой линии. Если закручивание происходит по часовой стрелке, то соответствующую дислокацию называют правой, если против часовой стрелки – то левой.

Рис. 5. Винтовая дислокация.

Линия любой отдельной дислокации не может обрываться внутри кристалла. Она либо выходит на поверхность кристалла, в частности на границы зёрен, либо замыкается сама на себя, образуя дислокационную петлю. Под плотностью дислокаций понимают суммарную протяжённость всех дислокаций, находящихся в единице объёма материала:

, (1)

где l i – длина отдельной дислокации;N– общее число дислокаций в материале;V– объём материала. Единицей измерения ρ является см/см 3 или см -2 .

Равновесная плотность дислокаций в полупроводниковых кристаллах находится в пределах 10 4 10 5 см –2 , а в металлах – 10 6 10 8 см –2 .

В определённых условиях дислокации, также как и точечные дефекты, способны перемещаться по кристаллу. При этом дислокации одного знака отталкиваются друг от друга, а противоположенных знаков – притягиваются. При встрече двух дислокаций противоположенных знаков может произойти их аннигиляция, т.е. взаимоуничтожение. Под воздействием внешних нагрузок, вызывающих пластическую деформацию материала, происходит перемещение дислокаций в сторону свободных поверхностей кристалла. Вместо вышедших на поверхность, а также аннигилировавших дислокаций, в деформируемом материале нарождаются новые дислокации.

Дислокации, благодаря их значительной протяжённости, оказывают существенное влияние на механические свойства материалов. Они играют важную роль в механизме пластического деформирования материалов. При пластической деформации материалов наблюдается сдвиг атомных слоёв относительно друг друга и дислокации способствуют этому процессу. Благодаря дислокациям атомные слои могут смещаться относительно друг друга не сразу целиком, а поэтапно, т.е. атомными рядами. Такой поэтапный сдвиг атомных слоёв выглядит как движение дислокаций в противоположенном направлении и требует при деформировании значительно меньших усилий.

Учитывая вышесказанное можно утверждать, что металлы и сплавы своей высокой пластичностью обязаны наличию в них достаточно большого количества подвижных дислокаций. Под воздействием холодной пластической деформации плотность дислокаций в металлах возрастает до 10 11 10 12 см –2 . При такой высокой плотности дислокации начинают интенсивно взаимодействовать и мешать друг другу, что приводит к ограничению их подвижности. В результате металл становится менее пластичным и более прочным. Такое явление называютнаклёпом .

Поверхностные дефекты кристаллической структуры в одном из измерений имеют размеры, сравнимые с межатомным расстоянием, а в двух других измерениях простираются на многие сотни и тысячи межатомных расстояний. К поверхностным дефектам структуры относят границы зёрен, фрагментов и блоков. Указанные границы являются местом скопления всевозможных точечных и линейных дефектов. Они выглядят как дислокационные стенки, разделяющие кристаллический материал на участки (рис.6).

Рис.6. Дислокационная стенка.

Порядок расположения атомов в зоне границ сильно нарушен. Это наиболее дефектная область материала. По границам зёрен обычно распространяются трещины, разрушающие металлический материал, а также более активно идут процессы взаимодействия металла с химически активными веществами, в частности, процессы окисления, а также травления кислотами.

Поверхностные дефекты оказывают существенное влияние на свойства материалов. Они, в частности, способствуют процессам диффузии, но препятствуют процессу прохождения электрического тока через материал. Для механических свойств особое значение имеет общая протяженность межзёренных границ в единице объёма, т.е. плотность границ. С уменьшением размера зёрен, а, следовательно, увеличением плотности их границ, увеличиваются вязкость, пластичность и прочность металлических материалов.

Объёмные дефекты структуры имеют значительные размеры во всех трех измерениях. К объёмным дефектам структуры относят всевозможные поры, инородные включения, выбоины и царапины на поверхности, микротрещины и т.п. При разрушении материалов объёмные дефекты обычно играют роль концентраторов напряжений и источников трещин, а поэтому являются причиной снижения прочностных характеристик материала.