Болезни Военный билет Призыв

Чему равна атомная единица массы в си. Савельев И.В. Курс общей физики, том I

Как вы уже знаете, все тела состоят из молекул. Если говорить о массе молекул и выражать ее в граммах или килограммах, то мы увидим, что масса очень мала, а если говорить о количестве молекул, например в одном кубическом сантиметре окружающего нас пространства, то количество этих молекул будет огромно. Работать с очень маленькими или очень большими числами не очень удобно, тем не менее ученые смогли разобраться, как можно выражать массу или размеры молекул не очень большими обозримыми числами, не больше сотни. Сегодня мы вами разберем, как им это удалось.

Мы видим, что одна гирька значимо перевешивает семь пластмассовых шариков. Опыт с весами дает нам ответ - больше вещества в железной гирьке, это если мы сравниваем массы - меры инертности железа и пластмассы.

А что если мы сравним не массы, а количество вещества, которое пошло на изготовление шариков и гирьки, фактически количество частиц, из которых они состоят? Взяв в руки шарики и гирьку, мы увидим, что гирька фактически теряется на фоне этих шариков. Если бы мы умели считать количество частиц, которые входят в железо и пластмассу, то мы бы увидели, что количество атомов железа окажется значительно меньше количества молекул во всех пластмассовых шариках. Значит вещества больше в пластмассе.

Правильными являются оба ответа.

Все дело в том, что в первом случае мы сравнивали массу, то есть меру инертности тел, а во втором случае мы сравнивали количество молекул, количество вещества.

Простую аналогию мы можем провести с сахаром в мерном стаканчике. На вопрос, сколько там сахара, можно ответить, посмотрев на деление стаканчика и ориентировочно сказать, сколько там граммов сахара. Можно пересчитать каждую крупинку, находящуюся в стаканчике, и ответить, какое количество их содержит стаканчик. Правильными будут и первый, и второй ответы. Когда же удобнее говорить о массе молекул, а когда удобнее говорить о количестве вещества? Именно это и является темой урока: «Масса молекул, Количество вещества».

В XIX веке итальянский ученый Авогадро установил интересный факт: если два разных газа, например водород и кислород, находятся в одинаковых сосудах, при одинаковых давлениях и температурах, то в каждом сосуде будет одинаковое количество молекул, хотя массы газов могут отличаться очень сильно, в нашем примере - в 16 раз (рис. 2).

Рис. 2. Опыт Авогадро ()

Все это обозначает, что некоторые свойства тела определяются именно количеством молекул, а не только массой.

Что же мы понимаем под термином «количество вещества»? Любое вещество состоит из молекул, атом, ионов - значит, имеет смысл под количеством вещества понимать количество молекул.

Физическая величина, которая определяет количество молекул в данном теле, называется количеством вещества . Обозначается греческой буквой ν - ню.

Условились за единицу количества вещества принять такое его количество, в котором содержится столько частиц (атомов, молекул), сколько атомов содержится в 0,012 кг (12 граммах) изотопа углерода с атомной массой 12.

Называется эта единица моль.

Из этого определения выходит, что в одном моле любого вещества будет одинаковое количество молекул. В одном моле любого вещества содержится 6,02·10 23 молекул или частиц. Эта величина носит название постоянная Авогадро .

Рис. 3. Определение полного числа молекул ()

Эта формула позволяет узнать полное число молекул при известном количестве вещества.

Масса молекулы крайне мала. Определили это физики при помощи так называемого масс-спектрографа. К примеру, значение массы молекулы воды (рис. 4):

Рис. 4. Определение массы молекулы воды ()

Как мы видим, так же, как и в случаях с количеством вещества, сравнивать массу одной молекулы с эталоном массы, килограммом, не очень удобно. Если в случаях с количеством вещества числа огромны, то в случаях с массой молекул числа очень малы. Именно поэтому в качестве единицы измерения массы молекулы или атома была выбрана особая внесистемная единица - атомная единица массы . Мы будем сравнивать единицу массы не с эталоном, а с массой молекулы какого-то вещества.

Этим веществом стал самый распространенный в природе элемент - углерод, который входит во все органические соединения. Атомная единица массы равна:

1 а.е.м. = 1/12 массы углерода - 12 (изотоп, в котором 12 нуклонов)

1 а.е.м. = 1, 66·10 -27 кг

Так как мы будем измерять массу молекул в атомных единицах массы, то мы приходим к новой физической величине - относительная молекулярная масса.

Отношение массы молекулы (атома) данного вещества к 1/12 массы атома углерода называется относительной молекулярной массой (или относительной атомной массой) в случае атомарного строения вещества.

Формулы, выражающие это определение:

Относительная молекулярная масса - это безразмерная величина, она ни в чем не измеряется. Нам ничего не мешает по-прежнему измерять массы атомов и молекул в килограммах тогда, когда нам это будет удобно. Из курса химии мы знаем, что: относительная молекулярная масса вещества равна сумме относительных атомных масс элементов, входящих в него. Например, для воды Н 2 О относительная молекулярная масса будет:

Мr = 1·2 + 16 = 18

Сумма относительной молекулярной массы кислорода (16) и двух водородов (2.1) даст 18

Как же найти общее между массой в килограммах и количеством вещества в молях? Это величина - молярная масса.

Молярная масса - это масса одного моля вещества.

Обозначается [ М ], измеряется в кг/моль.

Молярная масса равна отношению массы к количеству вещества:

Получим формулы, которые связывают различные характеристики молекул.

Для определения молярной массы химического элемента обратимся к периодической таблице химических элементов Менделеева - берем просто атомную массу А (число нуклонов необходимого элемента) - это и будет его молярная масса, выраженная в г/моль.

Например, для алюминия (рис. 5):

Рис. 5. Определение молярной массы вещества ( )

Атомная масса алюминия будет равна 27, а молярная масса будет равна 0,027 кг/моль.

Это объясняется тем, что молярная масса углерода равна 12 г/моль по определению, в то же время ядро атома углерода содержит 12 нуклонов - 6 протонов и 6 нейтронов, выходит, что каждый нуклон вносит в молярную массу 1 г/моль, поэтому молярная масса химического элемента с атомной массой А окажется равной А г/моль.

Молярная масса вещества, молекула которого состоит из нескольких атомов, получается простым суммированием малярных масс, так например (рис. 6):

Рис. 6. Молярная масса углекислого газа ()

Нужно быть особо внимательными с молярными массами некоторых газов, таких как газообразный водород, азот, кислород - их молекула состоит из двух атомов - H 2 , N 2 , O 2 , а гелий, часто встречающийся в задачах, является одноатомным и имеет молекулярную массу 4 г/моль, предписанную таблицей Менделеева (рис. 7).

Рис. 7. Молярные массы некоторых газов ()

В одном моле любого вещества содержится число Авогадро молекул, значит, если умножить число Авогадро (число молекул в одном моле) на массу одной молекулы m 0 , то мы получим молярную массу вещества, то есть массу одного моля вещества:

М = m 0 · N А

Если 25 учеников занимаются в классе, площадь которого 50 м 2 , то на каждого ученика приходится 2 м 2 . При переходе их на занятие в спортзал, площадь которого 500 м 2 , на каждого ученика уже будет приходиться 20 м 2 . Число учеников не изменилось, но они стали реже расположенными, в этом случае говорят: уменьшилась концентрация людей. Точно так же для молекул вводится понятие концентрации в молекулярной кинетической теории.

Концентрацией (n) называется количество молекул, приходящихся на единицу объема вещества. Она равна отношению числа молекул к объему:

Формулы, связывающие концентрацию с другими характеристиками молекул:

Пользуясь этими формулами, мы можем сравнивать вещества как по количеству молекул, так и по массе.

Мы получили все необходимое для того, чтобы построить молекулярно-кинетическую теорию, чем мы займемся на следующих уроках.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.
  1. Lib.podelise.ru ().
  2. Class-fizika.spb.ru ().
  3. Bolshoyvopros.ru ().

Домашнее задание

  1. Дать определение количества вещества.
  2. Назовите единицу измерения массы молекулы или атома.
  3. Дать определение относительной молекулярной массе.

Атомной массой называется сумма масс всех протонов, нейтронов и электронов, из которых состоит тот или иной атом или молекула. По сравнению с протонами и нейтронами масса электронов очень мала, поэтому она не учитывается в расчетах. Хотя это и некорректно с формальной точки зрения, нередко данный термин используется для обозначения средней атомной массы всех изотопов элемента. На самом деле это относительная атомная масса, называемая также атомным весом элемента. Атомный вес – это среднее значение атомных масс всех изотопов элемента, встречающихся в природе. Химики должны различать эти два типа атомной массы при выполнении своей работы – неправильное значение атомной массы может, к примеру, привести к неправильному результату для выхода продукта реакции.

Шаги

Нахождение атомной массы по периодической таблице элементов

    Изучите как записывается атомная масса. Атомная масса, то есть масса данного атома или молекулы, может быть выражена в стандартных единицах системы СИ – граммах, килограммах и так далее. Однако в связи с тем, что атомные массы, выраженные в этих единицах, чрезвычайно малы, их часто записывают в унифицированных атомных единицах массы, или сокращенно а.е.м. – атомные единицы массы. Одна атомная единица массы равна 1/12 массы стандартного изотопа углерод-12.

    • Атомная единица массы характеризует массу одного моля данного элемента в граммах . Эта величина очень полезна при практических расчетах, поскольку с ее помощью можно легко перевести массу заданного количества атомов или молекул данного вещества в моли, и наоборот.
  1. Найдите атомную массу в периодической таблице Менделеева. В большинстве стандартных таблиц Менделеева содержатся атомные массы (атомные веса) каждого элемента. Как правило, они приведены в виде числа в нижней части ячейки с элементом, под буквами, обозначающими химический элемент. Обычно это не целое число, а десятичная дробь.

    Помните о том, что в периодической таблице приведены средние атомные массы элементов. Как было отмечено ранее, относительные атомные массы, указанные для каждого элемента в периодической системе, являются средними значениями масс всех изотопов атома. Это среднее значение ценно для многих практических целей: к примеру, оно используется при расчете молярной массы молекул, состоящих из нескольких атомов. Однако когда вы имеете дело с отдельными атомами, этого значения, как правило, бывает недостаточно.

    • Поскольку средняя атомная масса представляет собой усредненное значение для нескольких изотопов, величина, указанная в таблице Менделеева не является точным значением атомной массы любого единичного атома.
    • Атомные массы отдельных атомов необходимо рассчитывать с учетом точного числа протонов и нейтронов в единичном атоме.

    Расчет атомной массы отдельного атома

    1. Найдите атомный номер данного элемента или его изотопа. Атомный номер – это количество протонов в атомах элемента, оно никогда не изменяется. Например, все атомы водорода, причем только они, имеют один протон. Атомный номер натрия равен 11, поскольку в его ядре одиннадцать протонов, тогда как атомный номер кислорода составляет восемь, так как в его ядре восемь протонов. Вы можете найти атомный номер любого элемента в периодической таблице Менделеева – практически во всех ее стандартных вариантах этот номер указан над буквенным обозначением химического элемента. Атомный номер всегда является положительным целым числом.

      • Предположим, нас интересует атом углерода. В атомах углерода всегда шесть протонов, поэтому мы знаем, что его атомный номер равен 6. Кроме того, мы видим, что в периодической системе, в верхней части ячейки с углеродом (C) находится цифра "6", указывающая на то, что атомный номер углерода равен шести.
      • Обратите внимание, что атомный номер элемента не связан однозначно с его относительной атомной массой в периодической системе. Хотя, особенно для элементов в верхней части таблицы, может показаться, что атомная масса элемента вдвое больше его атомного номера, она никогда не рассчитывается умножением атомного номера на два.
    2. Найдите число нейтронов в ядре. Количество нейтронов может быть различным для разных атомов одного и того же элемента. Когда два атома одного элемента с одинаковым количеством протонов имеют разное количество нейтронов, они являются разными изотопами этого элемента. В отличие от количества протонов, которое никогда не меняется, число нейтронов в атомах определенного элемента может зачастую меняться, поэтому средняя атомная масса элемента записывается в виде десятичной дроби со значением, лежащим между двумя соседними целыми числами.

      Сложите количество протонов и нейтронов. Это и будет атомной массой данного атома. Не обращайте внимания на количество электронов, которые окружают ядро – их суммарная масса чрезвычайно мала, поэтому они практически не влияют на ваши расчеты.

    Вычисление относительной атомной массы (атомного веса) элемента

    1. Определите, какие изотопы содержатся в образце. Химики часто определяют соотношение изотопов в конкретном образце с помощью специального прибора под названием масс-спектрометр. Однако при обучении эти данные будут предоставлены вам в условиях заданий, контрольных и так далее в виде значений, взятых из научной литературы.

      • В нашем случае допустим, что мы имеем дело с двумя изотопами: углеродом-12 и углеродом-13.
    2. Определите относительное содержание каждого изотопа в образце. Для каждого элемента различные изотопы встречаются в разных соотношениях. Эти соотношения почти всегда выражают в процентах. Некоторые изотопы встречаются очень часто, тогда как другие очень редки – временами настолько, что их с трудом можно обнаружить. Эти величины можно определить с помощью масс-спектрометрии или найти в справочнике.

      • Допустим, что концентрация углерода-12 равна 99%, а углерода-13 – 1%. Другие изотопы углерода действительно существуют, но в количествах настолько малых, что в данном случае ими можно пренебречь.
    3. Умножьте атомную массу каждого изотопа на его концентрацию в образце. Умножьте атомную массу каждого изотопа на его процентное содержание (выраженное в виде десятичной дроби). Чтобы перевести проценты в десятичную дробь, просто разделите их на 100. Полученные концентрации в сумме всегда должны давать 1.

      • Наш образец содержит углерод-12 и углерод-13. Если углерод-12 составляет 99% образца, а углерод-13 – 1%, то необходимо умножить 12 (атомная масса углерода-12) на 0,99 и 13 (атомная масса углерода-13) на 0,01.
      • В справочниках даются процентные соотношения, основанные на известных количествах всех изотопов того или иного элемента. Большинство учебников по химии содержат эту информацию в виде таблицы в конце книги. Для изучаемого образца относительные концентрации изотопов можно также определить с помощью масс-спектрометра.
    4. Сложите полученные результаты. Просуммируйте результаты умножения, которые вы получили в предыдущем шаге. В результате этой операции вы найдете относительную атомную массу вашего элемента – среднее значение атомных масс изотопов рассматриваемого элемента. Когда рассматривается элемент в целом, а не конкретный изотоп данного элемента, используется именно эта величина.

      • В нашем примере 12 x 0,99 = 11,88 для углерода-12, и 13 x 0,01 = 0,13 для углерода-13. Относительная атомная масса в нашем случае составляет 11,88 + 0,13 = 12,01 .
    • Некоторые изотопы менее стабильны, чем другие: они распадаются на атомы элементов с меньшим количеством протонов и нейтронов в ядре с выделением частиц, входящих в состав атомного ядра. Такие изотопы называют радиоактивными.

Состав веществ сложный, хотя образованы они крохотными частицами — атомами, молекулами, ионами. многие жидкости и газы, а также некоторые твердые тела. Из атомов и заряженных ионов состоят металлы, многие соли. Все частицы обладают массой, даже самая крохотная если выразить ее в килограммах, получает очень маленькое значение. Например, m (Н 2 О) = 30 . 10 -27 кг. Такие важнейшие характеристики вещества, как масса и размеры микрочастиц, издавна изучают физики и химики. Основы были заложены в трудах Михаила Ломоносова и Рассмотрим, как изменились с тех пор взгляды на микромир.

Представления Ломоносова о «корпускулах»

Предположение о дискретном высказывали ученые Древней Греции. Тогда же было дано название «атом» мельчайшей неделимой частице тел, «кирпичику» мироздания. Великий русский исследователь М. В. Ломоносов писал о ничтожно малой, неделимой физическими способами частице строения вещества — корпускуле. Позже в трудах других ученых она получила название «молекула».

Масса молекулы, а также ее размеры, определяются свойствами составляющих ее атомов. Долгое время ученым не удавалось заглянуть вглубь микромира, что тормозило развитие химии и физики. Ломоносов неоднократно призывал коллег изучать и в своей работе опираться на точные количественные данные — «меру и вес». Благодаря работам русского химика и физика были заложены основы учения о строении вещества, ставшие составной частью стройной атомно-молекулярной теории.

Атомы и молекулы — «кирпичики мироздания»

Даже микроскопически малые тела сложно устроены, обладают различными свойствами. Такие частицы, как атомы, образованы ядром и электронными слоями, отличаются по количеству положительных и отрицательных зарядов, радиусу, массе. Атомы и молекулы существуют в составе веществ не изолированно, они притягиваются с разной силой. Более заметно действие сил притяжения в твердых телах, слабее — в жидкостях, почти не ощущаются в газообразных веществах.

Химические реакции не сопровождаются разрушением атомов. Чаще всего происходит их перегруппировка, возникает другая молекула. Масса молекулы зависит от того, какими атомами она образована. Но при всех изменениях атомы остаются химически неделимыми. Но они могут войти в состав разных молекул. При этом атомы сохраняют свойства того элемента, к которому относятся. Молекула до своего распада на атомы сохраняет все признаки вещества.

Микрочастица строения тел — молекула. Масса молекулы

Для измерения массы макротел используются приборы, старейший из которых — весы. Результат измерения удобно получать в килограммах, ведь это основная единица международной системы физических величин (СИ). Чтобы определить массу молекулы в килограммах, надо сложить атомные массы с учетом количества частиц. Для удобства была введена специальная единица массы — атомная. Можно записать ее в виде буквенного сокращения (а.е.м.). Эта единица соответствует одной двенадцатой части массы углеродного нуклида 12 С.

Если выразить найденное значение в стандартных единицах, то получаем 1,66 . 10 -27 кг. Такими малыми показателями для массы тел оперируют, в основном, физики. В статье приведена таблица, из которой можно узнать, чему равны массы атомов некоторых химических элементов. Чтобы узнать, чему равна масса одной в килограммах, умножим на два приведенную в таблице атомную массу этого химического элемента. В результате получим значение массы молекулы, состоящей из двух атомов.

Относительная молекулярная масса

Трудно оперировать в расчетах очень маленькими величинами, это неудобно, приводит к затратам времени, к ошибкам. Что касается массы микрочастиц, то выходом из затруднительной ситуации стало применение Привычный для химиков термин состоит из двух слов — «атомная масса», его обозначение — Ar. Идентичное понятие было введено для молекулярной массы (то же самое, что масса молекулы). Формула, связывающая две величины: Mr = m(в-ва)/1/12 m(12 C).

Нередко можно услышать, что говорят «молекулярный вес». Этот устаревший термин еще употребляется по отношению к массе молекулы, но все реже. Дело в том, что вес — это другая физическая величина — сила, которая зависит от тела. Напротив, масса служит постоянной характеристикой частиц, которые участвуют в химических процессах и перемещаются с обычной скоростью.

Как определить массу молекулы

Точное определение веса молекулы проводят при помощи прибора — масс-спектрометра. Для решения задач можно использовать сведения из периодической системы. К примеру, масса молекулы кислорода равна 16 . 2 = 32. Выполним несложные расчеты и найдем значение величины Mr(H 2 O) — относительной молекулярной массы воды. По таблице Менделеева определим, что масса атома кислорода — 16, водорода — 1. Проведем несложные расчеты: M r (H 2 O) = 1 . 2 + 16 = 18, где M r — молекулярная масса, H 2 O — молекула воды, H — символ элемента водорода, О — химический знак кислорода.

Массы изотопов

Химические элементы в природе и технике существуют в виде нескольких разновидностей атомов — изотопов. Каждый из них обладает индивидуальной массой, ее величина не может иметь дробное значение. Но атомная масса химического элемента чаще всего представляет собой число с несколькими знаками после запятой. При подсчетах учитывается распространенность каждой разновидности в земной коре. Поэтому массы атомов в периодической системе не всегда являются целыми числами. Используя такие величины для расчетов, мы получаем массы молекул, которые также не являются целыми числами. В некоторых случаях допускается округление значений.

Молекулярная масса веществ немолекулярного строения

Размеры и масса молекул

На электронных микрофотографиях крупных молекул можно рассмотреть отдельные атомы, но они настолько малы, что в обычный микроскоп не видны. Линейный размер частицы любого вещества, как и масса, — это постоянная характеристика. Диаметр молекулы зависит от радиусов образующих ее атомов, их взаимного притяжения. Размеры частиц меняются с увеличением числа протонов и энергетических уровней. Атом водорода — самый маленький по размерам, его радиус составляет всего 0,5 . 10 -8 см. Атом урана в три раза больше атома водорода. Настоящие «великаны» микромира — молекулы органических веществ. Так, линейный размер одной из протеиновых частиц равен 44 . 10 -8 см.

Подведем итог: масса молекул — это сумма масс атомов, входящих в их состав. Абсолютное значение в килограммах можно получить, умножив значение молекулярной массы, найденное в таблице Менделеева, на величину 1,66 . 10 -27 кг.

Молекулы ничтожно малы по сравнению с макротелами. Например, по своим размерам молекула воды Н 2 О уступает яблоку во столько же раз, во сколько раз этот фрукт меньше нашей планеты.

А́томная едини́ца ма́ссы (обозначение а. е. м. ), она же дальтон , - внесистемная единица массы, применяемая для масс молекул , атомов , атомных ядер и элементарных частиц . Рекомендована к применению ИЮПАП в 1960 и ИЮПАК в 1961 годах. Официально рекомендованными являются англоязычные термины atomic mass unit (a.m.u.) и более точный - unified atomic mass unit (u.a.m.u.) (универсальная атомная единица массы, но в русскоязычных научных и технических источниках он употребляется реже).

Атомная единица массы выражается через массу нуклида углерода 12 C. 1 а. е. м. равна одной двенадцатой части от массы этого нуклида в ядерном и атомном природном состоянии. Установленное в 1997 году во 2-ом издании справочника терминов ИЮПАК численное значение 1 а. е. м. ≈ 1,6605402(10) ∙ 10 −27 кг ≈ 1,6605402(10) ∙ 10 −24 г.

С другой стороны, 1 а. е. м. - это величина, обратная числу Авогадро , то есть 1/N A г. Такой выбор атомной единицы массы удобен тем, что молярная масса данного элемента, выраженная в граммах на моль, в точности совпадает с массой атома этого элемента, выраженной в а. е. м.

История

Понятие атомной массы ввёл Джон Дальтон в 1803 году, единицей измерения атомной массы сначала служила масса атома водорода (так называемая водородная шкала ). В 1818 Берцелиус опубликовал таблицу атомных масс, отнесённых к атомной массе кислорода, принятой равной 103. Система атомных масс Берцелиуса господствовала до 1860-х годов, когда химики опять приняли водородную шкалу. Но в 1906 они перешли на кислородную шкалу, по которой за единицу атомной массы принимали 1/16 часть атомной массы кислорода. После открытия изотопов кислорода (16 O, 17 O, 18 O) атомные массы стали указывать по двум шкалам: химической, в основе которой лежала 1/16 часть средней массы атома природного кислорода, и физической с единицей массы, равной 1/16 массы атома нуклида 16 O. Использование двух шкал имело ряд недостатков, вследствие чего с 1961 перешли к единой, углеродной шкале.