Болезни Военный билет Призыв

Белки системы комплемента: свойства и биологическая активность. Регуляторные механизмы комплемента. Защитные функции комплемента Защитная роль комплемента


Комплементом называют большую группу взаимодействующих между собой белков и гликопротеинов крови, имеющихся у всех позвоночных. Эти белки участвуют в воспалительных процессах, опсонизируют чужеродные материалы для их последующего фаго­цитоза и опосредуют непосредственное уничтожение клеток и микроорганизмов.

Комплемент - одна из важнейших полифункциональных си­стем организма. С одной стороны, его можно расценить как прин­ципиальный эффектор антителозависимых реакций, а с другой - комплемент выступает как основная система - амплификатор воспалительных реакций.

Ферментативная система комплемента состоит по меньшей мере из 12 видов белков - проэнзимов плазмы крови, присутствующих в различных концентрациях в нормальной плазме. Белки системы комплемента составляют около 10 % глобулиновой фракции сыво­ротки крови. Система комплемента включает 9 компонентов клас­сического пути активации и 3 - дополнительных, альтернативного пути. По данным работы У. Герберта (1974), все четыре основных компонента комплемента имеются в сыворотке крови, но не у каж­дого вида животных. Так, у собак и кошек нет С2 компонента, из-за чего их комплемент не является литическим.

Общепринятый взгляд на комплемент как каскад молекуляр­
ных реакций базируется на достаточно глубоком изучении меха­
низмов его действия. Процесс активации комплемента основан на
принципе ограниченного протеолиза. В несколько последователь­
ных стадий происходит активация предшественника, или зимоге-
на, в протеазу, которая расщепляет субстрат - белок плазмы. При
этом высвобождается активирующий пептид; генерируется новая
или изменяется специфичность уже активированной протеазы.
Этот вновь образованный протеолитический фермент, в свою оче­
редь, расщепляет еще один белок плазмы, давая начало следую­
щей протеолитической активности, и т. д. Для процесса протеоли­
за свойственно лавинообразное усиление, когда одна молекула ак­
тивированного фермента воздействует на большое число молекул j
субстрата, что и обеспечивает самоактивацию процесса с момента 1
поступления первичного сигнала. Основные биологические функ- I
ции комплемента присущи его субкомпонентам. 1

Одной из наиболее изученной функций комплемента является 1 его участие в иммунных реакциях. Компонент комплемента СЗ 1 способствует прочной фиксации антитела на антигене (но не уве- j личивает сродства антигена с антителом), вызывает хемотаксис \ лейкоцитов, активирует фагоцитоз и клетки иммунной памяти. ] Комплемент участвует в процессе цитолиза: двойной слой липи- 1 дов клеточной мембраны является мишенью для цитотоксическо- ; го действия комплемента. Терминальные протеины из системы комплемента С5в, С9, последовательно реагируя один с другим, внедряются в двойной слой липидов, повреждая клеточную мем­брану, образуя трансмембранные каналы, обеспечивая через би- j липидный слой клетки двустороннее движение ионов воды. Мем- ! брана повреждается, и клетка гибнет. Так, в частности, осущест­вляется киллинг чужеродных микроорганизмов (рис. 4.11).

В ходе активации комплемента образуется ряд фрагментов, пептидов, играющих важную роль в процессах воспаления, фаго-

^ Классический путь Альтернативный путь

активации активации

Узнавание комплекса Распознавание бактерий и других

АГ+АТ активирующих поверхностей их

^ Рис. 4.11. Система комплемента

Цитоза и аллергических реакциях. Так, пептиды СЗа и С5а облада­ют свойствами анафилотоксина. Присоединяясь к тучным клет­кам и базофилам, они индуцируют выделение гистамина. Связы­ваясь с тромбоцитами, СЗа вызывает секрецию серотонина. Ана-филотоксическая активность СЗа и С5а легко разрушается под воздействием карбоксипептидазы В, которая отщепляет от этих пептидов аргинин. Образующиеся продукты приобретают свой­ства хемоаттрактантов в отношении полиморфноядерных клеток, эозинофилов и моноцитов. Другой пептид - СЗв является сильным опсонином для полиморфноядерных клеток и макрофагов. Рецеп­торы к этому пептиду обнаружены и на других клетках: В-лимфо-цитах и моноцитах. Наличие на В-лимфоцитах рецепторов для СЗ используется в качестве одного из основных маркеров этой попу­ляции. Взаимодействие СЗ и его субкомпонентов (СЗв, СЗс, C3d) с В-лимфоцитами играет определенную роль в индукции специ-

Источником комплемента являются клетки нескольких типов, включая тканевые макрофаги, гепатоциты, кератиноциты, клетки слизистой оболочки толстой кишки, эндотелиальные клетки, по-лиморфноядерные лейкоциты. Печень является источником более чем 90 % плазменных белков, а макрофаги - основным источни­ком тканевого комплемента, особенно в условиях воспаления. Интенсивность биосинтеза этих компонентов может существенно меняться в зависимости от количества и типа ИК, находящихся в циркуляции. На синтез компонентов комплемента помимо ИК влияют системно действующие гормоны, интерлейкины и биоло­гически активные соединения.

фического иммунного ответа и в регенерации В-клеток памяти. Установлено также участие СЗ в продукции антител к Т-зависи-мым антигенам и во взаимодействии Т- и В-клеток, а также мак­рофагов, Т- и В-клеток. Известно, что С5 участвует в антителоза-висимой цитотоксичности лимфоцитов, осуществляя на поверх­ности лимфоцитов сборку комплементарного мембранолитичес-кого комплекса.

Связанная с мембраной макрофагов С1 компонента играет роль в фиксации комплекса антиген-антитело. Система ком­племента имеет большое значение для диссоциации и элимина­ции иммунных комплексов (ИК). Такое участие обеспечивается связыванием СЗв, который, соединяясь с антителом, снижает спо­собность связывания антигена с Fab-фрагментом. В данном про­цессе задействован также С4в. Эти факторы комплемента не только препятствуют образованию иммунных комплексов, но так­же участвуют в разрушении уже сформировавшихся. Уменьше­ние или увеличение содержания комплемента наблюдается при многих заболеваниях (воспалительные процессы, аутоиммунные болезни, опухоли).

У собак породы британский спаниель встречается врожденный дефицит СЗ фрагмента комплемента. Дефицит СЗ компонента на­следуется по аутосомно-рецессивному типу и клинически прояв­ляется часто повторяющимися бактериальными инфекциями у го­мозиготных индивидуумов. В результате дефицита комплемента, уровень которого составляет лишь 10 % от нормального, снижают­ся опсонизация, хемотаксис и иммуноприлипание, что проявляет­ся повышенной чувствительностью к инфекциям. Гуморальный и клеточный иммунитет у пораженных британских спаниелей оста­ется в норме.

Одним из основных действий ИК является активация плазмен­ных компонентов системы комплемента и иммунокомпетентных клеток. Комплемент играет важную роль в выведении ИК из орга­низма, поэтому способность ИК взаимодействовать с компонен­тами классического либо альтернативного пути системы компле­мента в конечном итоге определяет характер воспаления и ткане­вого повреждения в организме.

Источником комплемента являются клетки нескольких типов, включая тканевые макрофаги, гепатоциты, кератиноциты, клетки слизистой оболочки толстой кишки, эндотелиальные клетки, по-лиморфноядерные лейкоциты. Печень является источником более чем 90 % плазменных белков, а макрофаги - основным источни­ком тканевого комплемента, особенно в условиях воспаления. Интенсивность биосинтеза этих компонентов может существенно менять

Меняться в зависимости от количества и типа ИК, находящихся в циркуляции. На синтез компонентов комплемента помимо ИК влияют системно действующие гормоны, интерлейкины и биоло­гически активные соединения.

Система комплемента играет важную роль в процессе растворе­ния ИК. Взаимодействие циркулирующего иммунного комплекса (ЦИК) с системой комплемента обеспечивает растворение круп­ных нерастворимых ИК до мелких. В опытах in vitro показано, что нерастворимые ИК становятся растворимыми при добавлении свежей сыворотки при 37 °С.

Инициируемая комплементом солюбилизация ИК является след­ствием связывания этих комплексов с СЗв таким образом, что процесс солюбилизации ИК является СЗ-зависимыми. Частичное растворение ИК происходит и в СЗ, С4-дефицитной сыворотке, но не в сыворотке при поврежденном альтернативном пути активации комплемента.

Компоненты альтернативного пути активации комплемента пропердин и фактор D наряду с факторами В, СЗ и Mg 2+ также играют важную роль в растворении ИК. Классический путь сам по себе не обеспечивает растворения, однако его активизация приво­дит к значительному повышению в крови количества СЗв и увели­чению вероятности связывания с комплексами антиген - антитело. Таким образом, компоненты классического пути повышают эффективность активации компонентов альтернативного пути в процессе растворения И К.

Важнейшим аспектом взаимодействия ЦИК и системы ком­племента является изменение физико-химических свойств само­го комплекса в процессе присоединения к нему различных ком­понентов комплемента, что приводит к увеличению степени ди­сперсности и уменьшению агрегации комплексов.

Взаимодействие ИК и системы комплемента является ключе­вым моментом в судьбе ЦИК, поскольку помимо активации си­стемы комплемента это взаимодействие ведет к возможности при­соединения ИК через Fc- и С-рецепторы к большинству иммуно­компетентных клеток, что влияет на Т-В-взаимодействия, изме­няет фагоцитарную активность клеток. Активация фагоцитарной системы приводит либо к удалению комплекса из кровотока, либо способствует длительной циркуляции, дальнейшему отложению ИК в органах и тканях и развитию васкулитов.

Взаимодействие ИК и системы комплемента приводит к двум основным следствиям: образованию фрагментов компонентов ком­племента, обладающих разносторонней биологической активнос­тью, и ингибированию преципитации ИК при активации по клас­сическому пути либо растворению сформировавшихся уже комп­лексов при определяющем участии компонентов альтернативно­го пути активации. В нормальной сыворотке крови компоненты классического пути поддерживают ИК в растворимом состоянии в течение времени, достаточного для их элиминации мононуклеар-ными фагоцитами. Компоненты альтернативного пути не спо­собны ингибировать преципитацию ИК, но могут солюбилизиро-вать агрегаты антиген - антитело. Взаимодействие ЦИК с систе­мой комплемента не только приводит к связыванию ИК с ретикулоэндотелиоцитами, но и обеспечивает переход нерастворим мых ИК в растворимые или их полный распад. В процессе paci рения ИК определяющая роль принадлежит компонентам
Растворенные ИК не могут фиксировать комплемент и пс полностью лишены сродства к поверхностным рецепторам ра личных клеток. Комплемент ускоряет клиренс растворимых И] осуществляемый фагоцитами.

На растворение ИК существенно влияет свойство комплекс
фиксировать комплемент. ИК с некоторым избытком антигена под
влиянием свежей сыворотки растворяются не полностью, а ИК
большим избытком антигена не растворяются компонентами н
альтернативного, ни классического пути активации системы ко\»-,|
племента; ИК с избытком антигена растворяются компонентами!
только альтернативного пути (Ganin G et al., 1983). ИК, образов!
ванные вне сосудистых пространств, удаляются значительно мед?
леннее и могут провоцировать местные воспаления. j

В заключение можно сказать, что аномалии в системе комплещ
мента способствуют развитию иммунокомплексных болезней.^
Дефицит в системе комплемента приводит к нарушению связи!
ИК - комплемент-дендритная клетка лимфатического узла, что,!
в свою очередь, влияет на иммунный ответ в целом. ц

Пропердин (лат. perdere - разрушать) - белок, с помощью ко-»| торого обнаружен альтернативный механизм активации компле-j мента. Он представляет собой гамма-глобулин с молекулярно! массой 220000 и состоит из четырех практически идентичны* субъединиц, соединенных друг с другом нековалентными свя-s зями. Его концентрация в сыворотке составляет около 25 мкг/мл^ Пропердин существует в двух формах: нативной и активирован?» ной, различающихся между собой, по всей видимости, неболь-ч шими конформационными изменениями. Нативный

Проперли»! может связываться с образовавшей комплекс СЗ/С5-конвертазой| альтернативного механизма (СЗвВв), но не с одиночными моле-: кулами СЗв. Его роль заключается в уменьшении скорости рас« пада конвертазы и тем самым усилении активации по альтерна­тивному механизму.

Пропердин действует, таким образом, не сам по себе, а совмест­но с другими факторами, содержащимися в крови животных, в том числе и с комплементом. Сама же система комплемента со­стоит из трех основных частей: пропердина, ионов Mg +2 , компле­мента. Активация пропердина осуществляется СЗ-компонентом комплемента. Пропердиновая система обладает антибактериаль­ным действием в отношении многих патогенных и условно пато­генных микроорганизмов. Под действием пропердина инактиви-руются вирусы герпеса и гриппа. Показатель уровня пропердина в крови в определенной мере отражает чувствительность живот­ных к инфекций. Установлено, что происходит снижение со­держания пропердина при туберкулезе, стрептококковой ин­фекции, ионизирующем облучении. Изъятие из сыворотки кро­ви пропердина резко снижает ее нейтрализующую активность. Полная инактивация пропердина происходит при нагревании до 60 °С в течение 30 мин.

3.4. ЛИЗОЦИМ

Лизоцим - фермент, относящийся к классу гидролаз, избира­тельно гидролизующий гликозидные связи в муреине - сложном биополимере, из которого построены стенки бактерий. Молеку­лярная масса лизоцима 14000... 15 000. Это стойкий белок, не теря­ющий литической способности при нагревании до 100 "С. Спо­собность лизоцима лизировать микроорганизмы столь высока, что это свойство сохраняется в разведении 1:1 000 000. Его моле­кула состоит из 129 аминокислотных остатков, представлена одной полипептидной цепью, содержащей 8 половинок цистита, попар­ное соединение которых образует четыре дисульфидные связи. Они замыкают спиральные участки полипептидной цепи лизоцима. Молекула лизоцима окружена гидрофобными группами боковых цепей остатков аминокислот. Главная роль в образовании активно­го центра принадлежит, по-видимому, триптофану.

Ферментативная активность лизоцима проявляется в гидролизе 1,4-гликозидной связи полиаминосахаров клеточной стенки пре* имущественно грамположительных микроорганизмов. Абсорби­руясь мукопептидом клеточной стенки, лизоцим расщепляет его с освобождением N-ацетилмурамовой кислоты и N-ацетилглю-козамина. Искажение структуры субстрата, поляризация гликозид-ной связи, образование водородной связи с кислородом последней приводят совместно к разрыву глюкозидной связи, а окружающая вода завершает акт гидролиза. Скорость реакции расщепления суб­страта у разных лизоцимов различна, что, вероятно, связано с раз­личием первичной структуры разных лизоцимов.

Лизоцим обнаружен в различных тканях и секретах: в сыворот­ке крови, слезах, слюне, молоке. Его максимальное количество содержится в лейкоцитах, затем в слюне и слезах, минимальное - в сыворотке крови. Почки денатурируют и разрушают плазмен­ный лизоцим. В плазму крови лизоцим поступает при распаде лейкоцитов и тканей. Концентрация его зависит от соотношения между основными продуцентами - нейтрофилами и моноцитами и функции почек. Макрофаги высвобождают лизоцим постоянно, гранулоциты - только при дегрануляции, поэтому сывороточный лизоцим может служить индикатором макрофагальной функции организма. Основываясь на антибактериальных свойствах лизоцима, большинство исследователей склонно рассматривать ег как фактор неспецифического иммунитета. Кроме ochobhoi антибактериального действия лизоцим стимулирует естестве! ную резистентность организма животного, что играет большу роль в предупреждении заболеваний и в благоприятном исход: инфекционного процесса.

3.5. ИНТЕРФЕРОНЫ

Интерфероны - антивирусные агенты. Существует по крайне! мере 14 альфа-интерферонов, которые продуцируются лимфоци^ тами, а бета-интерферон-фибробластами.

При вирусной инфекции клетки синтезируют интерферон секретируют его в межклеточное пространство, где он связывается! с рецепторами соседних незаряженных клеток. Связанный с клет-1 кой интерферон дерепрессирует по меньшей мере два гена. Начи->| нается синтез двух ферментов:

Первый - протеинкиназа значительно снижает в конечном! итоге трансляцию мРНК;

Второй - катализирует образование короткого полимера аде-!;] ниловой кислоты, активирующего латентную эндонуклеазу, чщ| приводит к деградации мРНК как вируса, так и хозяина.

В целом конечный результат действия интерферона заключа­ется в образовании барьера из неинфицированных клеток вокруг! очага вирусной инфекции, чтобы ограничить ее распространение.! Интерфероны играют большую роль в борьбе с вирусами, но не: предотвращении вирусных инфекций.

Система нормальных киллеров. К лимфоидным клеткам| способным оказывать цитотоксическое действие без сенсибилизации, относ NK-клетки (естественные киллеры), которые в отличие от К-клеток могут.. являть цитотоксическое действие и в отсутствие специфических антител. Бис,.«-гическое действие NK-клетки связано с контролем раннего опухолевого

развития.. NK-клетки обладают цитотоксической активностью по отношению к различным! опухолевым клеткам, а также к клеткам, инфицированным вирусными или мик-I ровными агентами. Благодаря этому NK могут играть важную роль в устойчивости организма ко многим заболеваниям.

детерминантами. политональным.

агглю­ тинация - преципи­ тация - агрегация частиц с образованием нерастворимых комп­лексов; лизис цитотоксичность - плбелъ нейтрализация - обезврежи­вание токсинов белковой природы; опсонизация


^

3.6. ВЗАИМОДЕЙСТВИЕ АНТИГЕН-АНТИТЕЛО


Комплементарные, т. е. взаимно соответствующие друг другу антиген и антитела образуют иммунный комплекс антиген - ан­титело. Прочность таких структур определяют высокая избира­тельность и большая площадь взаимодействия на уровне атомных группировок или зарядов по принципу «ключ - замок». Взаимо­действие осуществляется благодаря гидрофобным водородным электростатическим связям и силам Ван-дер-Ваальса. Антиген

При этом соединяется своей антигенной детерминантой, антите­ло - своим активным центром. При избытке антигенов или анти­тел образуются растворимые комплексы, при эквивалентном со­отношении - нерастворимый преципитат.

Антиген, как правило, крупнее молекулы антитела, поэтому последняя может распознавать только отдельные участки антиге­на, которые называют детерминантами. Большинство антигенов имеет на поверхности целый набор различных антигенных детер­минант, каждая из которых стимулирует иммунный ответ. Не все они одинаковы по активности: одни более иммуногенны и реак­ция на них доминирует в общем ответе. Даже одиночная детерми­нанта активирует, как правило, разные клоны клеток с поверх­ностными рецепторами (антителами), которые обладают разным сродством к данной детерминанте. Следовательно, иммунный от­вет на большинство антигенов является поликлональным. Вместе с тем образовавшиеся антитела могут вступать в реакцию не только с гомологичным антигеном, но и с родственными ему гетероло-гичными антигенами.

Реакции неспецифического взаимодействия антител сыворот­ки крови с антигенами проявляются в следующих формах: агглю­ тинация - склеивание антигенных частиц между собой; преципи­ тация - агрегация частиц с образованием нерастворимых комп­лексов; лизис - растворение клеток под влиянием антител в при­сутствии комплемента; цитотоксичность - тибелъ клеток под влиянием антител - цитотоксинов; нейтрализация - обезврежи­вание токсинов белковой природы; опсонизация - усиление фаго­цитарной активности нейтрофилов и макрофагов под влиянием антител или комплемента.

Обычный иммунный ответ выявляется через несколько суток после связывания антигена с В-лимфоцитом. Он представляет со­бой интегральную реакцию организма на антиген вследствие сложных взаимодействий между клетками разных типов.


Комплемент представляет собой одну из важнейших полифункцио- нальных систем организма. С одной стороны, его можно расценить как принципиальный эффектор антителозависимых реакций. Он участвует не только в литических и бактерицидных реакциях, но и в других антителозависимых эффектах, среди которых повышение фагоцитоза является одной из его важнейших функций in vivo. С другой стороны, комплемент выступает как основная система - амплифика- тор воспалительных реакций. Возможно, что в эволюционном аспекте это его главная (первичная) функция, и совсем не обязательно связывать ее с антителами и другими иммунологическими механизмами.
Центральным событием в процессе активации комплемента является расщепление СЗ-компонента по классическому (названному так только потому, что он был открыт первым, а не в силу его исключительной значимости) и альтернативному пути. Вторым принципиальным моментом является возможная глубина процесса: останавливается
ли он на стадии расщепления СЗ, обеспечивая при этом ряд биологических эффектов, или углубляется далее (от С5 до С9). Последний этап активации часто называют терминальным, заключительным (мембраноатакующим), он является общим, идентичным для классического и альтернативного пути и с ним связана литическая функция комплемента.
В настоящее время насчитывают не менее 20 протеинов плазмы, объединяемых в систему комплемента. Принципиально они делятся на 3 группы. Компоненты, участвующие в классическом пути активации и в заключительном (мембраноатакующем) этапе, обозначены как Clq, Clr, С1„ С4, С2, СЗ, С5, С6, С7, С8 и С9. Белки, участвующие в альтернативном пути активации, называются факторами и обозначены как В, Д, Р. Наконец, выделяется группа белков, регулирующих интенсивность реакции, или группа белков-контролеров: к ним относятся С1-ингибитор (C1INH), СЗЬ-инактиватор (C3bINa), pIH-фактор - С4 - ВР, ингибитор анафилотоксина. Фрагменты, получающиеся при энзиматическом расщеплении основных компонентов, обозначаются малыми буквами (например, СЗа, СЗь, C3d, С5а и т. д.). Для обозначения компонентов или фрагментов, обладающих энзиматической активностью, над их символами ставится черта, например Cl, С42, СЗьВь.
Ниже приводится содержание отдельных компонентов комплемента в сыворотке крови :
Компонент Концентрация, мкг/мл
Классический путь
С1 70
С1 34
С1 31
С4 600
С2 25
СЗ 1200
Альтернативный путь
Пропердин 25
Фактор В 200
Фактор Д 1
Мембраноатакующий комплекс
С5 85
С6 75
С7 55
С8 55
С9 60
Регуляторные белки
С1-ингибитор 180
Фактор Н 500
Фактор I 34
Система комплемента относится к числу «триггерных» энзимати
ческих систем, как и система свертывания крови, фибринолиз, образование кининов. Она характеризуется быстрым и стремительно усиливающимся ответом на стимуляцию. Эта амплификация (усиление) вызывается каскадным феноменом, для которого характерно, что продукты одной реакции являются катализаторами для следующей. Такой каскад может быть линейным, однонаправленным (например, классический путь активации комплемента), или вовлекает петли обратной связи (альтернативный путь). Таким образом, в системе комплемента имеют место оба варианта (схема 1).
Классический путь активируется иммунными комплексами

антиген - антитело, в состав которых в качестве антигенов входят IgM, IgG (субклассов 3, 1, 2; они расположены по убывающей активности). Кроме того, классический путь могут активировать агрегаты IgG, СРБ, ДНК, плазмин. Процесс начинается с активации С1, который состоит из 3 компонентов Clq, Clr, Cls. Clq (относительная молекулярная масса 400), имеет своеобразную структуру: 6 субъединиц с коллагеновым стержнем и неколлагеновой головкой, 6 стержней объединены на конце молекулы, противоположном головке. На головках находятся участки для присоединения к молекулам антител, участки же для присоединения С1Г и Cls расположены на коллагеновых стержнях. После присоединения Clq к АТ С1г путем конформативных преобразований становится С1г, активной протеазой. расщепляет Cls, превращая весь комплекс в серинэстеразу С1. Последняя расщепляет С4 на 2 фрагмента - С4а и С4ь и С2 на С2а и С2ь. Образующийся комплекс С4Ь2Ь(а) представляет собой активный фермент, расщепляющий СЗ-компонент (СЗ-конвертаза классического пути); иногда он обозначается С42.
Регулятором классического пути является С1-ингибитор (C1INH), подавляющий активность С1г и Cls путем необратимого связывания с этими ферментами. Установлено, что C1INH также уменьшает активность калликреина, плазмина и фактора Хагемана. Врожденный дефицит этого ингибитора приводит к неконтролируемой активации С4 и С2, проявляющейся в виде врожденного антиоотека.
Альтернативный (пропердиновый) путь состоит из ряда последовательных реакций, не включающих Cl, С4 и С2-компо- ненты и тем не менее приводящих к активации СЗ. К тому же эти реакции приводят к активации заключительного мембраноатакующего механизма. Активация этого пути инициируется эндотоксином грам- отрицательных бактерий, некоторыми полисахаридами типа инулина и зимозана, иммунными комплексами (ИК), содержащими IgA или IgG, и некоторыми бактериями и грибками (например, Staf. epidermis, Candida albicans). В реакции участвуют 4 компонента: факторы Д и В, СЗ и пропер дин (Р). При этом фактор Д (фермент) подобен Cls классического пути, СЗ и фактор В соответственно аналогичны С4- и С2-компонентам. В результате образуется конвертаза альтернативного пути СЗьВь. Образовавшийся комплекс крайне нестойкий, и для выполнения своей функции он стабилизируется пропердином, образуя более сложный комплекс СЗьВьР. Регуляторными белками альтернативного пути являются piH и СЗь-инактиватор (C3JNA). Первый связывается с СЗь и формирует участок связывания для инактиватора (C3bINA). Искусственное удаление этих факторов или их генетический дефицит, существование которого недавно установлено у людей, приводит к безудержной активации альтернативного пути, которая потенциально может завершиться полным истощением СЗ или фактора В.
Терминальный мембраноатакующий механизм. Как уже было сказано, оба пути сходятся на СЗ-компоненте, который активируется любой из образовавшихся конвертаз С42 или СЗьВь. Для
формирования С5-конвертазы необходимо расщепление дополнительного количества СЗ. СЗь, связанный на поверхности клетки, и свободные В, Р или р1Н формируют участок для связывания С5 и придают последнему чувствительность к протеолизу любой из конвертаз СЗ. При этом от С5 отщепляется небольшой пептид С5а, а остающийся крупный С5ь присоединяется к клеточной мембране и имеет участок для прикрепления Сб. Далее последовательно присоединяются компоненты С7, С8, С9. В результате формируется стабильный трансмембранный канал, обеспечивающий через билипидный слой клетки двустороннее движение ионов и воды. Мембрана повреждается, и клетка гибнет. Так, в частности, осуществляется киллинг чужеродных микроорганизмов.
В ходе активации комплемента образуется ряд фрагментов, пептидов, играющих важную роль в процессах воспаления, фагоцитоза и аллергических реакциях.
Так, расщепление С4 и С2 с помощью Cls ведет к повышению проницаемости сосудов и лежит в основе патогенеза врожденного антиоотека, связанного с дефицитом С1-ингибитора. Пептиды СЗа и С5а обладают свойствами анафилотоксина. Присоединяясь к тучным клеткам и базофилам, они индуцируют выделение гистамина. Связываясь с тромбоцитами, СЗа вызывает секрецию серотонина. Анафило- токсическая активность СЗа и С5а легко разрушается под воздействием карбоксипептидазы В, которая отщепляет от этих пептидов аргинин. Образующиеся продукты приобретают свойства хемоаттрактантов в отношении полиморфно-ядерных клеток, эозинофилов и моноцитов. Комплекс C5i67, не обладающий гемолитическими свойствами, и Вь- фрагмент вызывают хемотаксис только у полиморфно-ядерных лейкоцитов. В нормальной человеческой сыворотке имеется фактор CFi, который подавляет активность С5а в отношении полиморфно-ядерных клеток, устраняя способность его стимулировать освобождение лизо- сомальных ферментов. У больных саркоидозом и болезнью Ходжкина имеется избыток CFi. Этим можно объяснить дефект функционирования указанных клеток. Другой пептид СЗь является сильным опсонином для полиморфно-ядерных клеток (ПМЯ) и макрофагов. Рецепторы к этому пептиду обнаружены и на других клетках (моноцитах и В-лим- фоцитах), однако их значение для функционирования этих клеток пока неясно. Связывание лимфоцитами комплемента, находящегося в составе иммунного комплекса, может играть роль в формировании первичного иммунного ответа.
Исследование системы комплемента в клинической практике может быть использовано для диагноза заболевания, определения активности процесса и оценки эффективности терапии. Уровень сывороточного комплемента в каждый данный момент зависит от баланса синтеза, катаболизма и потребления его компонентов.
Низкие значения гемолитической активности комплемента могут отражать недостаточность отдельных компонентов или нахождение продуктов его расщепления в циркуляции. Следует также иметь в виду,
что интенсивное локальное потребление комплемента в таких участках, как плевра, полости суставов, может не сочетаться с изменением уровня комплемента й сыворотке крови. Например, у некоторых больных ревматоидным артритом уровень сывороточного комплемента может быть нормальным, тогда как в синовиальной жидкости он может быть резко понижен из-за активного его потребления. Определение комплемента в синовиальной жидкости очень важно для диагностики.
Врожденные дефициты комплемента. Наследование дефицитов комплемента - аутосомное рецессивное или кодоминант- ное, поэтому гетерозиготы имеют около 50% нормального уровня компонентов комплемента. В большинстве случаев врожденные дефициты ранних инициирующих компонентов (С1, С4, С2) ассоциированы с системной красной волчанкой. Лица с дефицитом С-компонента подвержены возвратным пиогенным инфекциям. Дефициты терминальных компонентов сопровождаются повышением восприимчивости к гонококковой и менингококковой инфекциям. При этих дефицитах комплемента также встречается системная красная волчанка, но реже. Наиболее часто наблюдается врожденный дефицит С2. Гомозиготный дефицит по этому признаку обнаруживается при некоторых аутоиммунных нарушениях, включающих волчаночноподобные заболевания, болезнь Шенлейна - Геноха, при гломерулонефритах и дерматомиозитах. Гомозиготные по этому признаку индивидуумы не обнаруживают повышенной чувствительности к инфекции, если альтернативный путь активации функционирует нормально. Гомозиготы, имеющие дефицит С2, обнаружены среди практически здоровых людей.
Гетерозиготный дефицит С2 может быть ассоциирован с ювенильным ревматоидным артритом и системной красной волчанкой. Семейные исследования позволили обнаружить, что дефицит С2 и С4 ассоциируется с определенными HLA-гаплотипами.
Дефицит регуляторных протеинов системы комплемента также может иметь клинические проявления. Так, при врожденном дефиците C3INA наблюдается клиническая картина, аналогичная таковой при дефиците СЗ, потому что потребление последнего по альтернативному пути становится неконтролируемым.

, Эстетическая, биологическая и культурная роль коллоидных систем , 1. Место и роль безопасности в профессиональной деятельности..do , НИР Деньги и их роль в экономике.docx , Какую роль в становлении личности играет семья.docx , Гальперин П.Я. Поэтапное формирование умствен. действий.docx , ПР 01 Определение идеи проекта. Формирование целей проекта в рам , Место и роль философии в культуре ХХ века..docx .
Эффекторная роль комплемента. Формирование мембраноатакующего комплекса и его роль в лизисе клетки.

а) участвует в лизисе микробных и других клеток (цитотоксическое действие);
б) обладает хемотаксической активностью ;
в) принимает участие в анафилаксии;
г) участвует в фагоцитозе.

Основные полезные эффекты комплемента:


  • содействие в уничтожении микроорганизмов;

  • интенсивное удаление иммунных комплексов;

  • индукция и усиление гуморального иммунного ответа.

  • Система комплемента может вызывать повреждение клеток и тканей собственного организма в следующих случаях:

  • если происходит ее генерализованная массированная активация , например при септицемии, вызванной грамотрицательными бактериями;

  • если ее активация происходит в очаге тканевого некроза, в частности при инфаркте миокарда ;

  • если активация происходит при аутоиммунной реакции в тканях.
Терминальные компоненты каскада комплемента - С5b, С6, С7, С8 и С9 - являются общими для всех путей активации. Они связываются друг с другом и формируют мембраноатакующий комплекс (МАК), который вызывает лизис клетки.

Первая фаза: прикрепление С6 к С5b на поверхности клетки. Затем С7 связывается с С5b и С6 и проникает в наружную мембрану клетки. Последующее связывание С8 с С5b67 приводит к образованию комплекса, глубже проникающего в мембрану клетки. На мембране клетки C5b-С8 действует как рецептор для С9 - молекулы типа перфорина, который связывается с С8. Дополнительные молекулы С9 взаимодействуют в комплексе с молекулой С9, образуя полимеризованные С9 (поли-С9). Они формируют трансмембранный канал, нарушающий осмотическое равновесие в клетке: через него проникают ионы и поступает вода. Клетка набухает, мембрана становится проницаемой для макромолекул, которые затем покидают клетку. В результате происходит лизиc клетки.

Система комплимента - комплекс сложных белков, постоянно присутствующих в крови. Это каскадная система протеолитическихферментов, предназначенная для гуморальнойзащиты организма от действия чужеродных агентов , она участвует в реализации иммунного ответаорганизма. Является важным компонентом как врождённого, так и приобретённого иммунитета.

По классическому пути комплемент активируется комплексом антиген-антитело. Для этого достаточно участия в связывании антигена одной молекулы IgM или двух молекул IgG. Процесс начинается с присоединения к комплексу АГ+АТ компонента С1 , который распадается на субъединицы C1q, C1r и С1s. Далее в реакции участвуют последовательно активированные «ранние» компоненты комплемента в последовательности: С4 , С2, СЗ. «Ранний» компонент комплемента С3 активирует компонент С5, который обладает свойством прикрепляться к мембране клетки. На компоненте С5 путем последовательного присоединения «поздних» компонентов С6, С7, С8, С9 образуется литический или мембраноатакующий комплекс который нарушает целостность мембраны (образует в ней отверстие), и клетка погибает в результате осмотического лизиса.

Альтернативный путь активации комплемента проходит без участия антител. Этот путь характерен для защиты от грамотрицательных микробов. Каскадная цепная реакция при альтернативном пути начинается с взаимодействия антигена с протеинами В , D и пропердином (Р) с последующей активацией компонента СЗ. Далее реакция идет так же, как и при классическом пути - образуется мембраноатакующий комплекс.

Лектиновый пут ь активации комплемента также происходит без участия антител. Он инициируется особым маннозосвязывающим белком сыворотки крови, который после взаимодействия с остатками маннозы на поверхности микробных клеток катализирует С4. Дальнейший каскад реакций сходен с классическим путем.

В процессе активации комплемента образуются продукты протеолиза его компонентов - субъединицы СЗа и СЗb, С5а и С5b и другие, которые обладают высокой биологической активностью. Например, СЗа и С5а принимают участие в анафилактических реакциях , являются хемоаттрактантами, СЗb - играет роль в опсонизации объектов фагоцитоза, и т. д. Сложная каскадная реакция комплемента происходит с участием ионов Са 2 + и Mg 2+ .

В конце ХIХ столетия Т .Наттелл , а позже Ж .Борде (1895) предполагали, что существует единственный термолабильный компонент плазмы, опосредующий литическое действие антител на бактерии. К настоящему времени идентифицировано 13 белков системы комплемента и 7 ингибиторов (рис.74). Эти регуляторы циркулируют в неактивной форме (за исключением фактора D, который присутствует в плазме в малых количествах, в активном виде), самособираются в ответ на определенные сигналы, активируют друг друга (причем служат при этом сериновыми протеазами и/или взаимными рецепторами), а в результате осуществляют несколько важных эффектов, основные из которых:

n лизис мишеней, активирующих комплемент (см. выше)

n опсонизация объектов, фиксирующих факторы комплемента (см. выше)

n хемотаксис и усиление фагоцитоза

n активация лейкоцитов и опосредование их адгезии

n регуляция иммунного ответа (см. ниже в главе “Иммунный ответ”)

n освобождение медиаторов воспаления.

Белки комплемента условно подразделяются на факторы классического пути активации (обозачаются буквой С с сответствующими индексами - С 1 ,С 2 , С 4), факторы альтернативного пути активации (В.D), терминальные компоненты комплекса мембранной атаки (С 5 ,С 6 , С 7 , С 8 , С 9), а также усилители и ингибиторы комплемента (Р, Н, I, С 4вр, DAF, MCP, HRF, C 1 INA и др.). Особняком стоит центральный фактор всей системы С 3 , входящий в оба пути активации комплемента и участвующий в реализации практически всех его функций (Дж.Э. Воланакис , 1984).

Фрагменты протеолиза факторов обозначаются буквенным индексом а (малые) или в (большие), например С 5а или В b . Индекс i свидетельствует о том, что это промежуточный короткоживущий продукт протеолиза (например, iC4 b).

Черточка сверху символизирует наличие у компонента или комплекса компонентов ферментативной активности (С 1r `), а звездочка - нестабильное состояние молекулы в водном растворе. Такие активные нестабильные молекулы образуются при протеолизе из фрагментов, имеющих тиоэфирные связи. Они быстро оседают на поверхности клеток-мишеней, так как формируют с клеточными молекулами амидные и эфирные связи (например, С4 b*) .

Белки комплемента - члены различных суперсемейств распознающих и каталитических молекул. Они родственны самым разным биорегуляторам и компонентам плазмы.

Так, ингибиторы комплемента Н, I, С 4вр, DAF, MCP, а также его рецепторы СR1 и CR2 формируют отдельное генетически родственное семейство в хромосоме 1. Им родственны рецептор интерлейкина -2 и ХIII фактор свертывания крови.

С 2 и В, а также С 4 кодируются в коротком плече хромосомы 6 рядом с антигенами главного комплекса гистосовместимости и фактором некроза опухолей. Некоторые домены В и С 2 родственны трипсину и химотрипсину, а С 4 - a2-макроглобулину.

Фактор С 3 гомологичен интегринам, С 1q - аналог конглюттинина, белка А из состава лёгочного сурфактанта и маннансвязывающего сывороточного белка, взаимодействующего с полисахаридами бактериальных стенок. С 1s содержит домены рецептора липопротеидов низкой плотности и серинэстераз, а составные части комплекса мембранной атаки имеются также в структуре стрептококкового гемолизина стрептолизина О, цитотоксических белков эозинофилов и перфорина Т-киллеров. Наконец, С 1inh родственен другим антипротеазам - a1-антитрипсину, a1-антихимотрипсину и ингибитору коагуляции антитромбину III (М.Уолпорт , 1994). Замечательным примером сформулированного А.М.Уголевым (1987) принципа универсальных функциональных блоков в эволюции реактивности служит совместное использование всех этих регуляторов в единой системе комплемента. Природа перераспределила и рекомбинировала регуляторы, первичная функция которых у одноклеточных была различной, объединив их в мощную защитную систему.

Классический путь активации комплемента (рис. 75) - быстрый и эффективный (Б.Ф.Хайнс, А.С.Фоси ; 1994). Он запускается фиксацией фрагмента С 1q к Fc-фрагментам пометивших мишень иммуноглобулинов (классов М, G 1 , G 2 , G 3) - см. рисунок 74. Для запуска каскада необходимо связать не менее двух из шести доменов молекулы С 1q .

Кроме находящихся в составе иммунного комплекса одной молекулы IgM или, минимум, двух - IgG, это могут обеспечить микоплазмы, вирус везикулярного стоматита и некоторые мышиные ретровирусы. Поэтому данные возбудители активируют классический путь комплемента без участия антител. Классический путь активизируется также под влиянием отдельных маннан-содержащих бактерий, полианионов: липида А, ДНК, кардиолипина, гликозаминогликанов, С-реактивного белка, трипсина и плазмина. В некоторых условиях даже аспирин способен его запустить (М.М.Майер , 1977).

Конформационные изменения в С 1q приводят, в присутствии кальция, к аутокаталитической активации двух молекул С 1r , которые расщепляют и превращают в активную серинэстеразу две оставшихся молекулы пентамера С 1 - С 1s .Образовавшаяся серинэстераза С 1s _ расщепляет белок С 4 , содержащий тиоэфирную связь. Его фрагмент С4 b* оседает на поверхности мишени, рядом с С 1s и связывает плазменный С 2 . Под действием С 1s последний распадается, и его фрагмент С 2а формирует вместе с С4 b активную, связанную с поверхностью мишени С 3 -конвертазу классического пути (С4 b С 2а).

Ряд ингибиторов, как растворимых (серпин, фактор I, белок, связывающий С 4), так и мембранно-связанных (CR1, DAF, MCP) способны предупреждать или ослаблять активацию классического пути. Отсутствие DAF и другого ингибитора литических функций комплемента, HRF на мембранах мутантного клона эритроцитов наблюдается при пароксизмальной ночной гемоглобинурии (болезнь Макиафава-Микелли ) и вызывает кризовый гемолиз. Под действием аутоантител к ингибитору С 1 наступает отёк гортани (Дж. Джексон и соавт.,1986).

Альтернативный путь активации комплемента характеризуется Б.Ф.Хайнсом иА.С.Фоси , как медленный и менее эффективный. Его значение заключается в том, что активация этого пути не требует образования комплексов антиген-антитело и, чаще всего, предшествует специфическому иммуному ответу.

Альтернативный путь срабатывает в ответ на липополисахариды (эндотоксины) бактерий, липоолигосахариды менингококков, трипаносомы, лейшмании, многие грибки, гельминты, вирусы геморрагических лихорадок и вирус Эпштейна-Барр. Высокомолекулярные полианионы (включая полисахариды, скажем, инулин, агарозу, декстраны), гетерологичные эритроциты с их полисахаридными поверхностными молекулами и свободный гемоглобин - также активируют альтернативный путь. При имунном ответе этот путь активируется иммуными комплексами с участием IgA 1,2 и IgD. Агрегаты IgE могут активировать альтернативный путь лишь при очень высоких концентрациях, что сводит участие этого пути в анафилактических реакциях к минимуму. Активизация альтернативного пути происходит и при контакте плазмы с поверхностью некоторых опухолевых клеток, например, асцитной карциномы Эрлиха и лимфобластом. Патогенез действия яда кобры включает активацию комплемента в плазме этим же путём.

Механизм альтернативного пути также ведет к появлению С 3 -конвертазы, но несколько по-иному. В нем участвуют факторы В и D, продукт спонтанного гидролиза С 3 нестабильный С 3i , а при самоусилении этого каскада подключается еще и плазменный белок со звучным названием “пропердин” (фактор Р).

С 3I в жидкой фазе связывает В, который после этого гидролизуется с помощью D и освобождает В а. Комплекс С 3b В b - - это растворимая конвертаза С 3 , которая продолжает превращать третий фактор комплемента в С 3в.

Последний оседает на клеточную поверхность и фиксирует новые молекулы В. Последующая судьба процесса зависит, во многом, от свойств этой поверхности. Система комплемента проявляет здесь элементарную способность к распознаванию “чужого” и “своего”.

На мембранах собственных клеток в изобилии присутствуют вездесущие молекулы-маркеры DAF, MCP и CR1. Все они - ингибиторы образования конвертазы альтернативного пути комплемента. Соседство с ними вытесняет фактор В из комплекса с С 3в, на его место приходит выигрывающий в этих условиях конкуренцию плазменный ингибитор альтернативного пути H. Н служит адаптером для связывания фактора I, и последний разрушает С 3в, через нестабильный i С 3в до С 3с и С 3dg . Данный фактор, оставаясь на мембране, способен служить опсонином и хемоаттрактантом, но дальнейшая активация литических эффекторов комплемента на этом обрывается.

На бактериальных и некоторых опухолевых мембранах ингибиторы не представлены и активация продолжается аутокаталитически. Связывание всё новых молекул В ведет, под протеолитическим действием D, к увеличению количества активных комплексов С 3I В в - , то есть С 3 - конвертазы альтернативного пути. Пропердин (Р), в присутствии ионов магния, присоединяется к этому комплексу и предохраняет его от диссоциации, обеспечивая результативное действие самоусилительного механизма путем накопления конвертазы на поверхности мишени. Некоторые грам-положительные бактерии имеют в клеточных стенках много остатков сиаловой кислоты, что мешает поверхностной активации конвертазы альтернативного пути и способствует их патогенности.

Для защиты от некоторых бактерий, например, менингококков, именно механизм пропердин-зависимой амплификации альтернативного пути является ключевым. Не случайно, дефицит пропердина или любые другие наследственные и приобретенные аномалии активации альтернативного пути ведут к резкому понижению антименингококкового иммунитета и уменьшению эффективности соответствующей вакцинации.

Как раз носители таких отклонений составляют большую часть жертв менингококкового сепсиса.

Для эффективного продолжения протеолитического каскада конвертазы классического и альтернативного пути связывают ещё по одной молекуле С 3b , что повышает их сродство к С 5 .

Образование терминальных компонентов комплемента требует действия конвертаз классического (С4 b С 2а С 3b -), либо альтернативного (С 3b В b С 3b -) пути на фактор С 5 .

Продуктом этой протеолитической реакции являются растворимый пептид С 5а - анафилотоксин 1 (сильнейший среди анафилотоксинов ). Карбоксипептидаза N превращает его в лишённый концевого аргинина С 5а des Arg . Вместе с продуктом протеолитической активации конвертаз С 3a (анафилотоксином 2), эти пептиды служат мощными медиаторами сосудистых и клеточных реакций при воспалении (см. таблицу 18).

Другой продукт распада С 5 входит в состав мембранно-ассоциированого комплекса, последовательно, с С 6 и С 7 , причем после фиксации С 7 весь агрегат С 5b67 приобретает гидрофобность и способность внедряться в липидный бислой.

Дополнительное связывание С 8 придает комплексу некоторую, а фиксация С 9 - исключительно сильную цитолитическую способность. В мембране образуется кольцо, пропускающее внутрь кальций, что провоцирует механизмы клеточной гибели, описанные в соответствующих главах книги. Таким образом, комплекс С 5b6789 - буквально, своего рода “молекулярный дырокол”, проделывающий в мембране пору, видимую в электронный микроскоп. Белок S (витронектин), вырабатываемый макрофагами, эндотелием и выделяемый также тромбоцитами, ингибирует активность литического комплекса комплемента, а параллельно оказывает антикоагулянтный эффект. Этот механизм предохраняет собственные клетки от атаки комплемента и предупреждает развитие васкулита.

Ряд активных нецитолитических фрагментов комплемента является важными медиаторами воспаления.

Их основные функции освещены в таблице 18:

Табл. 18. Фрагменты комплемента, как нецитолитические медиаторы воспаления.

Фрагмент Эффекты
С 5а Сверхсильный анафилотоксин, освобождает гистамин из мастоцитов и базофилов, вызывает и прямое повышение проницаемости эндотелия посткапиллярных венул, хемоаттрактант нейтрофилов, базофилов, эозинофилов и макрофагов, ингибитор миграции макрофагов, стимулятор липооксигеназы фагоцитов, спазм гладких мышц, активация нейтрофилов, стимуляция лейкоцитарной адгезии, увеличение освобождения интерлейкина-1 и фактора активации тромбоцитов, синэргизм с веществом Р и простагландинами в болевых эффектах.
С 5а des Arg Слабый анафилотоксин, хемоаттрактант нейтрофилов в присутствии сывороточного пептида кохемотаксина. Не является гистаминолибератором, повышает сосудистую проницаемость, активируя освобождение нейтрофильных медиаторов.
С 3а Анафилотоксин средней силы. Эффекты сходны с С 5а, но хемоаттрактивное действие очень слабое. Не активирует липооксигеназу.
С 4а Слабый анафилотоксин. Эффекты аналогичны С 3а.
С 3b , iС 3b Прилипание, погружение, опсонический эффект в отношении клеточных объектов, стимуляция эндоцитоза, фагоцитоза, активации фагоцитов, связывание и солюбилизация иммунных комплексов, способствуют маргинации лейкоцитов, синтезу простагландинов.
C 4b те же, что у С 3b
B b способствует маргинации, ингибирует миграцию макрофагов.
С 2а вазоактивный пептид. Расширяет микроциркуляторные сосуды, увеличивает сосудистую проницаемость. Эффектор наследственного ангионевротического отека.
С 5b67 хемоаттрактант лейкоцитов

Анафилотоксины инактивируются плазменными и лейкоцитарными карбоксипептидазами В и N (источником которой являются, в частности, эозинофилы). Активность этих ферментов обеспечивает действие ранее неидентифицированного “фактора инактивации хемотаксиса” или так называемого “антианафилотоксина ”.

Комплемент взаимодействует с иммунной системой не только как антителозависимый цитотоксический эффектор и опсонин для иммунных комплексов (см. ниже в главе “Иммунный ответ”). Это важный модулятор иммунного ответа. По некоторым сведениям, именно факторы комплемента способствуют изотипическому переключению синтеза иммуноглобулинов М на G, регулируют активацию В-клеток, а также хелперную, либо супрессорную активность. Только лимфоциты, располагающие СR 3 , могут участвовать в Т-зависимых иммунных реакциях. Считается, что супрессивное действие связано с С 3а, а С 5а, наоборот, способен отменять этот эффект.

Инактивация фактора С 3 ядом кобры ведет к подавлению синтеза любых иммуноглобулинов, кроме IgM (А.Бифас и соавт.; 1985).

В заключение рассказа об основных свойствах системы комплемента будет освещен вопрос о ее наследственных и приобретенных дефектах и роли системной активации комплемента в патологии.

Эти состояния (табл. 19) разнообразны и могут быть вызваны как наследственными мутациями (дефициты С 1 INH , Р, I), так и приобретенными состояниями, но их клинические проявления, как правило, сходны и включают снижение устойчивости к бактериальным инфекциям, из-за нарушения литических и опсонизирующих функций комплемента, и развитие иммунокомплексных заболеваний (ИК-синдромов), из-за помех в клиренсе иммунных комплексов.

При иммунокомплексных болезнях порой трудно определить, является ли дефицит факторов комплемента первичным наследственным или вторичным по отношению к иммунопатологическому процессу в организме. Так, при системной красной волчанке у клинически здоровых родственников больных, как и у самих пациентов, отмечается дефицит СR 1 . Вместе с тем, усиленные иммунопатологические реакции ведут к потреблению и вторичному недостатку факторов С 3 ,С 4, С 2 . у людей, страдающих этим заболеванием. Кроме того, у больных системной красной волчанкой имеется нарушение протективного действия витронектина. Этот белок присутствует в плазме крови больных в комплексе с терминальными факторами комплемента в повышенных количествах, но активация им антитромботических механизмов, под воздействием иммуноглобулинов больных волчанкой, снижается. Возможно, в этом феномене играют какую-то роль аутоантитела к фосфолипидным компонентам, существенным для активности витронектина, тромбомодулина и связанных с ними факторов.(подробнее см. ниже главу “Иммунокомплексные реакции”).

Таблица 19. Дефекты системы комплемента. (по Дж.Шифферли, Д.Питерсу ; 1983 и Л.Эйхенфильду, Р. Джонстоуну , 1989, модифицировано).

Дефектные фактор(ы) комплемента Клинические проявления
С 1qrs , C 4, СR1 Волчаночный синдром, гломерулонефриты, васкулиты, артриты, эндокардиты, синдром Фелти (ИК-синдромы). Гноеродная инфекция, крупозные пневмококковые пневмонии. Системный гипокомплементэмический васкулит с волдырной сыпью. Приобретенные причины: системная красная волчанка, гломерулонефриты, малярия, СПИД(дефицит СR 1), тромбоэмболическая болезнь, нефротический синдром, гипогамаглобулинемии.
C 2 ИК-синдромы. Гноеродная инфекция менее характерна. Приобретенные причины: системная красная волчанка, гломерулонефриты, малярия, внутривенное введение неионных контрастных веществ.
C 1 INH Семейная аутосомно-доминантная форма форма ангионевротического отека. Поражает европеоидов. Проявляется зональными, стойкими спонтанными и провоцируемыми микротравмой, отеками глубоких слоев кожи и подкожной жировой клетчатки на конечностях, лице, половых органах. В отличие от анафилаксии, нет волдырей. Часто развиваются отек гортани и отеки желудочно-кишечного тракта, проявляющиеся рвотой, запором, абдоминальными коликами. Возможен панкреатит. Ингибитор С 1 отсутствует (1 тип) или не активен (2 тип). Повышена активность кининов, фибринолиза и фибринообразования. Снижен уровень С 2 ,С 4 . Иногда - гноеродная инфекция и иммунокомплексные синдромы. Приобретенные причины: лимфопролиферативные заболевания (из-за наличия аутоантител к данному ингибитору).
С 3 ИК-синдромы, гноеродная инфекция, поражения пневмококком, сальмонеллой, Haemophilus influenzae. Приобретенные причины: серповидноклеточная анемия (потребление), септический шок, мембранозно-пролиферативная форма хронического гломерулонефрита, другие нефриты, липодистрофия, внутривенное введение йодсодержащих контрастных веществ, кожная замедленная форма порфирии (активация комплемента и образование анафилотоксинов под действием порфиринов и света), хроническая печеночная недостаточность, нефротический синдром.
D Гноеродная инфекция. Приобретенные причины: ожоги.
P Менингококковая инфекция. Приобретенные причины: нефротический синдром, спленэктомия.
В ИК-синдромы. Приобретенные причины: нефротический синдром. Спленэктомия, b-талассемия.
I Низкая концентрация С 3 из-за его необратимого протеолиза, гноеродная инфекция.
H гемолитико-уремический синдром.
C 5678 рецидивирующая менингококковая инфекция, ИК-синдромы. Приобретенные причины: вирусный гепатит
C 9 рецидивирующая менингококковая инфекция. Приобретенные причины: вирусный гепатит

Тотальная активация комплемента происходит при контакте плазмы с мембранами ионообменников искусственной почки и других устройств для экстракорпоральной терапии. Аналогичные осложнения могут быть и у пациентов с эндопротезами сосудов. Результатом является системное действие анафилотоксинов и медиаторов активированных комплементом лейкоцитов, что формирует постперфузионный синдром , сопровождаемый лихорадкой, шоком, внутрисосудистым гемолизом, лейкопенией и гипокомплементэмией потребления, кровоточивостью по капиллярному типу. Синдром исключается только в том случае, если все поверхности, с которыми контактирует кровь (плазма), будут неактивирующими.

Системная активация комплемента происходит при бактериемии грам-отрицательными возбудителями, особенно, сальмонеллами, менингококками, пневмококками, гемофильной палочкой, при вирусемии возбудителями геморрагических лихорадок. Это важный элемент патогенеза инфекционно-токсического шока (шокового легкого).

При ожоговой болезни в системном кровотоке появляется избыток активных фрагментов комплемента, обусловливающих, наряду с прочими факторами, развитие ожогового шока и респираторного дистресс-синдрома в легких.

При остром панкреатите и травмах поджелудочной железы панкреатические протеазы активируют сторожевую полисистему крови, проникая в системный кровоток. Это ведет не только к системному действию кининов, но и к продукции анафилотоксинов. У больных может развиться тяжелый коллапс, диссеминированное внутрисосудистое свертывание крови и плюриорганная недостаточность, в том числе, шоковое лёгкое.

Очень велика роль расстройств функций комплемента в развитии нефропатий. Все нефриты, в том числе, инфекционные стрептококковые протекают с гипокомплементемией. При мембранозно-пролиферативной форме хронического диффузного гломерулонефрита в крови появляются аутоантитела к активной форме конвертазы альтернативного пути комплемента. Аутоантитела к конвертазе классического пути комплемента присутствуют при остром постстрептококковом нефрите и системной красной волчанке. Эти аутоантитела (нефритогенные факторы) блокируют освобождение ингибитором Н фактора С 3 из состава конвертазы и происходит снижение плазменной концентрации этого фактора. В результате нарушается клиренс иммунных комплексов, и они откладываются в клубочках почек, активируется комплементзависимый лизис эндотелия и других тканей и ослабевает устойчивость к гноеродной, в том числе, менингококковой инфекции. Нефритогенный фактор характерен и для парциальной липодистрофии, зачастую сопровождаемой дефицитом С 3 и гломерулонефритом. При любых видах нефротического синдрома факторы комплемента, особенно, В,Р и С 4 , теряются с мочой, что обусловливает вторичную гипокомплементэмию и иммунодефицит по отношению к бактериальной инфекции. При цитотоксической форме аутоиммунного гломерулонефрита (подострый злокачественный гломерулонефрит с “полулуниями”, гломерулонефрит при синдроме Гудпасчера) комплемент опосредует лизис ткани клубочков под воздействием аутоантител к компонентам их базальной мембраны.

При СПИДе имеется дефицит ряда факторов комплемента на фоне значительного избытка в крови С 3а. В связи с иммуносупрессивным действием этого анафилотоксина предполагается, что его накопление вносит вклад в развитие иммунологической недостаточности у таких больных (А.М.Ищенко, С.В.Андреев ; 1987).

Поэтому, во всех этих случаях понижена антибактериальная резистентность.

Кининовая система и нейропептиды.

Кининовая система - система убиквитарных коротких пептидных медиаторов, активируемая после прямого контакта фактора Хагемана с полианионными поверхностями.

Короткий пептид ХIIа, отщепляемый от фактора Хагемана, активирует фермент прекалликреин путем его протеолиза. Тот переходит в калликреин и расщепляет плазменный a2-гликопротеид-предшественник (печеночного, тромбоцитарного и макрофагального происхождения) - высокомолекулярный кининоген (ВМК) с образованием главного кинина крови - нонапептида брадикинина . ВМК содержится также в эндотелии и тучных клетках, но не доказано, что он там образуется.

Аутокаталитический механизм этого каскада заключается в том, что и ВМК и прекалликреин способны дополнительно активировать фактор Хагемана. Калликреин содержат яды многих опасных змей, например, джарараки. Именно этой южноамериканской змее мы обязаны открытием кининовой системы, поскольку бразильский патофизиолог М. Роха-э-Силва (1948) обнаружил брадикинин, изучая механизмы действия ее яда.

Аналогичные каскадные реакции приводят к появлению в тканевой жидкости декапептида каллидина (лизил-брадикинина) из тканевого предшественника каллидиногена- аналога ВМК, под действием калликреинов поджелудочной, слюнной и других желёз, почек и других органов.

Параллельно этим процессам, как уже говорилось выше, запускаются и другие компоненты сторожевой полисистемы. В частности, калликреин способствует превращению плазминогена в плазмин. Плазмин, как и трипсин, способен оказать обратное кинин-освобождающее действие на кининогены. Кинины образуются не только в крови и тканевой жидкости, но и в секрете ряда желёз, особенно, слюнных. Они входят в состав ядов, выделяемых соответствующими железами осьминога, ос, пчел, скорпионов и амфибий. Кинины - короткоживущие медиаторы (время полужизни брадикинина в плазме - 30 сек.), быстро расщепляемые карбоксипептидазой N (кининазой, содержащейся, в плазме, лейкоцитах и, особенно, в эозинофилах), а также карбоксипептидазой В, активируемой путем протеолиза. Поэтому они выступают исключительно в роли местных аутокоидов. Близкими к кининам являются некоторые нейропептиды, в частности, вещество Р и нейрокинин А . Медиаторы ренин-ангиотензиновой системы родственны кининам по принципам своей активации, структуре и спектру действия. Однако они, в основном, реализуют противоположные кининам эффекты, в частности, на сосуды и рассматриваются некоторыми авторами, как физиологические антагонисты кининовой системы (Т.С.Пасхина 1965). Интересно, что лёгочная ангиотензин-конвертаза активирует систему ангиотензинов, но разрушает кинины. Поэтому её блокада фармакологическими агентами сдвигает баланс этих систем в пользу кининов, что используется в терапии гипертензий.

Кинины в норме служат медиаторами рабочей артериальной гиперемии (см. соответствующий раздел выше), особенно, в функционирующих железах, например, слюнных. Вполне возможно, что их совокупное действие способствует поддержанию оптимального уровня общего периферического сопротивления и предохраняет от гипертензии (О.А.Гомазков, А.А.Дзизинский , 1976). При воспалении образуются значительные количества кининов. Их эффекты представлены в таблице 20:

Таблица 20. Эффекты кининовых медиаторов воспаления у человека.

Мишени Эффекты
Эндотелий Сильное повышение сосудистой проницаемости, намного более значительное, чем под действием гистамина.
Ноцирецепторы Боль. Медиаторы мигрени.
Гладкомышечные клетки Спазм (бронхи, венулы, матка, кишечник).
Артериолы Расширение (эффект опосредован NO и простагландинами). Один из сильнейших известных вазодилятаторов.
Лейкоциты Хемотаксис (калликреин)
Лимфоциты Стимуляция миграции и митогенеза, усиление синтеза IgE.
Фибробласты Стимуляция пролиферации и коллагеногенеза
Нейтрофилы Торможение миграции (каллидин)
Мастоциты Усиление дегрануляции
Эндотелиоциты Усиление продукции простациклина.
Различные клетки Стимуляция циклооксигеназы
Системная гемодинамика Гипотензия, стимуляция сердечной деятельности и диуретическое действие.

Брадикинин в отношении большинства этих эффектов более активен, чем каллидин, а тот, в свою очередь, превосходит третий из выделенных кининов - метионил-лизил-брадикинин . В отношении системного гипотензивного эффекта соотношение активности кининов строго обратное.

Ряд эффектов кининов опосредован их действием на апудоциты диффузной эндокринной системы. Например, ингаляция брадикинина не вызывает бронхоспазма у здоровых индивидов, но провоцирует приступ у лиц, страдающих “астмой, вызванной физическими усилиями ”, в патогенезе которой имеет большое значение химическая и физическая стимуляция апудоцитов подслизистого слоя бронхов, выделяющих вещество Р и другие бронхоконстрикторы.

Биологические функции комплемента

Одинцов Ю.Н., Перельмутер В.М. Biological functions of complement

Odintsov Yu.N., Perelmuter V.M.

Сибирский государственный медицинский университет, г. Томск

© Одинцов Ю.Н., Перельмутер В.М.

Комплемент является одним из важнейших факторов резистентности организма. Система комплемента может принимать участие в различных эффекторных механизмах, прежде всего в лизисе (комплементарный киллинг) и опсонизации микроорганизмов. В переключении литической функции комплемента на опсоническую могут принимать участие макрофаги. Функции комплемента при бактериозах зависят от особенностей патогенеза инфекционного заболевания.

Ключевые слова: комплемент, бактериолиз, опсонизация, инфекционный процесс.

One of the true basic resistance factors is complement. Main functions of it consist in bacterial lysis, bacterial opsonisation for phagocytosis. Alteration of lytic function for opsonic function depends upon macrophages. Complement functions at bacteriosis depend on phathogenesis features in infectious disease.

Key words: complement, bakteriolysis, opsonisation, infectious process.

УДК 576:8.097.37

Организм человека имеет две основные линии защиты от возбудителей инфекционных заболеваний: неспецифическую (резистентность) и специфическую (иммунитет).

Факторы первой линии защиты (резистентности) характеризуются рядом общих признаков: 1) они сформированы задолго до встречи с возбудителем (внутриутробный период); 2) неспецифичны; 3) генетически детерминированы; 4) генотипически и фенотипически неоднородны (гетероген-ны) в популяции; 5) высокая резистентность к одному возбудителю может сочетаться с низкой к другому; 6) резистентность прежде всего зависит от функционального состояния макрофагов, которое контролируется генами, не связанными с HLA, и состояния системы комплемента (контролируемой НЬД).

Комплемент - многокомпонентная ферментная система плазмы, состав и функция которой в основном хорошо изучены, является одним из важнейших факторов резистентности организма. В 1960-1970-е гг. было особенно популярно определение титра комплемента как одного из показателей резистентности. И в настоящее время изучению функции комплемента посвящено множество исследований. Вместе с тем существуют

не только определенные трудности и противоречия при объяснении механизма активации комплемента, но до сих пор

остаются недостаточно изученными некоторые механизмы активации и функционирования комплемента. К таким дискуссионным вопросам относятся механизм действия ингибиторов активации комплемента in vivo, механизм переключения активации комплемента с литической на опсоническую функцию и понимание роли комплемента в саногенезе при различных инфекциях.

Известно 14 белков (компонентов) плазмы крови, составляющих систему комплемента . Они синтезируются гепатоцитами, макрофагами и нейтрофилами . Большинство из них относятся к р-глобулинам. Согласно номенклатуре, принятой ВОЗ, система комплемента обозначается символом С, а ее индивидуальные компоненты символами Cl, C2, С3, С4, С5, С6, С7, С8, С9 или прописными буквами (D, B, P). Часть компонентов (Cl, C2, С3, С4, С5, B) делится на составляющие их субкомпоненты - более тяжелые, обладающие ферментативной активностью, и менее тяжелые, не обладающие ферментативной активностью, но сохраняющие самостоятельную биологическую функцию. Активированные комплексы белков системы комплемента помечают чертой над комплексом (например, C4b2a3b - С5-конвертаза).

Помимо белков собственно комплемента (C1-C9) в осуществлении его биологической активности принимают

участие и другие белки, выполняющие регуляторные функции:

а) рецепторы мембран клеток макроорганизма к субкомпонентам комплемента: CR1(CD35), CR2(CD21), CR3(CD11b/CD18), CR4(CD11c/CD18), C1qR, C3a/C4aR, C5aR;

б) мембранные белки клеток макроорганизма: мембранный кофакторный белок (МКБ, или MCP - membrane-assoti-ated cofactor of proteolysis, CD46), фактор, ускоряющий диссоциацию (ФУД, или DAF - decay accelerating factor, CD55), протектин (CD59);

в) белки плазмы крови, осуществляющие позитивную или негативную регуляцию: 1) позитивная регуляция - фактор В, фактор D, пропердин (Р); 2) негативная регуляция - фактор I, фактор Н, белоксвязывающий C4b (C4 binding protein, C4bp), С1-ингибитор (C1-inh, серпин), S-белок (витро-нектин).

Таким образом, в функциях системы комплемента принимают участие более 30 компонентов. Каждый белковый компонент (субкомпонент) комплемента обладает определенными свойствами (табл. 1).

В норме компоненты комплемента находятся в плазме в неактивном состоянии. Они становятся активными в процессе многоступенчатых реакций активации. Активированные компоненты комплемента действуют в определенном порядке в виде каскада ферментативных реакций, а продукт предшествующей активации служит катализатором для включения в последующую реакцию нового субкомпонента или компонента комплемента.

Система комплемента может принимать участие в различных эффекторных механизмах:

1) лизис микроорганизмов (комплементарный киллинг);

2) опсонизация микроорганизмов;

3) расщепление иммунных комплексов и их клиренс;

4) активация и хемотаксическое привлечение лейкоцитов в очаг воспаления;

5) усиление индукции специфических антител путем: а) усиления локализации антигена на поверхности В-лимфо-цитов и антигенпредставляющих клеток (АПК); б) снижения порога активации В-лимфоцитов.

Наиболее важными из функций комплемента являются лизис мембран патогенов и опсонизация микроорганизмов.

Таблица 1

Компоненты и субкомпоненты комплемента, принимающие участие в классическом и альтернативном путях активации комплемента

Компонент (субкомпонент) Молекулярная масса, кД Субкомпонент Концентрация в сыворотке крови, мкг/мл Функция

С1 1124 1 C1q 2 C1r 2 C1s - Ферментный комплекс

Clq 460 - 80 Связывание с длинной цепью ^ или 1дМ комплекса антиген - антитело

Clr 166 - 30-50 Протеаза, активирующая СЬ

Cls 166 - 30-50 Сериновая протеаза, активирующая С4 и С2

С2 110 2a, 2b 15-25 Формируют СЗ-конвертазу (С4Ь2а), а затем и С5-конвертазу (С4Ь2а3Ь) классического пути

СЗ 190 3a, 3b 1200

С4 200 4a, 4b 350-500

С5 191 5a, 5b 75 Формирование мембраноатакующего комплекса, образующего пору в мембране клетки-мишени

Фактор В 95 Ba, Bb 200 Формируют СЗ-конвертазу (СЗЬВЬР), а затем и С5-конвертазу (СЗЬВЬЗЬ) альтернативного пути

Фактор D 25 - 1

Пропердин(Р) 220 25 Стабилизатор СЗ-конвертазы альтернативного пути (СЗЬВЬ), блокирует диссоциацию СЗЬВЬ под действием фактора Н

Комплементарный лизис микроорганизмов

Лизис микроорганизмов происходит в результате образования мембраноатакующего комплекса (МАК), состоя-

щего из компонентов комплемента. В зависимости от того, каким образом произошло образование МАК, различают несколько путей активации комплемента.

Классический (иммунокомплексный) путь активации комплемента

Этот путь активации комплемента называется классическим вследствие того, что он был описан первым и долгое время оставался единственным из известных сегодня. В классическом пути активации комплемента пусковую роль выполняет комплекс антиген - антитело (иммунный комплекс (ИК)). Первым звеном активации комплемента является связывание С ^-субкомпонента С1-компонента с иммуноглобулином иммунного комплекса. В частности, в случае активации комплемента иммуноглобулинами класса G (1д31, ^2, IgG3, ^4) это осуществляется аминокислотными остатками в позициях 285, 288, 290, 292 тяжелой цепи ДО . Активация этого участка происходит только после образования комплекса антиген - антитело (АГ-АТ). Способностью активировать комплемент по классическому пути обладают с убывающей интенсивностью 1дМ, ^3, ДО1 и ДО2.

Компонент комплемента С^ состоит из трех субъединиц (рис. 1), каждая из которых имеет два центра для связывания с 1д в комплексе АГ-АТ. Таким образом, полная молекула С^ располагает шестью такими центрами. При образовании комплекса АГ-1дМ молекула С^ связывается не менее чем с двумя вторыми доменами (СН2) одной и той же молекулы 1дМ, а при участии в образовании комплекса АГ- АТ иммуноглобулинов класса G - со вторыми доменами (СН2) не менее чем двух разных молекул ^ в комплексах АГ-^ . Присоединившийся к АГ-АТ С^ приобретает свойства сериновой протеазы и инициирует активацию и встраивание в С^ двух молекул С1г. С1г, в свою очередь, инициирует активацию и встраивание в С^ еще двух других молекул - С^. Активированный С^ обладает активностью сериновой эстеразы.

Затем С^ комплекса С1 расщепляет С4 на больший фрагмент С4Ь и меньший С4а. С4Ь соединяется ковалент-ными связями с амино- и гидроксильными группами молекул клеточной мембраны (рис. 2). Фиксированный на поверхности мембраны (или комплекса АГ-АТ) С4Ь связывает С2, который становится доступным для ферментативного расщепления той же сериновой протеазой С^. В результате образуется мелкий фрагмент 2Ь и более крупный фрагмент С2а, который, соединяясь с прикрепленным к поверхности мембраны С4Ь, образует ферментный комплекс С4Ь2а, на-

зываемый СЗ-конвертазой классического пути активации комплемента.

Рис. 1. Компоненты ферментного комплекса С1 (1д2г2э) и его взаимодействие с комплексом антиген - антитело (АГ-^ или АГ-1дМ): J - цепь, объединяющая мономеры пентамера

СЗЬВ -»-СЗЬВЬР

I------------------

Петля усиления Рис. 2. Активация комплемента по классическому пути

Образовавшаяся С3-конвертаза взаимодействует с С3 и расщепляет его на меньший фрагмент СЗа и больший СЗЬ. Концентрация СЗ в плазме самая высокая из всех компонентов комплемента, а один ферментный комплекс С4Ь2а (СЗ-конвертаза) способен расщепить до 1 тыс. молекул СЗ. Это создает высокую концентрацию СЗЬ на поверхности мембраны (амплификация образования СЗЬ). Затем СЗЬ ковалентно связывается с С4Ь, находящимся в составе СЗ-конвертазы. Сформированный трехмолекулярный комплекс С4Ь2аЗЬ является С5-конвертазой. СЗЬ в составе С5-конвертазы ковалентно соединяется с поверхностью микроорганизмов (рис. 2).

Субстратом для С5-конвертазы является компонент С5 комплемента, расщепление которого заканчивается образованием меньшего по размерам С5а и большего С5Ь. Об-

разование С5Ь инициирует формирование мембраноатакую-щего комплекса. Оно протекает без участия ферментов путем последовательного присоединения к С5Ь компонентов С6, С7, С8 и С9 комплемента. С5Ь6 является гидрофильным, а С5Ь67 - гидрофобным комплексом, который встраивается в липидный бислой мембраны. Присоединение к С5Ь67 С8 еще более погружает образовавшийся комплекс С5Ь678 в мембрану. И, наконец, к С5Ь678 комплексу фиксируется 14 молекул С9. Сформировавшийся С5Ь6789 и является мембраноатакующим комплексом. Полимеризация молекул С9 в комплексе С5Ь6789 приводит к образованию неспадающейся поры в мембране. Через пору в клетку поступают вода и N8+, что приводит к лизису клетки (рис. З).

Растворенные соединения

Интенсивность образования МАК при классическом пути активации комплемента возрастает за счет петли усиления альтернативного пути активации комплемента. Петля усиления начинается с момента образования ковалентной связи СЗЬ с поверхностью мембраны. В образовании петли участвуют три дополнительных белка плазмы: В, D и Р (пропер-дин). Под влиянием фактора D (сериновой эстеразы) связанный с СЗЬ белок В расщепляется на меньший фрагмент Ва и больший ВЬ, который связывается с СЗЬ (см. рис. 2). Присоединение к комплексу СЗЬВЬ пропердина, выполняющего роль стабилизатора комплекса СЗЬ ВЬ, завершает образование СЗ-конвертазы альтернативного пути - СЗЬВЬР. СЗ-конвертаза альтернативного пути расщепляет молекулы СЗ, образуя дополнительные СЗЬ, что обеспечивает формирование все большего количества С5-конвертазы и в конечном итоге - большего количества МАК. МАК действу-

ет самостоятельно, а возможно, индуцирует апоптоз через каспазный путь .

Альтернативный (самопроизвольный) путь активации комплемента

Механизм активации комплемента по альтернативному пути обусловлен спонтанным гидролизом тиоэфирной связи в нативной молекуле СЗ. Этот процесс происходит в плазме постоянно и называется «холостой» активацией СЗ. В результате гидролиза СЗ образуется его активированная форма, обозначаемая СЗ1 В дальнейшем С3i связывает фактор В. Фактор D расщепляет фактор В в составе комплекса С3iВ на малый фрагмент Ва и большой ВЬ. Образовавшийся комплекс С3iВb является жидкофазной С3-конвертазой альтернативного пути активации комплемента. Далее жидкофазная конвертаза С3iВb расщепляет СЗ на СЗа и СЗЬ. Если СЗЬ остается свободным, он разрушается, подвергаясь гидролизу водой. Если C3b ковалентно связывается с поверхностью бактериальной мембраны (мембраны любых микроорганизмов), то он не подвергается протеолизу. Более того, он инициирует образование петли усиления альтернативного пути. К фиксированному СЗЬ присоединяется фактор В (СЗЬ имеет большую аффинность к фактору В, чем к фактору Н), образуется комплекс СЗЬВ, от которого фактор D

отщепляет мелкий фрагмент Ва. После присоединения пропердина, являющегося стабилизатором комплекса СЗЬВЬ, образуется комплекс СЗЬВЬР, представляющий собой связанную с поверхностью мембраны С3-конвер-тазу альтернативного пути. Связанная СЗ-конвертаза инициирует прикрепление в том же месте дополнительных молекул СЗЬ (амплификация СЗЬ), что приводит к быстрому локальному накоплению СЗЬ . Далее связанная СЗ-конвертаза расщепляет СЗ на СЗа и СЗЬ. Присоединение СЗЬ к СЗ-конвертазе образует комплекс СЗЬВЬЗЬ (СЗЬ2ВЬ), который является С5-конвертазой альтернативного пути. Затем происходит расщепление компонента С5 и образование МАК, как и при классическом пути активации комплемента.

Спонтанный гидролиз

I_________________________I

Петля усиления

Рис. 4. Альтернативный (самопроизвольный) путь активации комплемента

« Холостая » активация

Микроорганизм

Лектиновый путь активации комплемента

Липополисахариды (ЛПС) грамотрицательных бактерий, в составе которых могут содержаться остатки манно-зы, фукозы, глюкозамина, связываются лектинами (сывороточные протеины, прочно связывающие углеводы) и индуцируют лектиновый путь активации комплемента. Например, триггером лектинового пути активации комплемента может быть маннансвязывающий лектин (МСЛ), как и С^, относящийся к семейству кальцийзависимых лекти-нов

Он соединяется с маннозой, находящейся в составе клеточной стенки бактерий, и приобретает способность взаимодействовать с двумя маннансвязываю-щими лектинассоциированными сериновыми протеиназами - МАСП1 и МАСП2, идентичными соответственно С1г и С1з.

Взаимодействие [МСЛ-МАСП1-МАСП2] аналогично образованию комплекса [С^-С1г-С^]. В дальнейшем активация комплемента происходит так же, как и по классическому пути (рис. 5).

4а 2Ь СЗа СЗЬ С5а

Петля усиления

Рис. 5. Лектиновый путь активации комплемента (М - манноза в составе поверхностных структур клетки, например, ЛПС)

Белки семейства пентраксинов, обладающие свойствами лектинов, таких как амилоидный протеин, С-реактивный протеин, также способны активировать комплемент по лектиновому пути, взаимодействуя с соответствующими субстратами клеточных стенок бактерий. Так, С-реактивный протеин активирует форсфорилхолин клеточной стенки грамположительных бактерий. И затем активированный форсфорилхолин запускает классический путь сборки компонентов комплемента.

СЗЬ, который образуется из СЗ, под влиянием любой СЗ-конвертазы связывается с мембраной мишени и становится местом дополнительного образования СЗЬ. Эта ступень каскада получила название «петля усиления». Каким бы ни был путь активации комплемента, если его не блокирует один из регуляторных факторов, он заканчивается образованием мембраноатакующего комплекса, образующего не-спадающуюся пору в мембране бактерии, что приводит к ее гибели.

Альтернативный и лектиновый пути активации комплемента по времени запуска при инфекционном заболевании являются ранними. Они могут активироваться уже в первые часы после попадания патогена во внутреннюю среду макроорганизма. Классический путь активации комплемента является поздним: он начинает «работать» лишь при появлении антител (1дМ,

Регуляторные белки активации комплемента

Процесс активации комплемента регулируется мембранными (табл. 2) и плазменными (табл. 3) белками .

Пути активации комплемента и образование МАК могут быть блокированы различными факторами:

1) классический, лектиновый:

Действием С1-ингибитора, связывающего и инактиви-рующего С1г и С^;

Подавлением образования СЗ-конвертазы классического и лектинового пути (С4Ь2а) под действием факторов I, Н, С4-Ьр, ФУД, МКБ и С^1;

Подавлением взаимодействия компонентов комплемента с поверхностью клеток макроорганизма действием ФУД ^55), CR1(CD35), МКБ^46);

2) альтернативный:

Диссоциацией комплексов C3iBb и СЗЬВЬ действием фактора Н;

Расщеплением СЗЬ фактором I при участии одного из трех кофакторов: фактора Н (плазмы), CR1 или МКБ (связанных на поверхности клеток макроорганизма);

Подавлением образования СЗ-конвертазы альтернативного пути на поверхности клеток макроорганизма действием ФУД, CR1 или МКБ.

Таблица 2

Мембранные регуляторные белки

Клеточные (расположены на мембранах клеток макроорганизма)

Фактор Экспрессия на клетках Функция Результат

CR1 ^35) В-лимфоциты; моноциты (макрофаги); гранулоциты; фолликулярные дендритные клетки; НК-клетки Подавляет связывание С2 с С4Ь; вызывает и ускоряет диссоциацию С4Ь2а на С4Ь и 2а; кофактор катаболизма С4Ь под действием фактора I; кофактор катаболизма СЗЬ под действием фактора I; ускоряет диссоциацию СЗЬВЬ с освобождением СЗЬ Подавляет активацию комплемента по любому пути на мембранах клеток собственного организма

МКБ ^46) Т-лимфоциты; В-лимфоциты; моноциты (макрофаги); гранулоциты; дендритные клетки; НК-клетки Подавляет образование конвертаз: С4Ь2а и СЗЬВЬ; кофактор катаболизма С4Ь под действием фактора I; кофактор катаболизма СЗЬ под действием фактора I То же

ФУД ^55) Т-лимфоциты; В-лимфоциты; моноциты (макрофаги); гранулоциты; дендритные клетки; НК-клетки; тромбоциты Подавляет образование конвертазы С4Ь2а классического пути; подавляет образование конвертазы СЗЬВЬ альтернативного пути; подавляет связывание С2 с С4Ь; ускоряет диссоциацию С4Ь2а на С4Ь и 2а; ускоряет диссоциацию СЗЬВЬ с освобождением СЗЬ

Протектин ^59) Все клетки макро- Связывается с 5Ь678 и подавляет его погружение в мембрану Предотвращает лизис

организма | и развертывание С9 | собственных клеток

Таблица З

Плазменные регуляторные белки

Фактор Функция Молекулярная масса и концентрация в сыворотке Реализация эффекта на соматических клетках и (или) на патогенах

Фактор Н (легко связывается с сиаловыми кислотами поверхности клеток макроорганизма) Подавляет образование конвертазы C4b2a классического пути; подавляет образование конвертазы C3bBb альтернативного пути; вызывает диссоциацию жидкофазной конвертазы C3iBb на C3i и Bb; кофактор катаболизма C3i и Bb; вызывает диссоциацию конвертазы C3bBb на C3b и Bb 150 Кда, 500 мкг/мл Подавляет активацию комплемента по любому пути на мембранах клеток собственного организма и микроорганизмах

Фактор I (протеаза плазмы) Подавляет образование конвертазы C4b2a классического пути 90 Кда, 35 мкг/мл Подавляет активацию комплемента по классическому пути на мембранах клеток собственного организма и микроорганизмах

Вместе с одним из кофакторов (МКБ, CR1, C4bp) расщепляет 4b на C4c и C4d; вместе с одним из кофакторов (МКБ, CR1, H) расщепляет C3b; фактор катаболизма C3b и C3i Подавляет активацию комплемента по любому пути на мембранах клеток собственного организма

C4bp (C4 binding protein, белоксвязыва-ющий C4b) Подавляет связывание C2 с C4b; подавляет образование конвертазы C4b2a классического пути; вызывает диссоциацию C4b2a на C4b и 2a; кофактор катаболизма C4b под действием фактора I 560 Кда, 250 мкг/мл Подавляет активацию комплемента по классическому и лектиновому пути на мембранах клеток собственного организма и микроорганизмах

С1-ингибитор (C 1-inh, серпин) Связывает и ингибирует C1r и C1 s (сериновых протеаз ингибитор); отщепляет C1r и C1 s от C1q (C1q остается связанным с Fc-фрагментом Ig); ограничивает время контакта C1 s с C4 и C2; ограничивает спонтанную активацию C1 в плазме крови 110 Кда, 180 мкг/мл Подавляет активацию комплемента по классическому и лектиновому пути на мембранах клеток собственного организма и микрорганизмах

S-белок (витронектин) Образует комплекс 5b67-S, инактивирует его способность внедриться в липидный слой мембраны 85 Кда, 500 мкг/мл Блокирует образование МАК

Подавление образования МАК Напротив, регуляторные белки плазменного происхо-

ждения ингибируют активацию комплемента не только на поверхности соматических клеток, но и на мембранах патогенов.

Опсонизация микроорганизмов компонентами комплемента

Комплементарный лизис микроорганизмов является ранней реакцией макроорганизма на попадание патогенов в его внутреннюю среду . Образующиеся при активации комплемента по альтернативному или лектиновому пути субкомпоненты С2Ь, СЗа, С4а, С5а, Ва привлекают в очаг воспаления клетки и активируют их эффекторные функции.

Из компонентов комплемента опсонизирующими свойствами обладают в основном ЗЬ и 4Ь. Для их образования необходимы два условия: первое - активация комплемента одним из описанных выше путей, второе - блокирование активационного процесса, благодаря которому невозможно образование МАК и лизис патогена. В этом и состоит

на поверхности патогенов.

1. Гидрофобный комплекс С5Ь67, который начинает встраивается в липидный бислой мембраны, может быть инактивирован S-белком (витронектином). Образовавшийся комплекс 5b67S внедриться в липидный слой мембраны не может.

2. Присоединение компонента 8 к комплексу С5Ь67 в жидкой фазе может быть блокировано липопротеидами низкой плотности (ЛПНП).

3. Погружение в мембрану С5Ь678 и присоединение С9 предотвращает CD59 (протектин), белок мембраны клеток макроорганизма.

4. Удаление фрагментов мембраны клеток макроорганизма со встроенным МАК путем эндоцитоза либо экзоцитоза.

Таким образом, регуляторные белки клеточного происхождения самостоятельно ингибируют активацию комплемента с образованием МАК только на поверхности соматических клеток и не эффективны в ингибиции литической

К мембранному СЗЬ и его мембранному субкомпоненту деградации СЗЫ на клетках макроорганизма имеются соответствующие рецепторы (табл. 4). СЗЬ и инактивированный СЗЬ (СЗЫ) являются лигандами для рецепторов CR1 (СЗЬ, СЗЫ), CR3 (СЗЫ), CR4 (СЗЫ), расположенных на нейтрофи-лах , моноцитах (макрофагах) , эндотелии пуповины . СЗЬ и СЗЫ выполняют роль активных опсони-нов .

Предположительно, совместное действие факторов I и Н может переключать образование литического комплекса (МАК, комплементарный киллинг) на другой механизм уничтожения патогена - фагоцитарный киллинг (рис. 6). Растворимые ингибиторы активации комплемента (I и Н), продуцирующиеся макрофагами, позже появляющимися в очаге воспаления, действуют в микроокружении фагоцита, препятствуя образованию конвертазы СЗ на поверхности бактерий и обеспечивая, таким образом, наличие «свободных» СЗЬ. Рецептор макрофага к СЗЬ, связывая лиганд (СЗЬ), фиксирует бактерию на поверхности макрофага. Ее фагоцитоз осуществляется при совместном участии двух лиганд-рецеп-торных комплексов: рецептор к СЗЬ + СЗЬ и FcyR + ^ . Другая пара - рецептор к СЗЬ + СЗЫ инициирует фагоцитоз и без участия антител .

Биологический смысл переключения активации комплемента с литической на опсоническую функцию, вероятно, заключается в том, что все бактерии, которые не лизировались до встречи с фагоцитом, должны быть фагоцитированы с помощью СЗЬ-опсонина. Такой механизм переключения активации комплемента на опсонический необходим не только для фагоцитоза жизнеспособных патогенов в ранние сроки инфекции, но и для утилизации фагоцитами «осколков» микроорганизмов.

Таблица 4

Рецепторы к субкомпонентам комплемента

Рецептор (complement receptor, CR) Лиганды Экспрессия на клетках Эффект связывания

CR1 (CD35) C3bi > C3b, C4b Нейтрофилы, моноциты (макрофаги), В-лимфоциты, фолликулярные дендритные клетки, эритроциты, эпителий почечных клубочков Опсонизированный фагоцитоз, активация В-лимфоцитов, транспорт иммунных комплексов на эритроцитах

CR3 (CD11b/CD18) C3bi Нейтрофилы, моноциты (макрофаги), НК-клетки, фолликулярные дендритные клетки Опсонизированный фагоцитоз

CR4 (р 150-95) (CD11c/CD18) C3bi Нейтрофилы Опсонизированный фагоцитоз

CR2 (CD21), компонент коре-цепторного комплекса В-лим-фоцитов (BCR + CD19, CR2, CD81) C3bi, C3dg В-клетки, фолликулярные дендритные клетки Усиливает активационные реакции BCR, индуцирует нефагоцитируемое связывание комплекса АГ-АТ на фолликулярных дендритных клетках

переключение литической программы активации комплемента на опсоническую.

В реальных условиях инфекционного процесса переключение на опсоническую программу активации комплемента, обеспечивающую фагоцитоз патогена и клиренс иммунных комплексов , может происходить благодаря эффектам регуляторных белков. Сборка на мембране компонентов комплемента может завершиться образованием мембраноатакующего комплекса, а может быть прервана на уровне образования 4Ь и еще более активно на уровне образования ЗЬ факторами I и Н .

Фактор I является основным ферментом, вызывающим деградацию СЗЬ. Фактор Н в этом процессе выполняет роль кофактора. Действуя совместно, они обладают способностью инактивировать как жидкофазный, так и мембранный СЗЬ (свободный или в составе любой конвертазы), отщепляя от него фрагмент C3f (инактивированный СЗЬ обозначается как СЗЫ). Затем они продолжают расщепление СЗЫ следующим образом:

ф ^ субкомпонент субкомпонент

сз зь зь зь зь

Блокада дальнейшей активации комплемента

Бактерия

Переключение на процесс фагоцитоза

Фактор Н (кофактор)

Макрофаг

Поглощение бактерии

У Рецептор к Рс-фрагменту X ,1 СЗЬ компонент комплемента

1| |1 V Рецептор к СЗЬ или СЗЫ компоненту комплемента

Рис. 6. Переключение активации комплемента на процесс фагоцитоза

Является целесообразным рассмотреть вопрос о возможной роли комплемента в патогенезе различных групп бактериозов, разделенных ранее в зависимости от механизма саногенеза.

Токсигенные бактериозы (дифтерия, газовая гангрена, ботулизм, столбняк и др.). Обычная локализация возбудителей - входные ворота инфекции. Основной эффектор патогенеза - токсин (Т-зависимый антиген, антиген первого типа). Т-зависимые поверхностные антигены этих бактерий в индукции иммунного ответа принимают незначительное участие. Основной эффектор саногенеза - антитоксин Тип иммунного ответа - Т1л2. Выздоровление наступает вследствие образования и последующей элиминации иммунных комплексов, а также фагоцитарного киллинга бактерий в очаге воспаления. Роль комплемента при этих бактериозах, вероятно, ограничена участием в элиминации иммунных комплексов токсин - антитоксин. В нейтрализации токсина (т.е. в саногенезе токсигенных инфекций) комплемент существенной роли не играет.

Нетоксигенные негранулематозные бактериозы

1. Возбудители содержат поверхностные Т-неза-висимые антигены (Т"1-антигены, антигены второго типа):

Бактерии содержат классический ЛПС (Тьантигены энтеропатогенных кишечных палочек, сальмонелл, шигелл и др.). Обычная локализация возбудителей - от входных ворот в слизистых кишечного тракта до региональных лимфатических узлов. Основной эффектор патогенеза - эндотоксин и живые бактерии. Тип иммунного ответа - Т1л2. Иммунный

ответ на ЛПС характеризуется продукцией антител 1дМ-класса. Саногенез наступает прежде всего вследствие уничтожения бактерий нефагоцитарным путем в преиммунную фазу инфекционного процесса за счет лектинового и альтернативного пути активации комплемента. В иммунную фазу инфекционного процесса - за счет иммунного лизиса с участием 1дМ и комплемента по классическому пути активации. Фагоцитоз не имеет существенного значения в саногенезе при бактериозах этой группы. Активация системы комплемента при этих заболеваниях может способствовать саногенезу ;

Бактерии содержат поверхностные (капсульные) 7!-антигены (пневмококки, гемофильные бактерии и др.). Обычная локализация возбудителей - от входных ворот в слизистых дыхательного тракта до региональных лимфатических узлов, нередко проникают в кровь. Основной эффектор патогенеза - живые бактерии. Тип иммунного ответа - Т1л2. В иммунном ответе на поверхностные антигены происходит образование антител 1дМ-класса. Саногенез осуществляется прежде всего вследствие уничтожения бактерий нефагоцитарным путем в преиммунную фазу инфекционного процесса за счет лектинового и альтернативного пути активации комплемента. В иммунную фазу инфекционного процесса - за счет иммунного лизиса с участием 1дМ и комплемента по классическому пути активации. В случае проникновения бактерий этой группы в кровь основную роль в очищении макроорганизма от возбудителей играет селезенка - основное место фагоцитоза слабоопсонизирован-ных (или неопсонизированных) бактерий - и способность

ДМ «нацеливать» сенсибилизированные им бактерии на фагоцитоз купферовыми клетками с последующим переносом еще не дезинтегрированных до конца фрагментов бактерий в желчные капилляры. Соли желчных кислот расщепляют фрагменты бактерий, которые выводятся в кишечник. Активация системы комплемента при этой группе заболеваний также может способствовать саногенезу .

2. Возбудители содержат поверхностные Т-зависи-мые антигены (Т-антигены, антигены первого типа).

Локализация возбудителей (стафилококки, стрептококки и др.) - входные ворота (кожа, слизистые), региональные лимфатические узлы, системное поражение (органы). Основные эффекторы патогенеза - живые бактерии и, в меньшей степени, их токсины. В иммунном ответе четко прослеживается смена синтеза!дМ на ДО. Тип иммунного ответа при адекватном течении инфекционного заболевания (у пациентов без признаков иммунодефицита) - Т1г2. Саногенез обусловлен иммунным фагоцитозом, иммунным лизисом и антитоксинами. При этих инфекциях в преиммунную фазу саногенез осуществляется за счет альтернативного пути активации комплемента и опсонизации бактерий продуктами активации комплемента с последующим их фагоцитозом. В иммунную фазу инфекционного процесса саногенез связан с комплементарным кил-лингом при классическом пути активации комплемента с участием!дМ и ДО, а также с фагоцитозом опсонизирован-ных продуктами активации комплемента и ДО бактерий .

Гранулематозные бактериозы

1. Возбудители острых неэпителиоидноклеточ-ных гранулематозных бактериозов (листерии, сальмонеллы брюшного тифа, паратифов А, В и др.).

Возбудители содержат поверхностные Т-зависимые антигены. Эффекторами патогенеза являются живые бактерии. Фагоцитоз незавершенный. Тип иммунного ответа - Т1г2 и ТМ. Появление!дМ сопровождается образованием гранулем . Смена!дМ на ДО ведет к обратному развитию гранулем. Саногенез осуществляется за счет альтернативного пути активации комплемента и опсонизации бактерий продуктами активации комплемента с последующим их фагоцитозом. В иммунную фазу инфекционного процесса сано-генез связан с комплементарным киллингом при классическом пути активации комплемента с участием!дМ и ДО, а также с фагоцитозом опсонизированных продуктами активации комплемента и ДО бактерий.

2. Возбудители хронических эпителиоиднокле-точных гранулематозных бактериозов (микобактерии туберкулеза, лепры; бруцеллы и др.).

Возбудители содержат поверхностные Т-зависимые антигены. Эффекторами патогенеза являются живые бактерии. Фагоцитоз незавершенный. Тип иммунного ответа - Th2 и Th1. Появление IgM, по-видимому, также может являться ведущим фактором образования гранулем. Действия цитокинов Thl-набора недостаточно для завершенности фагоцитоза, что приводит к появлению в гранулеме эпителио-идных клеток. Ни один из вариантов активации комплемента в саногенезе не играет существенной роли .

Заключение

Комплемент (система комплемента) является одним из первых гуморальных факторов, с которым сталкивается патоген при его попадании во внутреннюю среду макроорганизма. Механизмы активации компонентов комплемента позволяют использовать его как для лизиса патогенов, так и для усиления фагоцитоза. Не при всех бактериальных инфекционных заболеваниях содержание и уровень комплемента в крови можно использовать как прогностический тест.

Литература

1. Одинцов Ю.Н., Перельмутер В.М., Климентьева Т.К. Тафтсин: роль в развитии негранулематозных и гранулематозных бактериозов // Бюл. сиб. медицины. 2002. Т. 1. № 3. С. 98-102.

2. Перельмутер В.М., Одинцов Ю.Н. Основная функция иммуноглобулинов класса M (IgM) - регуляция проницаемости гема-тотканевого барьера для бактерий и их антигенов // Бюл. сиб. медицины. 2005. Т. 4. № 3. С. 38-42.

3. Ройт А. Основы иммунологии. Пер. с англ. М.: Мир, 1991. 328 с.

4. Ройт А, Бростофф Дж, Мейл Д. Иммунология. Пер. с англ. М.: Мир, 2000. 581 с.

5. Хаитов Р.М., Игнатьева Г.А., Сидорович И.Г. Иммунология. М.: Медицина, 2000. 432 с.

6.Ярилин АА Основы иммунологии. М.: Медицина, 1999. 607 с.

7. Alban S., Classen B., Brunner G., Blaschek W. Differentiation between the complement modulating effects of an arabinogalactan-protein from Echinacea purpurea and heparin // Planta Med. 2002. V. 68 (12). P. 1118-1124.

8. Ambrosio A.R., De Messias-Reason I.J. Leishmania (Viannia) braziliensis: interaction of mannose-binding lectin with surface gly-coconjugates and complement activation. An antibody-independent defence mechanism // Parasite Immunol. 2005. V. 27. P. 333-340.

9. Andersson J., Larsson R, RichterR. et al. Binding of a model regulator of complement activation (RCA) to a biomaterial surface: surface-bound factor H inhibits complement activation // Biomaterials. 2001. V. 22. P. 2435-2443.

10. Bohana-Kashtan O., Ziporen L, Donin N. et al. Cell signals transduced by complement // Mol. Immunol. 2004. V. 41. P. 583-597.

11. Bohlson S.S., Strasser J.A., Bower J.J., Schorey J.S. Role of complement in Mycobacterium avium pathogenesis: in vivo and in vitro analyses of the host response to infection in the absence of complement component C3 // Infect. Immunol. 2001. V. 69. P. 7729- 7735.

12. Brown J.S., Hussell T, Gilliland S.M. et al. The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice // Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 16969-16974.

13. Caragine T.A., Okada N., Frey A.B., Tomlinson S. A tumor-expressed inhibitor of the early but not late complement lytic pathway enhances tumor growth in a rat model of human breast cancer // Cancer Res. 2002. V. 62. P. 1110-1115.

14. Celik I., Stover C, Botto M. et al. Role of the classical pathway of complement activation in experimentally induced polymicrobial peritonitis // Infect. Immun. 2001. V. 69. P. 7304-7309.

15. Donin N, Jurianz K., Ziporen L. et al. Complement resistance of human carcinoma cells depends on membrane regulatory proteins, protein kinases and sialic acid // Clin. Exp. Immunol. 2003. V. 131. P. 254-263.

16. Fernie-King B.A., Seilly D.J., Willers Ch. et al. Streptococcal inhibitor of complement (SIC) inhibits the membrane attack complex by preventing uptake of c567 onto cell membranes // Immunology. 2001. V. 103. Issue 3. P. 390-408.

17. Frumeaux-Bacchi V., Dragon-Durey M.A., Blouin J. et al. Investigation of the complement system in clinical practice // Ann. Med. Interne (Paris). 2003. V. 154. P. 529-540.

18. Imai M., Ohta R., Okada N, Tomlinson S. Inhibition of a complement regulator in vivo enhances antibody therapy in a model of mammary adenocarcinoma // Int. J. Cancer. 2004. V. 110. P. 875- 881.

19. Jiang H, WagnerE, Zhang H, Frank M.M. Complement 1 inhibitor is a regulator of the alternative complement pathway // J. Exp. Med.

2001. V. 194. № 11. P. 1609-1616.

20. Langeggen H, Berge K.E., Johnson E, Hetland G. Human umbilical vein endothelial cells express complement receptor 1 (CD35) and complement receptor 4 (CD11c/CD18) in vitro // Inflammation.

2002. V. 26. № 3. P. 103 - 110.

21. Laufer J., Katz Y, Passwell J.H. Extrahepatic synthesis of complement proteins in inflammation // Mol. Immunol. 2001. V. 38. P. 221 -229.

22. Leslie R.G.Q., Nielsen C.H. The classical and alternative pathways of complement activation play distinct roles in spontaneous C3 fragment deposition and membrane attack complex (MAC) formation on human B lymphocytes // Immunology. 2004. V. 111. Issue 1. P. 86-98.

23. Lukas T.J., MunozH., Erickson B.W. Inhibition of C1-mediated immune hemolysis by monomeric and dimeric peptides from the second constant domain of human immunoglobulin G // J. Immunology. 1981. V. 127. № 6. P. 2555-2560.

24. Nauta A.J., Daha M.R., Tijsma O. et al. The membrane attack complex of complement induces caspase activation and apoptosis // Europ. J. of Immun. 2002. V. 32. Issue 3. P. 783-792.

25. Nielsen C.H., Marquait H.V., Prodinger W.M., Leslie R.G. CR2-medi-ated activation of the complement alternative pathway results in formation of membrane attack complexes on human B lymphocytes // Immunol. 2001. V. 104. P. 418-422.

26. Nielsen C.H., Pedersen M.L., Marquart H.V. et al. The role of complement receptors type 1 (CR1, CD35) and 2 (CR2, CD21) in promoting C3 fragment deposition and membrane attack complex formation on normal peripheral human B cells // Eur. J. Immunol. 2002. V. 32. P. 1359-1367.

27. Ren B., McCrory M.A., Pass C. et al. The virulence function of Streptococcus pneumoniae surface protein A involves inhibition of complement activation and impairment of complement receptor-mediated protection // J. Immunol. 2004. V. 173. P. 7506-7512.

28. Roos A., Ramwadhdoebe T.H., Nauta A.J. et al. Therapeutic inhibition of the early phase of complement activation // Immunobiology. 2002. V. 205. P. 595-609.

29. Roos A., Bouwman L.H., Munoz J. et al. Functional characterization of the lectin pathway of complement in human serum // Mol. Immunol. 2003. V. 39. P. 655-668.

30. Song H, He C., Knaak C. et al. Complement receptor 2-mediated targeting of complement inhibitors to sites of complement activation // J. Clin. Invest. 2003. V. 111. P. 1875-1885.

31. Thiel S, Petersen S.V., Vorup-Jensen T. et al. Interaction of C1q and mannan-binding lectin (MBL) with C1r, C1s, MBL-associated serine proteases 1 and 2, and the MBL-associated protein MAp19 // J. Immunol. 2000. V. 165. P. 878-887.

32. Windbichler M., Echtenacher B., Hehlgans T. et al. Involvement of the lectin pathway of complement activation in antimicrobial immune defense during experimental septic peritonitis // Infection and Immunity. 2004. V. 72. № 9. P. 5247-5252.