Болезни Военный билет Призыв

Астрономия. Расширение Вселенной. Модель Вселенной

О сложных теориях простым языком.

Сегодня утром умер известный физик и популяризатор науки Стивен Хокинг. Ученый занимался космологией и квантовой гравитацией.

Мы рассказываем простым языком об основных открытиях Хокинга, которые изменили науку.

  1. Излучение Хокинга

    Хокинг разработал теорию о том, что черные дыры «испаряются» за счет особого излучения, которое потом назвали его именем.

    До этого открытия ученые считали, что черные ничего не излучают, а лишь поглощают. Он доказал, что черные дыры не совсем черные, так как излучают остаточную радиацию.

    Также Хокинг делает вывод, что черные дыры существуют не вечно: они излучают все более сильный ветер и, в конце концов, исчезают в результате гигантского взрыва.

    Эйнштейн так и не принял квантовую механику из-за связанного с ней элемента случайности и неопределенности. Он сказал: Бог не играет в кости. Похоже, что Эйнштейн ошибся дважды. Квантовый эффект черной дыры позволяет предположить, что Бог не только играет в кости, но и иногда бросает их туда, где их нельзя увидеть.Стивен Хокинг.
  2. Вселенная создала себя сама

    Эта теория Хокинга посвящена вопросу создания вселенной, у которой, по мнению ученого, не было начала и самого момента творения. Ученый предположил, что есть другое направление движения времени (не только вперед или назад), и выдвинул теорию о воображаемом времени, для которого вообще не существует понятий «начала» или «конец».

    Хокинг был убежденным атеистом. Вот его цитата на эту тему:

    Поскольку существует такая сила как гравитация, Вселенная могла и создала себя из ничего. Самопроизвольное создание - причина того, почему существует Вселенная, почему существуем мы. Нет никакой необходимости в Боге для того, чтобы "зажечь" огонь и заставить Вселенную работать.Стивен Хокинг.
  3. Вселенная расширяется

    До 20 века считалось, что Вселенная вечна и неизменна. Хокинг доступным языком доказал, что это не так.

    В свете от далеких галактик происходит смещение в сторону красной части спектра. Это означает, что они удаляются от нас, что Вселенная расширяется.Стивен Хокинг.
  4. Кварки не бывают одиноки

    Кварки - элементарные частицы, из которых состоят протоны и нейтроны. Хокинг доказал, что существуют только группами и никогда - по одному. Сила, которая связывает кварки, увеличивается с увеличением расстояния между ними. Если попытаться оттянуть один кварк от другого, они только с большей силой притянутся.

  5. Теория сжатия Вселенной

    Хокинг думал о том, что произойдет, когда Вселенная перестанет расширяться и начнет сжиматься. Пойдет ли время в другую сторону?

    Мне казалось, что когда начнется сжатие, Вселенная вернется в упорядоченное состояние. В таком случае, с началом сжатия время должно было повернуть вспять. Люди в этой стадии проживали бы жизнь задом наперед и молодели по мере сжатия Вселенной. Стивен Хокинг.

    Этот процесс показан в фильме «Господин Никто» с Джаредом Лето в главной роли.

    Попытки создать математическую модель этой теории провалились, но она остается популярной. У Вселенной только два варианта: или бесконечное расширение, или сжатие.

  6. Существует огромное число Вселенных

    Речь идет об М-теории, которую Хокинг дорабатывал с Леонардом Млодиновым. М-теория - это ответвление теории струн. Согласно этой теории, на самом мельчайшем уровне все частицы состоят из бран - многомерных мембран, свойства которых могут объяснить абсолютно все процессы, происходящие в нашей Вселенной.

    Кстати, эта теория также предполагает существование огромного числа вселенных, в которых действуют физические законы, отличные от наших.

    А этот факт в свою очередь предполагает наличие инопланетян. Хокинг в них верил.

    Во Вселенной со 100 миллиардами галактик, каждая из которых содержит сотни миллионов звезд, маловероятно, что Земля является единственным местом, где развивается жизнь.Стивен Хокинг.

Кембриджский университет предоставил пользователям со всего мира возможность ознакомиться с электронной копией работы Хокинга под названием «Свойства расширяющихся вселенных». Желающих оказалось так много, что вскоре сайт рухнул.

Следующая новость

Кембриджская библиотека открыла доступ к докторской диссертации самого известного ученого современности в понедельник, в 00:01 по местному времени. Как сообщает The Telegraph , в первые 12 часов соответствующую страницу в библиотечной системе Apollo посетили более 60 тысяч человек. Сайт не справляется с наплывом пользователей до сих пор, время от времени выходя из строя.

Когда в 1966 году никому не известный студент-физик защищал свою докторскую диссертацию, он не представлял, что 50 лет спустя тысячи людей будут нуждаться в возможности почитать ее. <…> Теперь его докторская диссертация стала доступна широкой аудитории, и каждый, кто разделяет его страсть к звездам, может следовать за ним

«Диссертация Стивена Хокинга так популярна, что она, кажется, сломала интернет. По крайней мере, его часть», — пишет The Independent . Сам ученый заявил, что его радует информация об интересе читателей, и выразил надежду, что его работа вдохновит новые поколения исследователей на новые научные свершения.

Основные вопросы этого исследования — сущность и последствия непрерывного расширения вселенной. Среди сделанных Хокингом выводов одним из ключевых является тезис о том, что рост и коллапс первоначальных малых возмущений не мог быть причиной формирования галактик.

Предоставляя открытый доступ к моей диссертации, я надеюсь вдохновить людей по всему миру смотреть вверх, на звезды, а не себе под ноги; размышлять о нашем месте во вселенной, пытаться — и суметь постичь смысл космоса. Каждый человек из любой точки мира должен иметь свободный, беспрепятственный доступ не только к моему исследованию, но и к каждой выдающейся и пытливой мысли среди обширного спектра человеческого разума

— Стивен Хокинг.

Хокинг завершил этот труд в 24 года. К тому времени ему уже был поставлен диагноз «боковой амиотрофический склероз». В 1963 году врачи сообщили Хокингу, что ему осталось жить около двух лет, однако спустя три года ученый успешно защитил диссертацию, а спустя еще 22 года опубликовал свою «Краткую историю времени». Очень скоро книга стала бестселлером, она до сих пор занимает важнейшее место среди научно-популярной литературы. В основу знаменитой книги легла, в частности, и диссертация Хокинга — одна из глав «Краткой истории времени» посвящена проблеме расширяющихся вселенных.

В настоящее время Стивену Хокингу 75 лет. Прожив более 50 лет с неизлечимым заболеванием, постепенно угнетающим центральную нервную систему организма, и утратив способность двигаться и говорить, ученый продолжает вести исследовательскую деятельность и популяризировать науку. В прошлом году он поддержал технологический проект The Breakthrough Initiatives, направленный на изучение проблемы существования жизни во вселенной.

Каждое поколение стоит на плечах тех, кто прошел перед ними — и я тоже, будучи юным студентом Кембриджа, вдохновлялся работами Исаака Ньютона, Джеймса Максвелла и Альберта Эйнштейна. Замечательно слышать, сколько людей уже проявили интерес к моей диссертации, скачав ее. Надеюсь, они не будут разочарованы теперь, когда, наконец, получили к ней доступ!

— Стивен Хокинг.

Диссертация «Свойства расширяющихся вселенных» является самой запрашиваемой научной работой библиотеки Кембриджа. По данным BBC , с мая 2016 на ознакомление с ней было оформлено 199 заявок — при этом предполагается, что они были оставлены людьми, не причастными к академической среде. Для сравнения, следующая работа в «топе» самых востребованных кембриджских публикаций была запрошена всего 13 раз.

Руководство Кембриджа надеется, что вслед за Хокингом разрешение на публикацию своих работ в открытом доступе дадут и другие ведущие ученые университета. С момента учреждения Нобелевской премии ее лауреатами стали 98 выпускников и сотрудников этого учебного заведения. О том, почему важно сделать их труды общедоступными, Cambridge News рассказал заместитель начальника отдела научных коммуникаций вуза Артур Смит: «Устранив барьеры между людьми и знанием, мы реализуем прорывы во всех областях науки, медицины и технологий».

С октября 2017 года все аспиранты, окончившие Кембриджский университет, будут обязаны предоставлять электронные копии своих докторских диссертаций для сохранения и дальнейшей публикации в интегрированной библиотечной системе Apollo. На данный момент в ее базе хранится более 200 тысяч цифровых документов — в том числе около 15 тысяч научных статей, 10 тысяч изображений и 2,4 тысячи диссертаций. Электронная библиотека доступна пользователям по всему миру.

Следующая новость

Природа темной энергии является предметом ожесточенных споров. Открытый чуть менее чем тридцать лет назад, невидимый компонент Вселенной все еще не получил единого объяснения. Пришло время разобраться: почему темная энергия вызывает столько проблем, и как ученые пытаются ее детектировать?

Форма вселенной

С хорошей степенью точности наша Вселенная пространственно-однородна и изотропна – она не содержит «особых» точек и направлений, относительно которых ее свойства меняются. Такое пространство создать непросто: необходимо поддерживать определенную плотность энергии всех входящих в нее компонентов.

Уже в 1980-х годах ученым была точно известна так называемая критическая плотность, обеспечивающая пространственно-плоскую Вселенную. Но полученные результаты измерения количества барионного вещества в галактических кластерах совместно с плотностью, которую мог обеспечить Большой взрыв, скорее указывали на низкую плотностью материи в пространстве.

Также о недостатке материи говорил возраст шаровых скоплений – весьма немолодых конгломератов звезд. Оказалось, что такие скопления родились как минимум 10 миллиардов лет назад: но при наблюдаемом количестве вещества после Большого взрыва расширение Вселенной должно было постепенно замедляться и в целом оценка ее возраста была меньше. Наш мир оказывался моложе, чем его составляющие.

Сверхновые типа Ia

Окончательно убедить ученых в необходимости поиска нового источника энергии во Вселенной смогли сверхновые типа Iа – звезды, жизненный цикл которых заканчивается вспышкой, настолько интенсивной, что ее возможно наблюдать на Земле.

Две команды ученых, Supernova Cosmology Project, руководителем которого был Сол Перлмуттер, и High-Z Supernova Research Team, возглавляемый Брайаном Шмидтом, предложили процедуру использования самых мощных телескопов в мире для изучения сверхновых.

Прорыв совершил Марк Филлипс, астроном, работающий в Чили: он предложил новый способ определения внутренней светимости сверхновых типа Ia, которая напрямую связана с расстоянием до небесного тела. С другой стороны, расстояние до некоторых из звезд можно было определить с помощью закона Хаббла, описывающего изменение длины волны излучаемых объектом фотонов вследствие расширения Вселенной.

Оказалось, что сверхновые в далеких галактиках гораздо более «бледные»: их светимость была сильно меньше предсказанной исходя из расстояния, рассчитанного по закону Хаббла. Иными словами, сверхновые должны были находится гораздо дальше: так ученые впервые предположили, что Вселенная не просто расширяется, а с некоторым ускорением.

Наблюдение далеких сверхновых типа Ia в одночасье перевернуло представление ученых о Вселенной. Исследования показали, что около 70 % плотности энергии составляет новый, неизвестный компонент с отрицательным давлением.

Термин «темная энергия» предложил позднее космолог Майкл Тeрнер, а перед учеными встала новая загадка: объяснить природу еe возникновения.

Можно ли объяснить ускоренное расширение Вселенной?

В настоящее время существуют три класса теорий, претендующих на роль темной энергии. Первый вариант постулирует наличие энергии у вакуума: по сути дела это стало возвращением к космологической постоянной, предложенной Эйнштейном для поддержания статической Вселенной. В новом варианте плотность вакуума одинакова во всем пространстве, но не исключается, что она могла меняться со временем.

Второй вариант, получивший название квинтэссенции, предложенный немецким физиком Кристофом Веттерихом, предполагает наличие нового поля – фактически, новых частиц, вносящих вклад в общую плотность Вселенной. Энергия таких частиц уже не только изменяется со временем, но и в пространстве: для того, чтобы сильные колебания плотности темной энергии отсутствовали, частицы должны быть достаточно легкими. В этом, пожалуй, состоит основная проблема квинтэссенции: предложенные варианты частиц, согласно основным принципам современной физики, не могут оказываться легкими, а наоборот, приобретать значительную массу, и на данный момент никаких указаний на этот сценарий не получено.

К третьему варианту относятся различные теории модифицированной гравитации, в которой взаимодействие между массивными объектами не подчиняется стандартным законам Общей теории относительности (ОТО). Существует великое множество модификаций гравитации, но к настоящему времени отклонения от ОТО в экспериментах не были обнаружены.

Темная энергия, несмотря на огромный вклад в состояние Вселенной, упорно «прячется» от наблюдателей, и изучаются лишь косвенные проявления ее свойств. Среди них основную роль играют барионные акустические осцилляции, анизотропия реликтового излучения и слабое гравитационное линзирование.

Барионные акустические осцилляции

Барионные акустические осцилляции, или, сокращенно, БАО – наблюдаемое периодическое изменение плотности обычного, барионного вещества на больших масштабах. В первоначальной, горячая космической плазме, состоявшей из барионов и фотонов, конкурировали два процесса: гравитационное притяжение, с одной стороны, и отталкивание за счет высвобождения энергии при реакциях между веществом и фотонами – с другой. Подобное «противостояние» приводило к акустическим колебаниями, подобно звуковым волнам в воздухе между областями с различной плотностью.

При остывании Вселенной в определенный момент произошла рекомбинация – отдельным частицам стало выгоднее образовывать атомы, а фотоны фактически стали «свободными» и отделились от вещества. При этом вследствие колебаний вещество успело разлететься на некоторое определенное расстояние, называемое звуковым горизонтом. Последствия наличия горизонта в настоящее время наблюдаются в распределении галактик во Вселенной.

Сам по себе звуковой горизонт – величина, предсказываемая космологически. Он напрямую зависит от параметра Хаббла, определяющего скорость расширения Вселенной, который в свою очередь определяется и параметрами темной энергии.

Реликтовое излучение

Микроволновое реликтовое излучение – дальний «отголосок» Большого взрыва, равномерно заполняющие Вселенную фотоны с практически одинаковой энергией. В настоящее время именно реликтовое излучение является основным источником ограничений на различные космологические модели.

Однако, с увеличением чувствительности инструментов было обнаружено, что реликтовое излучение анизотропно и имеет неоднородности – с каких-то направлений приходит несколько больше фотонов, чем с других. Такое различие в том числе также вызвано наличием неоднородностей в распределении вещества, и масштаб распределения «горячих» и «холодных» пятен на небе определяется свойствами темной энергии.

Слабое гравитационное линзирование

Еще один важный для исследования темной энергии эффект – гравитационное темное линзирование – состоит в отклонении пучков света в поле вещества. Линзирование одновременно позволяет изучать структуру Вселенной и её геометрию, то есть форму пространства-времени.

Существуют различные виды гравитационного линзирования, среди которых наиболее удобным для изучения темной энергии является слабое линзирование за счет отклонения света крупномасштабной структурой Вселенной – это приводит к размыванию изображений далеких галактик.

Темная энергия одновременно влияет как на свойства источника, например расстояние до него, так и на свойства искажающего картинку пространства. Поэтому слабое линзирование, с учетом постоянно обновляющихся астрономических данных, является вдвойне важным способом постановки ограничений на свойства темной энергии.

Темная энергия – по прежнему в тени

Подведем итоги, что же удалось узнать физикам за практически тридцатилетний стаж изучения темной энергии?

С большой точностью известно, что темная энергия обладает отрицательным давлением: более того, уравнение зависимости давления от плотности энергии определено с большой достоверностью, и такими свойствами не обладает ни одна другая известная нам среда.

Темная энергия пространственно-однородна, а ее вклад в плотность энергии стал доминирующим относительно недавно – около пяти миллиардом лет назад; при этом она влияет одновременно и на расстояния между объектами и на саму структуру Вселенной.

Различные космологические эксперименты позволяют изучать темную энергию, но в настоящее время ошибки измерения слишком велики, чтобы делать точные предсказания. Пока что ученые еще явно далеки от ответа на вопрос о природе темной энергии, которая многие миллиарды лет тайно управляет устройством Вселенной.

материал из книги Стивена Хокинга и Леонарда Млодинова "Кратчайшая история времени"

Эффект Доплера

В 1920-е годы, когда астрономы начали изучать спектры звезд в других галактиках, было обнаружено нечто очень интересное: это оказались те же самые характерные наборы отсутствующих цветов, что и у звезд в нашей собственной галактике, но все они были смещены к красному концу спектра, причем в одинаковой пропорции. Физикам смещение цвета или частоты известно как эффект Доплера.

Мы все знакомы с тем, как это явление воздействует на звук. Прислушайтесь к звуку проезжающего мимо вас автомобиля. Когда он приближается, звук его двигателя или гудка кажется выше, а когда машина уже проехала мимо и стала удаляться, звук понижается. Полицейский автомобиль, едущий к нам со скоростью сто километров в час, развивает примерно десятую долю скорости звука. Звук его сирены представляет собой волну, чередование гребней и впадин. Напомним, что расстояние между ближайшими гребнями (или впадинами) называется длиной волны. Чем меньше длина волны, тем большее число колебаний достигает нашего уха каждую секунду и тем выше тон, или частота, звука.

Эффект Доплера вызван тем, что приближающийся автомобиль, испуская каждый следующий гребень звуковой волны, будет находиться все ближе к нам, и в результате расстояния между гребнями окажутся меньше, чем если бы машина стояла на месте. Это означает, что длины приходящих к нам волн становятся меньше, а их частота – выше. И наоборот, если автомобиль удаляется, длина улавливаемых нами волн становится больше, а их частота – ниже. И чем быстрее перемещается автомобиль, тем сильнее проявляется эффект Доплера, что позволяет использовать его для измерения скорости.

Когда источник, испускающий волны, движется по направлению к наблюдателю, длина волн уменьшается. При удалении источника она, напротив, увеличивается. Это и называют эффектом Доплера.

Свет и радиоволны ведут себя подобным же образом. Полиция использует эффект Доплера для определения скорости автомобилей путем измерения длины волны отраженного от них радиосигнала. Свет представляет собой колебания, или волны, электромагнитного поля. Длина волны видимого света чрезвычайно мала – от сорока до восьмидесяти миллионных долей метра. Человеческий глаз воспринимает световые волны разной длины как различные цвета, причем наибольшую длину имеют волны, соответствующие красному концу спектра, а наименьшую – относящиеся к синему концу. Теперь представьте себе источник света, находящийся на постоянном расстоянии от нас, например звезду, испускающую световые волны определенной длины. Длина регистрируемых волн будет такой же, как у испускаемых. Но предположим теперь, что источник света начал отдаляться от нас. Как и в случае со звуком, это приведет к увеличению длины волны света, а значит, спектр сместится в сторону красного конца.

Расширение Вселенной

Доказав существование других галактик, Хаббл в последующие годы занимался определением расстояний до них и наблюдением их спектров. В то время многие предполагали, что галактики движутся беспорядочно, и ожидали, что число спектров, смещенных в синюю сторону, будет примерно таким же, как число смещенных в красную. Поэтому полной неожиданностью стало открытие того, что спектры большинства галактик демонстрируют красное смещение – почти все звездные системы удаляются от нас! Еще более удивительным оказался факт, обнаруженный Хабблом и обнародованный в 1929 году: величина красного смещения галактик не случайна, а прямо пропорциональна их удаленности от нас. Другими словами, чем дальше от нас галактика, тем быстрее она удаляется! Отсюда вытекало, что Вселенная не может быть статичной, неизменной в размерах, как считалось ранее. В действительности она расширяется: расстояние между галактиками постоянно растет.

Осознание того, что Вселенная расширяется, произвело настоящую революцию в умах, одну из величайших в двадцатом столетии. Когда оглядываешься назад, может показаться удивительным, что никто не додумался до этого раньше. Ньютон и другие великие умы должны были понять, что статическая Вселенная была бы нестабильна. Даже если в некоторый момент она оказалась бы неподвижной, взаимное притяжение звезд и галактик быстро привело бы к ее сжатию. Даже если бы Вселенная относительно медленно расширялась, гравитация в конечном счете положила бы конец ее расширению и вызвала бы сжатие. Однако, если скорость расширения Вселенной больше некоторой критической отметки, гравитация никогда не сможет его остановить и Вселенная продолжит расширяться вечно.

Здесь просматривается отдаленное сходство с ракетой, поднимающейся с поверхности Земли. При относительно низкой скорости тяготение в конце концов остановит ракету и она начнет падать на Землю. С другой стороны, если скорость ракеты выше критической (больше 11,2 километра в секунду), тяготение не может удержать ее и она навсегда покидает Землю.

В 1965 году два американских физика, Арно Пензиас и Роберт Вильсон из «Белл телефон лабораторис» в Нью-Джерси, отлаживали очень чувствительный микроволновый приемник. (Микроволнами называют излучение с длиной волны около сантиметра.) Пензиаса и Вильсона беспокоило, что приемник регистрировал больший уровень шума, чем ожидалось. Они обнаружили на антенне птичий помет и устранили другие потенциальные причины сбоев, но скоро исчерпали все возможные источники помех. Шум отличался тем, что регистрировался круглые сутки в течение всего года независимо от вращения Земли вокруг своей оси и ее обращения вокруг Солнца. Так как движение Земли направляло приемник в различные сектора космоса, Пензиас и Вильсон заключили, что шум приходит из-за пределов Солнечной системы и даже из-за пределов Галактики. Казалось, он шел в равной мере со всех сторон космоса. Теперь мы знаем, что, куда бы ни был направлен приемник, этот шум остается постоянным, не считая ничтожно малых вариаций. Так Пензиас и Вильсон случайно наткнулись на поразительный пример о том, что Вселенная одинакова во всех направлениях.

Каково происхождение этого космического фонового шума? Примерно в то же время, когда Пензиас и Вильсон исследовали загадочный шум в приемнике, два американских физика из Принстонского университета, Боб Дик и Джим Пиблс, тоже заинтересовались микроволнами. Они изучали предположение Георгия (Джорджа) Гамова о том, что на ранних стадиях развития Вселенная была очень плотной и добела раскаленной. Дик и Пиблс полагали, что если это правда, то мы должны иметь возможность наблюдать свечение ранней Вселенной, поскольку свет от очень далеких областей нашего мира приходит к нам только сейчас. Однако вследствие расширения Вселенной этот свет должен быть столь сильно смещен в красный конец спектра, что превратится из видимого излучения в микроволновое. Дик и Пиблс как раз готовились к поискам этого излучения, когда Пензиас и Вильсон, услышав об их работе, поняли, что уже нашли его. За эту находку Пензиас и Вильсон были в 1978 году удостоены Нобелевской премии (что кажется несколько несправедливым в отношении Дика и Пиблса, не говоря уже о Гамове).

На первый взгляд тот факт, что Вселенная выглядит одинаково в любом направлении, свидетельствует о том, что мы занимаем в ней какое-то особенное место. В частности, может показаться, что раз все галактики удаляются от нас, то мы должны находиться в центре Вселенной. Есть, однако, другое объяснение этого феномена: Вселенная может выглядеть одинаково во всех направлениях также и при взгляде из любой другой галактики.

Все галактики удаляются друг от друга. Это напоминает расползание цветных пятен на поверхности надуваемого воздушного шара. С ростом размеров шара увеличиваются и расстояния между любыми двумя пятнами, но при этом ни одно из пятен нельзя считать центром расширения. Более того, если радиус воздушного шара постоянно растет, то чем дальше друг от друга находятся пятна на его поверхности, тем быстрее они будут удаляться при расширении. Допустим, что радиус воздушного шара удваивается каждую секунду. Тогда два пятна, разделенные первоначально расстоянием в один сантиметр, через секунду окажутся уже на расстоянии двух сантиметров друг от друга (если измерять вдоль поверхности воздушного шара), так что их относительная скорость составит один сантиметр в секунду. С другой стороны, пара пятен, которые были отделены десятью сантиметрами, через секунду после начала расширения разойдутся на двадцать сантиметров, так что их относительная скорость будет десять сантиметров в секунду. Скорость, с которой любые две галактики удаляются друг от друга, пропорциональна расстоянию между ними. Тем самым красное смещение галактики должно быть прямо пропорционально ее удаленности от нас – это та самая зависимость, которую позднее обнаружил Хаббл. Российскому физику и математику Александру Фридману в 1922 году удалось предложить удачную модель и предвосхитить результаты наблюдений Хаббла, его работа оставалась почти неизвестной на Западе, пока в 1935 году аналогичная модель не была предложена американским физиком Говардом Робертсоном и британским математиком Артуром Уокером уже по следам открытого Хабблом расширения Вселенной.

Вследствие расширения Вселенной галактики удаляются друг от друга. С течением времени расстояние между далекими звездными островами увеличивается сильнее, чем между близкими галактиками, подобно тому как это происходит с пятнами на раздувающемся воздушном шаре. Поэтому наблюдателю из любой галактики скорость удаления другой галактики кажется тем больше, чем дальше она расположена.

Три типа расширения Вселенной

Первый класс решений (тот, который нашел Фридман) предполагает, что расширение Вселенной происходит достаточно медленно, так что притяжение между галактиками постепенно замедляет и в конечном счете останавливает его. После этого галактики начинают сближаться, а Вселенная – сжиматься. В соответствии со вторым классом решений Вселенная расширяется настолько быстро, что гравитация лишь немного замедлит разбегание галактик, но никогда не сможет остановить его. Наконец, есть третье решение, согласно которому Вселенная расширяется как раз с такой скоростью, чтобы только избежать схлопывания. Со временем скорость разлета галактик становится все меньше и меньше, но никогда не достигает нуля.

Удивительная особенность первой модели Фридмана – то, что в ней Вселенная не бесконечна в пространстве, но при этом нигде в пространстве нет никаких границ. Гравитация настолько сильна, что пространство свернуто и замыкается на себя. Это до некоторой степени схоже с поверхностью Земли, которая тоже конечна, но не имеет границ. Если двигаться по поверхности Земли в определенном направлении, то никогда не натолкнешься на непреодолимый барьер или край света, но в конце концов вернешься туда, откуда начал путь. В первой модели Фридмана пространство устроено точно так же, но в трех измерениях, а не в двух, как в случае поверхности Земли. Идея о том, что можно обогнуть Вселенную и вернуться к исходной точке, хороша для научной фантастики, но не имеет практического значения, поскольку, как можно доказать, Вселенная сожмется в точку прежде, чем путешественник вернется в к началу своего пути. Вселенная настолько велика, что нужно двигаться быстрее света, чтобы успеть закончить странствие там, где вы его начали, а такие скорости запрещены (теорией относительности). Во второй модели Фридмана пространство также искривлено, но иным образом. И только в третьей модели крупномасштабная геометрия Вселенной плоская (хотя пространство искривляется в окрестности массивных тел).

Какая из моделей Фридмана описывает нашу Вселенную? Остановится ли когда-нибудь расширение Вселенной, и сменится ли оно сжатием, или Вселенная будет расширяться вечно?

Оказалось, что ответить на этот вопрос труднее, чем поначалу представлялось ученым. Его решение зависит главным образом от двух вещей – наблюдаемой ныне скорости расширения Вселенной и ее сегодняшней средней плотности (количества материи, приходящегося на единицу объема пространства). Чем выше текущая скорость расширения, тем большая гравитация, а значит, и плотность вещества, требуется, чтобы остановить расширение. Если средняя плотность выше некоторого критического значения (определяемого скоростью расширения), то гравитационное притяжение материи сможет остановить расширение Вселенной и заставить ее сжиматься. Такое поведение Вселенной отвечает первой модели Фридмана. Если средняя плотность меньше критического значения, тогда гравитационное притяжение не остановит расширения и Вселенная будет расширяться вечно – как во второй фридмановской модели. Наконец, если средняя плотность Вселенной в точности равна критическому значению, расширение Вселенной будет вечно замедляться, все ближе подходя к статическому состоянию, но никогда не достигая его. Этот сценарий соответствует третьей модели Фридмана.

Так какая же модель верна? Мы можем определить нынешние темпы расширения Вселенной, если измерим скорость удаления от нас других галактик, используя эффект Доплера. Это можно сделать очень точно. Однако расстояния до галактик известны не очень хорошо, поскольку мы можем измерять их только косвенно. Поэтому нам известно лишь то, что скорость расширения Вселенной составляет от 5 до 10% за миллиард лет. Еще более расплывчаты наши знания о нынешней средней плотности Вселенной. Так, если мы сложим массы всех видимых звезд в нашей и других галактиках, сумма будет меньше сотой доли того, что требуется для остановки расширения Вселенной, даже при самой низкой оценке скорости расширения.

Но это далеко не все. Наша и другие галактики должны содержать большое количество некой «темной материи», которую мы не можем наблюдать непосредственно, но о существовании которой мы знаем благодаря ее гравитационному воздействию на орбиты звезд в галактиках. Возможно, лучшим свидетельством существования темной материи являются орбиты звезд на периферии спиральных галактик, подобных Млечному Пути. Эти звезды обращаются вокруг своих галактик слишком быстро, чтобы их могло удерживать на орбите притяжение одних только видимых звезд галактики. Кроме того, большинство галактик входят в состав скоплений, и мы можем аналогичным образом сделать вывод о присутствии темной материи между галактиками в этих скоплениях по ее влиянию на движение галактик. Фактически количество темной материи во Вселенной значительно превышает количество обычного вещества. Если учесть всю темную материю, мы получим приблизительно десятую часть от той массы, которая необходима для остановки расширения.

Нельзя, однако, исключать существования других, еще не известных нам форм материи, распределенных почти равномерно повсюду во Вселенной, что могло бы повысить ее среднюю плотность. Например, существуют элементарные частицы, называемые нейтрино, которые очень слабо взаимодействуют с веществом и которые чрезвычайно трудно обнаружить.

За последние несколько лет разные группы исследователей изучали мельчайшую рябь того микроволнового фона, который обнаружили Пензиас и Вильсон. Размер этой ряби может служить индикатором крупномасштабной структуры Вселенной. Ее характер, похоже, указывает, что Вселенная все-таки плоская (как в третьей модели Фридмана)! Но поскольку суммарного количества обычной и темной материи для этого недостаточно, физики постулировали существование другой, пока не обнаруженной, субстанции – темной энергии.

И словно для того, чтобы еще больше усложнить проблему, недавние наблюдения показали, что расширение Вселенной не замедляется, а ускоряется . Вопреки всем моделям Фридмана! Это очень странно, поскольку присутствие в пространстве вещества – высокой или низкой плотности – может только замедлять расширение. Ведь гравитация всегда действует как сила притяжения. Ускорение космологического расширения – это все равно что бомба, которая собирает, а не рассеивает энергию после взрыва. Какая сила ответственна за ускоряющееся расширение космоса? Ни у кого нет надежного ответа на этот вопрос. Однако, возможно, Эйнштейн все-таки был прав, когда ввел в свои уравнения космологическую постоянную (и соответствующий ей эффект антигравитации).

Расширение Вселенной могло быть предсказано в любой момент в девятнадцатом или восемнадцатом веке и даже в конце семнадцатого столетия. Однако вера в статическую Вселенную была столь сильна, что заблуждение сохраняло власть над умами до начала двадцатого столетия. Даже Эйнштейн был настолько уверен в статичности Вселенной, что в 1915 году внес специальную поправку в общую теорию относительности, искусственно добавив в уравнения особый член, получивший название космологической постоянной, который обеспечивал статичность Вселенной.

Космологическая постоянная проявлялась как действие некой новой силы – «антигравитации», которая, в отличие от других сил, не имела никакого определенного источника, а просто была неотъемлемым свойством, присущим самой ткани пространства-времени. Под влиянием этой силы пространство-время обнаруживало врожденную тенденцию к расширению. Подбирая величину космологической постоянной, Эйнштейн мог варьировать силу данной тенденции. С ее помощью он сумел в точности уравновесить взаимное притяжение всей существующей материи и получить в результате статическую Вселенную.

Позже Эйнштейн отверг идею космологической постоянной, признав ее своей «самой большой ошибкой». Как мы скоро убедимся, сегодня есть причины полагать, что в конце концов Эйнштейн мог все же быть прав, вводя космологическую постоянную. Но Эйнштейна, должно быть, более всего удручало то, что он позволил своей вере в неподвижную Вселенную перечеркнуть вывод о том, что Вселенная должна расширяться, предсказанный его же собственной теорией. Кажется, только один человек разглядел это следствие общей теории относительности и принял его всерьез. Пока Эйнштейн и другие физики искали, как избежать нестатичности Вселенной, российский физик и математик Александр Фридман, наоборот, настаивал на том, что она расширяется.

Фридман сделал относительно Вселенной два очень простых предположения: что она одинаково выглядит, в каком бы направлении мы ни смотрели, и что данное положение верно, независимо от того, из какой точки Вселенной мы смотрим. Опираясь на эти две идеи и решив уравнения общей теории относительности, он доказал, что Вселенная не может быть статической. Таким образом, в 1922 году, за несколько лет до открытия Эдвина Хаббла, Фридман в точности предсказал расширение Вселенной!

Столетия назад христианская церковь признала бы его еретическим, так как церковная доктрина постулировала, что мы занимаем особое место в центре мироздания. Но сегодня мы принимаем это предположение Фридмана по едва ли не противоположной причине, из своего рода скромности: нам показалось бы совершенно удивительным, если бы Вселенная выглядела одинаково во всех направлениях только для нас, но не для других наблюдателей во Вселенной!

По мере усовершенствования наблюдательной техники становится доступным измерение красных смещений спектров у все более слабых объектов. Список спектров, у которых Δƛ/ƛ>1, уже стал обширным, а самое большое обнаруженное красное смещение спектра соответствует Δƛ/ƛ=3,14

Согласно формуле υ / c = (((Δƛ / ƛ)+1)2-1)/(((Δƛ / ƛ)+1)2+1) это означает скорость удаления 270000 км/с. Примем как наиболее вероятное значение постоянной Хаббла равным 65 км/с Мпс. Тогда расстояние до объекта по формуле υ=H*r составляет 4200 мегапарсеков.

Все более становится очевидным, что закон разбегания во все стороны галактик является универсальным, всеоб­щим законом. Происходит расширение, экспансия всей Вселенной в целом.

Раздел астрономии, изучающий свойства Вселенной как единого целого, называется космологией. Ее теоретиче­ские основы, заложенные Эйнштейном, опираются на два главных наблюдаемых явления. Первое из них состоит в том, что галактики и их скопления сравнительно равно­мерно распределены по небу, если не считать зоны избе­гания, вызванной поглощающей свет материей нашей Галактики. Второе важное наблюдаемое явление - закон разбегания во все стороны галактик со скоростями, про­порциональными их расстояниям. Сопоставление этих наблюдаемых явлений приводит к заключению, что Все­ленная, образовавшись в результате начального взрыва, подобна однородному расширяющемуся шару.

Каковы закономерности эволюции этого расширяюще­гося шара, в котором галактики и их скопления притяги­вают друг друга согласно закону всемирного тяготения? Что ждет Вселенную в будущем? Будет ли она безгра­нично расширяться, или взаимное тяготение отдельных ее частей, замедлив и остановив расширение, заставит Вселенную затем сжиматься?

Процесс расширения происходит согласно релятивист­ской механике Эйнштейна, но некоторые стороны процес­са понятны и в представлениях привычной нам ньютоновской механики.

Из того, что взаимное тяготение отдельных частей Вселенной замедляет ее расширение, следует, что расши­рение в прошлом происходило быстрее и, следовательно, в оценку возраста Вселенной нужно внести поправку - его нужно уменьшить. Величина поправки зависит от средней плотности материи во Вселенной. Чем плотность материи больше, тем сильнее замедление скорости и тем значительнее должна быть вносимая поправка.

Если при данной скорости расширения плотность мате­рии в шаре достаточно велика, то гравитационные силы будут в состоянии остановить расширение и сменить его сжатием. Если же плотность материи мала и гравитаци­онные силы, следовательно, слабы, процесс экспансии ни­когда не прекратится, Вселенная будет расширяться без­гранично и средняя плотность материи в ней будет стре­миться к нулю.

Существует, очевидно, некоторое критическое значе­ние средней плотности материи - ρ 0 . Если при действую­щем в настоящий момент значении постоянной Хаббла H средняя плотность материи во Вселенной больше ρ 0 , то в будущем расширение Вселенной прекратится и сменит­ся сжатием. Если же плотность равна ρ 0 или меньше его, то экспансия Вселенной будет продолжаться без­гранично.

Справедливо и обратное утверждение. Когда задана средняя плотность материи во Вселенной, то существует некоторое критическое значение постоянной Хабла Н 0 . Если действительное Н меньше Н о, то расширение Все­ленной сменится сжатием, если же Н ≥ H 0 , то экспансия Вселенной будет безгранична.

Эти соотношения по смыслу близки к соотношениям, связывающим среднюю плотность Земли и критическую (вторую космическую) скорость, которую нужно придать какому-то телу, находящемуся на ее поверхности, чтобы оно бесконечно удалилось от Земли, не упав обратно на ее поверхность. Разница лишь в том, что у Вселенной происходит расширение в целом, всех ее частей, а не от­дельного ее элемента.

Согласно законам релятивистской теории относитель­ности, а именно ее законам подчиняется расширяющаяся Вселенная, процессу расширения свойственны непривыч­ные для нашего сознания соотношения между понятиями пространства, материи и времени. Если средняя плот­ность материи больше ρ 0 и расширение должно смениться сжатием, то гравитация материи замыкает пространство на само себя. Не существует пространства вне расширяю­щегося объема, содержащего материю. Такую Вселенную принято называть закрытой.

Пространство закрытой Вселенной ограничено. Но при этом Вселенная не имеет ни центра, ни граничных обла­стей, все точки в ней равноправны по занимаемому положению.

Чтобы попытаться понять, как это может быть с трех­мерным пространством, полезно рассмотреть ее двумер­ную аналогию - поверхность сферы. Поверхность сферы имеет ограниченную площадь, все точки на ней по зани­маемому положению равноправны, нет ни центральных ни граничных точек.

Так же непривычны нашим представлениям законы геометрии, действующие во Вселенной с плотностью ма­терии, большей критического значения ρ 0 . Они отличаются от законов евклидовой геометрии, которой на нашей планете обучают в школах. В этой геометрии, называемой римановой, через точку вне прямой нельзя провести пря­мую, ей параллельную. Сумма углов в треугольнике –не равна двум прямым. Она тем больше двух прямых, чем больше площадь треугольника. Длина окружности в ри­мановой геометрии растет не пропорционально первой, степени радиуса, а медленнее. И площадь круга растет не пропорционально квадрату радиуса, а медленнее.

Чтобы помочь нашему сознанию поверить в возмож­ность осуществления в каком-то трехмерном пространстве таких закономерностей, обратимся снова к двумерной ана­логии - поверхности сферы. Кратчайшая линия на любой поверхности, соединяющая две точки, называется геоде­зической линией. На сфере кратчайшее расстояние между двумя точками определяется длиной дуги большого кру­га, т. е. круга, получаемого пересечением сферы плоско­стью, проходящей через ее центр. Поэтому аналогами прямых в пространстве, на сфере являются дуги больших кругов. Но всякий большой круг, проведенный через не­которую точку, пересекает другой фиксированный боль­шой круг. Сумма углов сферического треугольника, т. е. треугольника, составленного из трех дуг больших кругов, действительно больше двух прямых углов. Она тем боль­ше, чем больше площадь поверхности треугольника. И длина окружности на сфере, радиусом r которой явля­ется длина дуги большого круга, соединяющего центр окружности с точкой окружности, меньше, чем 2Πr. А площадь круга меньше, чем Πr 2 .

Только в том случае, когда рассматривается бесконеч­но малый сферический треугольник, сумма его углов равна двум прямым, и только у окружности бесконечно малого радиуса на сфере длина равна 2Πr, а у соответст­вующего круга площадь поверхности равна яг 2 .

В соответствии с релятивистской теорией человек в его обыденной жизни и даже при выполнении космических полетов наших дней не обнаруживает отклонений от законов, постулируемых евклидовой геометрией, только потому, что объем области пространства, в котором он оперирует, ничтожно мал в сравнении с объемом прост­ранства Вселенной в целом.

Если средняя плотность материи во Вселенной точно оказывается равной критическому значению ρ 0 , то в этом случае (который нужно, конечно, считать крайне мало­вероятным) во всем трехмерном пространстве Вселенной действуют законы евклидовой геометрии. Двумерной ана­логией такого пространства является поверхность плос­кости.

Если же в природе осуществилась третья возможность, средняя плотность материи во Вселенной меньше крити­ческого значения ρ 0 , то в пространстве бесконечно расши­ряющейся открытой Вселенной должны действовать законы еще одной геометрии - геометрии Лобачевского. В таком пространстве через точку, лежащую вне прямой, мож­но провести бесчисленное множество прямых, ей па­раллельных, сумма углов треугольника меньше двух прямых, а длина окружности и площадь круга больше, чем соответственно 2Πr и Πr 2 .

Некоторой двумерной аналогией такого пространства может служить гиперболический параболоид, имеющий седлообразную форму, на поверхности которого прямые, треугольники и окружности, построенные на основе гео­дезических линий, соответствуют свойствам геометрии Лобачевского. Данная двумерная аналогия, однако, не вполне отвечает безгранично расширяющейся Вселенной, так как гиперболический параболоид имеет центр, а рас­ширяющаяся Вселенная центра не имеет.

Интересно отметить, что когда Н. И. Лобачевский и немецкий математик Риман создали свои неевклидовы геометрии, многие их коллеги считали, что, хотя полу­ченные построения логически безупречны, они не могут найти какого-нибудь применения. Прошло несколько де­сятилетий и оказалось, что большой мир, в котором мы живем, подчиняется законам одной из этих двух геомет­рий. Только потому, что деятельность человека ограничена пока очень малой областью пространства, отклонения его закономерностей от геометрии Евклида ничтожны и не могут быть обнаружены.

В какой же Вселенной мы живем? В открытой или закрытой?

При значении постоянной Хаббла 65 км/с Мпс кри­тическая плотность материи для Вселенной ρ 0 = 8 10 -30 г/см 3 . Следовательно, нужно определить, боль­ше или меньше этой величины реальная средняя плот­ность материи в ней.

Оценка средней плотности материи во Вселенной одна из наиболее трудных задач. Необходимо, во-первых, как-то определять массы галактик, во-вторых, находить сред­нее число галактик в единице объема и, наконец, поста­раться учесть вклад в общую плотность материи диффуз­ного межгалактического вещества, а может быть, и твер­дых тел, подобных планетам и астероидам.

До последнего времени оценки, которые удается сде­лать, приводят к величинам, лежащим в пределах от 2 10 -31 до 5 10 -31 г/см 3 , т. е. к плотностям, более чем в десять раз уступающим критической плотности материи. Из этого следует, что Вселенная бесконечно расширяется, является открытой.
Т.А.Агекян «Звезды, Галактики, Метагалактики» 1981 год. Издание третье, переработаное и дополненое

Приглашаем Вас обсудить данную публикацию на нашем .