Болезни Военный билет Призыв

Биология распределить по уровням жизни. Уровни организации и изучения жизненных явлений

Самым сложным в жизни с простота.

А. Кони

ЭЛЕМЕНТНЫЙ СОСТАВ ОРГАНИЗМОВ

Молекулярный уровень организации жизни

- это уровень организации, свойства которого определяются химическими элементами и молекулами и их участием в процессах превращения веществ, энергии и информации. Применение структурно-функционального подхода к пониманию жизни на этом уровне организации позволяет выделить основные структурные компоненты и процессы, которые определяют структурную и функциональную упорядоченность уровня.

Структурная организация молекулярного уровня. Элементарными структурными составляющими молекулярного уровня организации жизни является химические элементы как отдельные виды атомов, а не соединенных между собой и со своими определенными свойствами. Распространение химических элементов в биосистемах определяются именно этими свойствами, зависят прежде всего от величины заряда ядра. Наука, которая занимается изучением распространения химических элементов и их значение для биосистем называется биогеохимией. Основателем этой науки стал гениальный украинский ученый В. И. Вернадский, который открыл и объяснил связь живой природы с неживой через биогенный поток атомов и молекул при реализации своих основных жизненных функций.

Химические элементы, сочетаясь между собой, образуют простила сложные неорганические соединения, которые вместе с органическими веществами, являются молекулярными компонентами молекулярного уровня организации. Простые вещества (кислород, азот, металлы и др) образованы химически соединенными атомами одного и того же элемента, а сложные вещества (кислоты, соли и др) состоят из атомов различных химических элементов.

Из простых и сложных неорганических веществ в биологических системах образуются промежуточные соединения (например, ацетат, кетокислоты), которые и образуют простые органические вещества, или малые биомолекулы. Это, прежде всего, четыре класса молекул - жирные кислоты, моносахариды, аминокислоты и нуклеотиды. их называют строительными блоками, поскольку из них строится молекулы следующего иерархического подуровня. Простые структурные биомолекулы сочетаются друг с другом различными ковалентными связями, образуя макромолекулы. Ими являются такие важные классы, как липиды, белки, олиго- и полисахариды и нуклеиновые кислоты.

В биосистемах макромолекулы могут объединяться с помощью нековалентных взаимодействий в надмолекулярные комплексы. Их еще называют интермолекулярнимы комплексами, или молекулярными ансамблями, или сложными биополимеры (например, сложные ферменты, сложные белки). На высшем, уже клеточном уровне организации, надмолекулярные комплексы сочетаются с образованием клеточных органелл.

Итак, для молекулярного уровня характерна определенная структурная иерархия молекулярной организации: химические элементы - простые и сложные неорганические соединения - промежуточные соединения - малые органические молекулы - макромолекулы - надмолекулярные комплексы.

Молекулярный уровень организации жизни

Основные составляющие, которые определяют пространственную (структурную ) упорядоченность

Основные процессы, которые определяют временную (функциональную ) упорядоченность

1. Элементарные химические составляющие:

Органогены;

Макроэлементы;

Микроэлементы;

Ультрамикроэлементы.

2. Молекулярные химические составляющие:

Простые неорганические молекулы (02 Ν2, металлы)

Сложные неорганические молекулы (вода, соли, кислоты, щелочи, оксиды и т.д.),

Малые органические молекулы (жирные кислоты, аминокислоты, моносахариды, нуклеотиды)

Макромолекулы (липиды, белки, олиго- и полисахариды, нуклеиновые кислоты)

Надмолекулярные комплексы.

1. Процессы преобразования веществ.

2. Процессы преобразования энергии.

3. Процессы преобразования наследственной информации

Функциональная организация молекулярного уровня . Молекулярный уровень организации живой природы сочетает и огромное количество различных химических реакций, которые определяют его упорядоченность во времени. Химические реакции - это явления, при которых одни вещества, имеющие определенный состав и свойства, превращаются в другие вещества - с другим составом и другими свойствами. реакции между элементами, неорганическими веществами не являются специфичными для живого, специфическим для жизни есть определенный порядок этих реакций, их последовательность и сочетание в целостную систему. Существуют различные классификации химических реакций. По признаку изменения количества исходных и конечных веществ выделяют 4 типа реакций: сообщения, разложения, обмена и замещения. В зависимости от использования энергии выделяют экзотермические (энергия выделяется) и эндотермические (энергия поглощается). Органические соединения также способны к различным химических превращений, которые могут проходить как без изменений карбонового скелета, так и с изменениями. Реакциями без изменения углеродного скелета являются реакции замещения, присоединения, элиминирования, изомеризации. К реакций с изменением карбонового скелета относятся реакции, как реакции удлинения цепи, укорачивания цепи, изомеризации цепи, циклизации цепи, раскрытие цикла, сжатия и расширения цикла. Подавляющее большинство реакций в биосистемах является ферментативными и образуют совокупность, называется метаболизмом. Основными типами ферментативных реакций окислительно-восстановительные, трансферации, гидролиза, негидролитичного распада, изомеризации и синтеза. В биологических системах между органическими молекулами также могут происходить реакции полимеризации, конденсации, матричного синтеза, гидролиза, биологического катализа и др. Большинство реакций между органическими соединениями являются специфинимы для живой природы и не могут происходить в неживой.

Науки, которые изучают молекулярный уровень. Основными науками, которые изучают молекулярный уровень является биохимия и молекулярная биология. Биохимия - наука о сути жизненных явлений и их основу - обмен веществ, а внимание молекулярной биологии, в отличие от биохимии, сосредоточена преимущественно на изучении строения и функций белков

Биохимия - наука, которая изучает химический состав организмов, строение, свойства, значение обнаруженных в них химических соединений и их преобразования в процессе обмена веществ. Термин "биохимия" был впервые предложен в 1882 году, однако, считается, широкого использования он приобрел после работ немецкого химика К. Нойберг в 1903 году. Биохимия как самостоятельная наука сформировалась во II-й половине XIX в. благодаря научной деятельности таких известных ученых-биохимиков, как А. М. Бутлеров, Ф. Велер, Ф. Мишером, А. Я. Данилевский, Ю. Либих, Л. Пастер, Э. Бухнер, К. А. Тимирязев, Μ. И. Лунин и др. Современная биохимия вместе с молекулярной биологией, биоорганической химии, биофизикой, микробиологией составляют единый комплекс взаимосвязанных наук - физико-химическую биологию, которая изучает физические и химические основы живой материи. Одним из общих задач биохимии является установление механизмов функционирования биосистем и регуляции жизнедеятельности клеток, которые обеспечивают единство обмена веществ и энергии в организме.

Молекулярная биология - наука, которая изучает биологические процессы на уровне нуклеиновых кислот и белков и их надмолекулярных структур. Датой возникновения молекулярной биологии как самостоятельной науки принято считать 1953 г., когда Ф. Крик и Дж. Уотсон на основе данных биохимии и рентгеноструктурного анализа предложили модель трехмерной структуры ДНК, которая получила название двойной спирали. Важнейшими разделами этой науки является молекулярная генетика, молекулярная вирусология, энзимология, биоэнергетика, молекулярная иммунология, молекулярная биология развития. Фундаментальными задачами молекулярной биологии является установление молекулярных механизмов основных биологических процессов, обусловленных структурно-функциональными свойствами и взаимодействием нуклеиновых кислот и белков, а также изучения регуляторных механизмов этих процессов.

Методы изучения жизни на молекулярном уровне формировались преимущественно в XX веке. Наиболее распространенными из них являются хроматографии, ультрацентрифугирования, электрофорез, рентгеноструктурный анализ, фотометрия, спектральный анализ, метод меченых атомов и др.

К 1960-м гг. в биологии сложилось представление об уровнях организации живого как конкретном выражении усложняющейся упорядоченности органического мира. Жизнь на Земле представлена организмами своеобразного строения, принадлежащими к определенным систематическим группам (вид), а также сообществам разной сложности (биогеоценоз, биосфера). В свою очередь, организмы характеризуются органной, тканевой, клеточной и молекулярной организацией. Каждый организм, с одной стороны, состоит из специализированных подчиненных ему систем организации (органов, тканей и т. д.), с другой - сам является относительно изолированной единицей в составе надорганизменных биологических систем (видов, биогеоценозов и биосферы в целом). Уровни организации живой материи представлены на рис. 1

Рис.1. Уровни организации живого

На всех из проявляются такие свойства жизни, как дискретность и целостность. Организм состоит из различных компонентов - органов,но одновременно благодаря их взаимодействию он целостен. Вид также представляет собой целостную систему, хотя его образуют отдельные единицы - особи, однако их взаимодействие и поддерживает целостность вида. Существование жизни на всех уровнях обеспечивается структурой низшего ранга. Например, характер клеточного уровня организации определяется субклеточным и молекулярным уровнями; организменный - органным; тканевым, клеточным; видовой - организменным и т. д. Следует особо отметить большое сходство единиц организации на низших уровнях и все возрастающее различие на высших уровнях (табл. 1).

Таблица 1

Характеристика уровней организации живого

Уровень Краткая характеристика

Молекулярный

Обнаруживается однообразие единиц организации. Наследственная информация у всех организмов заложена в молекулах ДНК (дезоксирибонуклеиновой кислоты), состоящей всего из 4 видов нуклеотидов. Основные органические компоненты живого, белки, состоят из 20 аминокислот. Энергетические процессы, протекающие в организмах, связаны с универсальным «энергоносителем» - АТФ (аденозинтрифосфатом)

Субклеточный

Сравнительно невелико (несколько десятков) основных клеточных компонентов в про- и эукариотных клетках

Клеточный

Все множество живых существ подразделяется на две группы - прокариотные и эукариотные организмы. В основу такого деления положен критерий принципиальной схемы строения клеток двух типов. Конечно, нельзя отрицать разнообразие клеток у разных организмов. Однако эти различия не выходят за пределы названных двух типов клеточной организации

Органо-тканевый

Совокупность клеток, идентичных по строению и функциям, составляет ткань. Большое сходство между всеми организмами сохраняется и на этом уровне: у многоклеточных животных выделяют всего четыре основные ткани (эпителиальные, соединительные, нервная, мышечная), у растений их шесть (покровные, основные, механические, проводящие, выделительные, образовательные)

Организменный

Характеризуется большим разнообразием форм

Видовой

Сегодня наукой описано более 2 млн. видов живых организмов

Материи - это условное обозначение, принятое для классификации всех живых организмов на нашей планете. Живая природа Земли поистине разнообразна. Организмы могут принимать различные размеры: начиная от простейших и одноклеточных микробов, переходя к многоклеточным существам, и заканчивая самыми крупными животными на земле - китами.

Эволюция на Земле происходила таким образом, что организмы развивались от простейших (в прямом смысле) к более сложным. Так, то возникая, то исчезая, новые виды совершенствовались в ходе эволюции, принимая все более причудливый облик.

Чтобы систематизировать это невероятное количество живых организмов, и были введены уровни организации живой материи. Дело в том, что, несмотря на различия во внешнем виде и в строении, все организмы живой природы имеют общие черты: они так или иначе состоят из молекул, имеют в своем составе повторяющиеся элементы, в том или ином смысле - общие функции органов; они питаются, размножаются, стареют и умирают. Иными словами, свойства живого организма, несмотря на внешние различия, схожи. Собственно, ориентируясь на эти данные, можно проследить, как проходила эволюция на нашей планете.

2. Надмолекулярный или субклеточный. Уровень, на котором происходит структуризация молекул в органоиды клетки: хромосомы, вакуоли, ядро и т. д.

3. Клеточный. На этом уровне материя представлена в виде элементарной функциональной единицы - клетки.

4. Органно-тканевой уровень. Именно на этом уровне образуются все органы и ткани живого организма вне зависимости от их сложности: головной мозг, язык, почка и др. При этом следует иметь в виду, что ткань - совокупность клеток, объединенных общим строением и функцией. Орган - часть организма, в «обязанности» которой входит выполнение четко определенной функции.

5. Онтогенетический или организменный уровень. На этом уровне различные по функциональности органы объединяются в целостный организм. Говоря иначе, этот уровень представлен уже целостным индивидом любого вида.

6. Популяционно-видовой. Организмы или индивиды, имеющие сходное строение, функции и схожий облик и тем самым относящиеся к одному виду, включаются в одну популяцию. В биологии под популяцией понимают совокупность всех особей данного вида. В свою очередь, все они образуют генетически единую и обособленную систему. Популяция обитает в определенном месте - ареале и, как правило, не пересекается с представителями других видов. Вид, в свою очередь, представляет собой совокупность всех популяций. Живые организмы могут скрещиваться и производить потомство лишь в рамках своего вида.

7. Биоценотический. Уровень, на котором живые организмы объединяются в биоценозы - совокупность всех популяций, проживающих на конкретной территории. Принадлежность к тому или иному виду в этом случае не имеет значения.

8. Биогеоценотический. Этот уровень обусловлен образованием биогеоценозов, то есть совокупности биоценоза и неживых факторов (почва, климатические условия) в той области, где биоценоз обитает.

9. Биосферный. Уровень, объединяющий все живые организмы на планете.

Таким образом, уровни организации живой материи включают в себя девять пунктов. Подобная классификация определяет существующую в современной науке систематизацию живых организмов.

Вся жизнь на Земле упорядочена и имеет сложную иерархию от простого к сложному - уровни организации живой природы.

Уровни

Начинается структура живой материи с молекулы - мельчайшей частицы вещества, состоящей из атомов. Молекула относится к неживой природе, изучается физикой и химией. Вступая во взаимосвязи, молекулы образуют вещества, из которых строятся ткани, органы и организмы в целом. Подробное описание представлено в таблице уровней организации живой природы.

Уровень

Элементы системы

Процессы

Молекулярный (молекулярно-генетический)

Атомы, молекулы органических и неорганических соединений, биополимеры - ДНК, РНК, белки, липиды, углеводы

Обмен веществ и превращение энергии, передача генетической информации

Клеточный

Органоиды (органеллы) клетки, комплексы химических соединений

Синтез органических соединений, транспорт химических веществ, деление

Тканевый

Специфичные клетки, межклеточное вещество

Обмен веществ, рост, раздражимость, чувствительность, проводимость и т.д.

Органный

Разнотипные ткани, образующие органы

Работа органов в зависимости от назначения: движение, газообмен, возбудимость, пищеварение и т.д.

Организменный (онтогенетический)

Системы органов, образующие многоклеточный организм - отдельную функциональную структуру животного или растительного происхождения

Гармоничное функционирование всех органов

Популяционно-видовой

Группы родственных особей, объединённые в популяции. Несут единый генофонд, выделяются одинаковыми морфологическими и поведенческими признаками, занимают определённый ареал

Организация сообществ, взаимодействия между отдельными особями, адаптация к изменяющимся условиям, накопление генетической информации, эволюция

Биогеоценотический

Различные популяции, факторы среды

Взаимосвязь между популяциями и окружающей средой

Биосферный

Биогеоценоз, деятельность человека (ноосфера)

Взаимодействие живой и неживой материи, круговорот веществ в природе, воздействие человека на биосферу

Рис. 1. Уровни организации.

Каждый уровень организации имеет свои закономерности. Для изучения отдельного уровня выделены специализированные направления биологии. Например, начальный уровень изучают молекулярная биология и биохимия, клетку исследует цитология, ткани - гистология, популяции и их взаимодействие с окружающей средой - экология.

Одноклеточные и многоклеточные

Все организмы по своей структуре делятся на два типа:

  • одноклеточные - состоят из одной клетки;
  • многоклеточные - состоят из множества взаимосвязанных клеток.

Одноклеточные организмы ограничены оболочкой, под которой находится цитоплазма с органоидами - функциональными частицами клеток. Одноклеточные организмы схожи по строению и функциям с клетками многоклеточных организмов. Однако могут самостоятельно передвигаться и вести свободный образ жизни.

Представители одноклеточных организмов:

ТОП-1 статья которые читают вместе с этой

  • растения (эукариоты) - хламидомонада, хлорелла, эвглена зеленая;
  • животные (эукариоты) - амёба, инфузории;
  • бактерии (прокариоты) - кишечная палочка, кокки.

Рис. 2. Одноклеточные организмы.

Многоклеточные - более сложно организованные организмы. Наиболее примитивные - губки, самые сложные - млекопитающие.

Рис. 3. Многоклеточные организмы.

В отличие от одноклеточных многоклеточные организмы имеют больше уровней организации. Однако вне зависимости от сложности строения все организмы взаимодействуют со средой на биогеоценотическом и биосферном уровнях.

Свойства организмов

Всех представителей биосферы (одноклеточных и многоклеточных) объединяют свойства живых организмов:

  • размножение;
  • обмен веществ;
  • зависимость от энергии;
  • рост;
  • развитие;
  • саморегуляция;
  • раздражимость;
  • наследственность;
  • изменчивость.

Кроме того, живые организмы имеют единый химический состав. Основные элементы живой материи - азот, кислород, углерод, водород. Из них формируются белки, жиры, углеводы.

Что мы узнали?

Из урока 9 класса биологии узнали об основных уровнях живой природы. Тема включала краткое описание иерархии живой природы, особенностей многоклеточных и одноклеточных организмов, а также свойства организмов, составляющих биосферу.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 215.

Всего их 8. Что лежит в основе деления живой природы на уровни? Дело в том, что на каждом уровне есть определенные свойства. Каждый следующий уровень обязательено содержит в себе предыдущий или все предыдущие. Давайте рассмотрим каждый уровень подробно:

1. Молекулярный уровень организации живой природы

· Органические и неорганические вещества,

· процессы синтеза и распада этих веществ,

· выделение и поглощение энергии

Это все химические процессы, которые происходят внутри любой живой системы. Этот уровень нельзя назвать "живым" на 100%. Это скорее "химический уровень" - поэтому он самый первый, самый низший из всех. Но именно этот уровень лег в основу деления Живой природы на царства - по запасному питательному веществу: у растений - углеводы, у грибов - хитин, у животных - белок.

· Биохимия

· Молекулярная биология

· Молекулярная генетика

2. Клеточный уровень организации живой природы

Включает в себя молекулярный уровень организации. На этом уровне уже появляется "мельчайшая неделимая биологическая система - клетка". Свой обмен веществ и энергии. Внутренняя организация клетки - ее органоиды. Жизненные процессы - зарождение, рост, самовоспроизведение (деление)

Науки, изучающие клеточный уровень организации:

· Цитология

· (Генетика)

· (Эмбриология)

В скобочках указаны науки, которые изучают этот уровень, но это не основной объект изучения.

3. Тканевый уровень организации

Включает в себя молекулярный и клеточный уровни. Этот уровень можно назвать "многоклеточным" - ведь ткань представляет собой совокупность клеток со сходным строением и выполняющих одинаковые функции.

Наука, изучающая тканевый уровень организации - гистология.

4. Органный уровень организации жизни

У одноклеточных организмов это органеллы - у каждой свое строение и свои функции

У многоклеточных организмов это органы, которые объединены в системы и четко взаимодействуют между собой

Эти два уровня - тканевый и органный - изучают науки:

· Ботаника - растения,

· зоология - животные,

· Анатомия - человек

· Физиология

· (медицина)

5. Организменный уровень

Включает в себя молекулярный, клеточный, тканевый уровни и органный.

На этом уровне уже живую природу делят на царства - растений, грибов и животных.

Свойства этого уровня:

· Обмен веществ (и на клеточном уровне тоже - видите, каждый уровень содержит в себе предыдущий!)

· Строение организма

· Питание

· Гомеостаз - постоянство внутренней среды

· Размножение

· Взаимодействие между организмами

· Взаимодействие с окружающей средой



· Анатомия

· Генетика

· Морфология

· Физиология

6. Популяционно-видовой уровень организации жизни

Включает в себя молекулярный, клеточный, тканевый уровни, органный и организменный.

Если несколько организмов схожи морфологически (проще говоря, одинаково устроены), и имеют одинаковый генотип, то они образуют один вид или популяцию.

Основные процессы на этом уровне:

· Взаимодействие организмов между собой (либо конкуренция, либо размножение)

· микроэволюция (изменение организма под действием внешних условий)

Науки, изучающие этот уровень:

· Генетика

· Эволюция

· Экология

7. Биогеоценотический уровень организации жизни (от слова биогеоценоз)

На этом уровне уже учитывается почти все:

Взаимодействие организмов между собой - пищевые цепи и сети

Взаимодействие организмов межу собой - конкуренция и размножение

Влияние окружающей среды на организмы и, соответственно, влияние организмов на среду их обитания

Наука, изучающая этот уровень - Экология.

8. Биосферный уровень организации живой природы (последний уровень - высший!)

Он включает в себя:

· Взаимодействие живых и неживых компонентов природы

· Биогеоценозы

· Влияние человека - "антропогенные факторы"

· Круговорот веществ в природе

И изучает все это - Экология!

О клетке в научном мире заговорили практически сразу после изобретения микроскопа.

Кстати, сейчас довольно много видов микроскопов:

Оптический микроскоп - максимально увеличение - ~2000 крат (можно рассмотреть некоторые микроорганизмы, клетки (растительные и животные), кристаллы и т.д.

Электронный микроскоп - увеличивает до до 106 раз. Можно уже изучать частицы как клетки, так и молекул - это уже уровень микроструктур

Первым ученым, который смог увидеть клетки (естественно, в микроскоп) был Роберт Гук (1665 г) - он изучал клеточное строение в основном растений.

А вот впервые об одноклеточных организмах - бактериях, инфузориях заговорил А. Ван Левенгук (1674 г)

Ла-Марк (1809 г) уже стал говорить о клеточной теории

Ну и уже в середине XIX века М.Шлейден и Т.Шванн сформулировали ту клеточную теорию, которая сейчас общепризнана во всем мире.

Клеточными являются все организмы, кроме вирусов

Клетка - элементарная единица строения и жизнедеятельности всех организмов, обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо, как многоклеточные животные, растения и грибы, состоят из множества клеток, либо, как многие простейшие и бактерии, являются одноклеточными организмами. Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии. В последнее время принято также говорить о биологии клетки, или клеточной биологии.

Клетка - это мини-организм. У нее есть свои "органы" - органойды. Главный органойд клетки - это ядро. По этому признаку все живые организмы делятся на ЭУКАРИОТИЧЕСКИЕ ("карио" - ядро) - содержащие ядро и ПРОКАРИОТИЧЕСКИЕ ("про" -до) - доядерные (без ядра)

Положения клеточной теории Шлейдена-Шванна

1. Все животные и растения состоят из клеток.

2. Растут и развиваются растения и животные путём возникновения новых клеток.

3. Клетка является самой маленькой единицей живого, а целый организм - это совокупность клеток.

Основные положения современной клеточной теории

· Клетка - единица строения, жизнедеятельности, роста и развития живых организмов, вне клетки жизни нет.

· Клетка - единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определённое целостное образование.

· Ядро − главная составная часть клетки (эукариот).

· Новые клетки образуются только в результате деления исходных клеток.

· Клетки многоклеточных организмов образуют ткани, ткани образуют органы. Жизнь организма в целом обусловлена взаимодействием составляющих его клеток.

Основные органойды клетки - это те компоненты, которые присущи всем клеткам живых организмов - "общий состав":

· ядро: ядрышко;ядерная оболочка;

· плазматическая мембрана;

· эндоплазматическая сеть;

· центриоль;

· комплекс Гольджи;

· лизосома;

· вакуоль;

· митохондрия.

Нуклеиновые кислоты содержатся в клетке абсолютно любого организма. Даже у вирусов.

"Нуклео" - "ядро" - в основном, содержатся в ядре клеток, но так же содержатся и в цитоплазме, и в других органойдах. Нуклиновые кислоты бывают двух типов: ДНК и РНК

ДНК - дезоксирибонуклеиновая кислота

РНК - рибонуклеиновая кислота

Эти молекулы - полимеры, мономерами являются нуклеотиды - соединения, содержащие азотистые основания.

Нуклеотиды ДНК: А - аденин, Т - тимин, Ц - цитозин, Г - гуанин

Нуклеотиды РНК: А - аденин, У - урацил, Ц - цитозин, Г - гуанин

Как видите, в РНК тимина нет, его заменяет урацил - У

Помимо них, в состав нуклеотидов входят:

углеводы: дезоксирибоза - в ДНК, рибоза - в РНК. Фосфат и сахар - входят в состав обеих молекул

Это первичная структура молекул

Вторичная структура - это сама форма молекул. Днк - двойная спираль, РНК - "одинарная" длинная молекула.

Основные функции нуклеиновых кислот

Генетический код - это последовательность нуклеотидов в молекуле ДНК. Это основа любого организма, по сути - это информация о самом организме (как у любого человека ФИО, идентифицирующее личность- это последовательность букв, или последовательность цифр - серия паспорта).

Так вот, основные функции нуклеиновых кислот - в хранении, реализации и передаче наследственной информации, "записанной" в молекулах в виде последовательности определенных нуклеотидов.

Деление клеток - часть процесса жизни абсолютно любого живого организма. Все новые клетки образуются из старых (материнских). Это одно из основных положений клеточной теории. Но существует несколько видов деления, которые напрямую зависят от природы этих клеток.

Деление прокариотических клеток

Чем отличается прокариотическая клетка от эукариотической? Самое главное отличие - отсутствие ядра (собственно поэтому так и называются). Отсутствие ядра означает, что ДНК просто находится в цитоплазме.

Процесс выглядит следующим образом:

репликация (удвоение) ДНК ---> клетка удлиняется ---> образуется поперечная перегородка ---> клетки разделяются и расходятся

Деление эукариотических клеток

Жизнь любой клетки состоит из 3 этапов: рост, подготовка к делению и, собственно, деление.

Как происходит подготовка к делению?

· Во-первых синтезируется белок,

· во-вторых, все важные компоненты клетки удваиваются, чтобы в каждой новой клетке был весь необходимый для жизни набор органелл.

· В третьих, удваивается молекула ДНК и каждая хромосома синтезирует себе копию. Удвоенная хромосома= 2 хроматиды (в каждой по молекуле ДНК).

Этот период подготовки к делкнию называется ИНТЕРФАЗА.