Болезни Военный билет Призыв

Что не является критерием согласия. Критерии согласия

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

АЗОВСКИЙ РЕГИОНАЛЬНЫЙ ИНСТИТУТ УПРАВЛЕНИЯ

ЗАПОРОЖСКОГО НАЦИОНАЛЬНОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

Кафедра математики

КУРСОВАЯ РАБОТА

З дисциплины «СТАТИСТИКА»

На тему: «КРИТЕРИИ СОГЛАСИЯ»

студентки 2-го курса

группы 207 факультета управления

Батуры Татьяны Олеговны

Научный руководитель

доцент Косенков О. И.

Бердянск – 2009г.


ВВЕДЕНИЕ

1.2 Критерии согласия χ 2 Пирсона для простой гипотезы

1.3 Критерии согласия для сложной гипотезы

1.4 Критерии согласия χ 2 Фишера для сложной гипотезы

1.5 Другие критерии согласия. Критерии согласия для распределения Пуассона

РАЗДЕЛ II. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ КРИТЕРИЯ СОГЛАСИЯ

ПРИЛОЖЕНИЯ

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ


ВВЕДЕНИЕ

В данной курсовой работе рассказано о наиболее распространенных критериях согласия – омега-квадрат, хи-квадрат, Колмогорова и Колмогорова-Смирнова. Особенное внимание уделено случаю, когда необходимо проверить принадлежность распределения данных некоторому параметрическому семейству, например, нормальному. Эта весьма распространенная на практике ситуация из-за своей сложности исследована не до конца и не полностью отражена в учебной и справочной литературе.

Критериями согласия называют статистические критерии, предназначенные для проверки согласия опытных данных и теоретической модели. Лучше всего этот вопрос разработан, если наблюдения представляют случайную выборку. Теоретическая модель в этом случае описывает закон распределения.

Теоретическое распределение – это то распределение вероятностей, которое управляет случайным выбором. Представления о нем может дать не только теория. Источниками знаний здесь могут быть и традиция, и прошлый опыт, и предыдущие наблюдения. Надо лишь подчеркнуть, что это распределение должно быть выбрано независимо от тех данных, по которым мы собираемся его проверять. Иначе говоря, недопустимо сначала «подогнать» по выборке некоторый закон распределения, а потом пытаться проверить согласие с полученным законом по этой же выборке.

Простые и сложные гипотезы. Говоря о теоретическом законе распределения, которому гипотетически должны бы следовать элементы данной выборки, надо различать простые и сложные гипотезы об этом законе:

· простая гипотеза прямо указывает некий определенный закон вероятностей (распределение вероятностей), по которому возникли выборочные значения;

· сложная гипотеза указывает на единственное распределение, а какое-то их множество (например, параметрическое семейство).

Критерии согласия основаны на использовании различных мер расстояний между анализируемым эмпирическим распределением и функцией распределения признака в генеральной совокупности.

Непараметрические критерии согласия Колмогорова, Смирнова, омега квадрат широко используются. Однако с ними связаны и широко распространенные ошибки в применении статистических методов.

Дело в том, что перечисленные критерии были разработаны для проверки согласия с полностью известным теоретическим распределением. Расчетные формулы, таблицы распределений и критических значений широко распространены. Основная идея критериев Колмогорова, омега квадрат и аналогичных им состоит в измерении расстояния между функцией эмпирического распределения и функцией теоретического распределения. Различаются эти критерии видом расстояний в пространстве функций распределения.

Приступая к выполнению данной курсовой работы, я поставила себе за цель, узнать какие существуют критерии согласия, разобраться для чего же они нужны. Для осуществления этой цели необходимо выполнить следующие задания:

1. Раскрыть суть понятия “критерии согласия”;

2. Определить какие критерии согласия существуют, изучить их по отдельности;

3. Сделать выводы по проведенной работе.


РАЗДЕЛ I. ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ КРИТЕРИЯ СОГЛАСИЯ

1.1 Критерии согласия Колмогорова и омега-квадрат в случае простой гипотезы

Простая гипотеза. Рассмотрим ситуацию, когда измеряемые данные являются числами, иначе говоря, одномерными случайными величинами. Распределение одномерных случайных величин может быть полностью описано указанием их функций распределения. И многие критерии согласия основаны на проверке близости теоретической и эмпирической (выборочной) функций распределения.

Предположим, что имеем выборку n. Обозначим истинную функцию распределения, которой подчиняются наблюдения, G(х), эмпирическую (выборочную) функцию распределения – F n (х), а гипотетическую функцию распределения – F(х). Тогда гипотеза Н о том, что истинная функция распределения есть F(х), записывается в виде Н: G(·) = F(·).

Как проверить гипотезу H? Если Н верна, то F n и F должны проявлять определенное сходство, и различие между ними должно убывать с увеличением n. Вследствие теоремы Бернулли F n (х) → F(х) при n → ∞. Для количественного выражения сходства функций F n иF используют различные способы.

Для выражения сходства функций можно использовать то или иное расстояние между этими функциями. Например, можно сравнить F n и F в равномерной метрике, т.е. рассмотреть величину:

(1.1)

Статистику D n называют статистикой Колмогорова.

Очевидно, что D n - случайная величина, поскольку ее значение зависит от случайного объекта F n . Если гипотеза Н 0 справедлива и n → ∞, то F n (x) → F(x) при всяком х. Поэтому естественно, что при этих условиях D n → 0. Если же гипотеза Н 0 неверна, то F n → G и G ≠ F, а потому sup -∞

Как всегда при проверке гипотезы, рассуждаем так, как если бы гипотеза была верна. Ясно, что Н 0 должна быть отвергнута, если полученное в эксперименте значение статистики D n кажется неправдоподобно большим. Но для этого надо знать, как распределена статистика D n при гипотезе Н: F= G при заданных n и G.

Замечательное свойство D n состоит в том, что если G = F, т.е. если гипотетическое распределение указано правильно, то закон распределения статистики D n оказывается одним и тем же для всех непрерывных функций G. Он зависит только от объема выборки n.

Доказательство этого факта основано на том, что статистика не изменяет своего значения при монотонных преобразованиях оси х. Таким преобразованием любое непрерывное распределение G можно превратить в равномерное на отрезке . При этом F n (x) перейдет в функцию распределения выборки из этого равномерного распределения.

При малых п для статистики D n при гипотезе Н 0 составлены таблицы процентных точек. При больших п распределение D n (при гипотезе Н 0) указывает найденная в 1933 г. А.Н.Колмогоровым предельная теорема. Она говорит о статистике

(поскольку сама величина D n → 0 при Н 0 , приходится умножать ее на неограниченно растущую величину, чтобы распределение стабилизировалось). Теорема Колмогорова утверждает, что при справедливости Н 0 и если G непрерывна:
(1.2)

Эта сумма очень легко считается в Maple. Для проверки простой гипотезы Н 0: G = F требуется по исходной выборке вычислить значение статистики D n . Для этого годится простая формула.

Опр Критерий проверки гипотезы о предполагаемом законе неизвестного распределения называется критерием согласия.

Имеется несколько критериев согласия: $\chi ^2$ { хи-квадрат } К. Пирсона, Колмогорова, Смирнова и др.

Обычно теоретические и эмпирические частоты различаются. Случай расхождения может быть не случайным, значит и объясняется тем, что не верно выбрана гипотеза. Критерий Пирсона отвечает на поставленный вопрос, но как любой критерий он ничего не доказывает, а лишь устанавливает на принятом уровне значимости её согласие или несогласие с данными наблюдений.

Опр Достаточно малую вероятность, при которой событие можно считать практически невозможным называют уровнем значимости.

На практике обычно принимают уровни значимости, заключённые между 0,01 и 0,05, $\alpha =0,05$ - это $5 { \% } $ уровень значимости.

В качестве критерия проверки гипотезы примем величину \begin{equation} \label { eq1 } \chi ^2=\sum { \frac { ({ n_i -n_i" })^2 } { n_i" } } \qquad (1) \end{equation}

здесь $n_i -$ эмпирические частоты, полученные из выборки, $n_i" -$ теоретические частоты, найденные теоретическим путём.

Доказано, что при $n\to \infty $ закон распределения случайной величины { 1 } независимо от того, по какому закону распределена генеральная совокупность, стремится к закону $\chi ^2$ { хи-квадрат } с $k$ степенями свободы.

Опр Число степеней свободы находят по равенству $k=S-1-r$ где $S-$ число групп интервалов, $r-$ число параметров.

1) равномерное распределение: $r=2, k=S-3 $

2) нормальное распределение: $r=2, k=S-3 $

3) показательное распределение: $r=1, k=S-2$.

Правило . Проверка гипотезы по критерию Пирсона.

  1. Для проверки гипотезы вычисляют теоретические частоты и находят $\chi _ { набл } ^2 =\sum { \frac { ({ n_i -n_i" })^2 } { n_i" } } $
  2. По таблице критических точек распределения $\chi ^2$ по заданному уровню значимости $\alpha $ и числу степеней свободы $k$ находят $\chi _ { кр } ^2 ({ \alpha ,k })$.
  3. Если $\chi _ { набл } ^2 <\chi _ { кр } ^2 $ то нет оснований отвергать гипотезу, если не выполняется данное условие - то отвергают.

Замечание Для контроля вычислений применяют формулу для $\chi ^2$ в виде $\chi _ { набл } ^2 =\sum { \frac { n_i^2 } { n_i" } -n } $

Проверка гипотезы о равномерном распределении

Функция плотности равномерного распределения величины $X$ имеет вид $f(x)=\frac { 1 } { b-a } x\in \left[ { a,b }\right]$.

Для того, чтобы при уровне значимости $\alpha $ проверить гипотезу о том, что непрерывная случайная величина распределена по равномерному закону, требуется:

1) Найти по заданному эмпирическому распределению выборочное среднее $\overline { x_b } $ и $\sigma _b =\sqrt { D_b } $. Принять в качестве оценки параметров $a$ и $b$ величины

$a = \overline x _b -\sqrt 3 \sigma _b $, $b = \overline x _b +\sqrt 3 \sigma _b $

2) Найти вероятность попадания случайной величины $X$ в частичные интервалы $({ x_i ,x_ { i+1 } })$ по формуле $ P_i =P({ x_i

3) Найти теоретические { выравнивающие } частоты по формуле $n_i" =np_i $.

4) Приняв число степеней свободы $k=S-3$ и уровень значимости $\alpha =0,05$ по таблицам $\chi ^2$ найдём $\chi _ { кр } ^2 $ по заданным $\alpha $ и $k$, $\chi _ { кр } ^2 ({ \alpha ,k })$.

5) По формуле $\chi _ { набл } ^2 =\sum { \frac { ({ n_i -n_i" })^2 } { n_i" } } $ где $n_i -$ эмпирические частоты, находим наблюдаемое значение $\chi _ { набл } ^2 $.

6) Если $\chi _ { набл } ^2 <\chi _ { кр } ^2 -$ нет оснований, отвергать гипотезу.

Проверим гипотезу на нашем примере.

1) $\overline x _b =13,00\,\,\sigma _b =\sqrt { D_b } = 6,51$

2) $a=13,00-\sqrt 3 \cdot 6,51=13,00-1,732\cdot 6,51=1,72468$

$b=13,00+1,732\cdot 6,51=24,27532$

$b-a=24,27532-1,72468=22,55064$

3) $P_i =P({ x_i

$ P_2 =({ 3

$ P_3 =({ 7

$ P_4 =({ 11

$ P_5 =({ 15

$ P_6 =({ 19

В равномерном распределении если одинакова длина интервала, то $P_i -$ одинаковы.

4) Найдём $n_i" =np_i $.

5) Найдём $\sum { \frac { ({ n_i -n_i" })^2 } { n_i" } } $ и найдём $\chi _ { набл } ^2 $.

Занесём все полученные значения в таблицу

\begin{array} { |l|l|l|l|l|l|l| } \hline i& n_i & n_i" =np_i & n_i -n_i" & ({ n_i -n_i" })^2& \frac { ({ n_i -n_i" })^2 } { n_i" } & Контроль~ \frac { n_i^2 } { n_i" } \\ \hline 1& 1& 4,43438& -3.43438& 11,7950& 2,659898& 0,22551 \\ \hline 2& 6& 4,43438& 1,56562& 2,45117& 0,552765& 8,11838 \\ \hline 3& 3& 4,43438& -1,43438& 2,05744& 0,471463& 2,0296 \\ \hline 4& 3& 4,43438& -1,43438& 2,05744& 0,471463& 2,0296 \\ \hline 5& 6& 4,43438& 1,56562& 2,45117& 0,552765& 8,11838 \\ \hline 6& 6& 4,43438& 1,56562& 2,45117& 0,552765& 8,11838 \\ \hline & & & & & \sum = \chi _ { набл } ^2 =3,261119& \chi _ { набл } ^2 =\sum { \frac { n_i^2 } { n_i" } -n } =3,63985 \\ \hline \end{array}

$\chi _ { кр } ^2 ({ 0,05,3 })=7,8$

$\chi _ { набл } ^2 <\chi _ { кр } ^2 =3,26<7,8$

Вывод отвергать гипотезу нет оснований.

Введение

Актуальность данной темы в том, что в течение изучения основ биостатистики мы предполагали, что закон распределения генеральной совокупности известен. Но что, если закон распределения неизвестен, но есть основания предполагать, что он имеет определенный вид (назовем его А), то проверяют нулевую гипотезу: генеральная совокупность распределена по закону А. Проверка этой гипотезы производится при помощи специально подобранной случайной величины - критерия согласия.

Критерии согласия - это критерии проверки гипотез о соответствии эмпирического распределения теоретическому распределению вероятностей. Такие критерии подразделяются на два класса:

  • Ш Общие критерии согласия применимы к самой общей формулировке гипотезы, а именно к гипотезе о согласии наблюдаемых результатов с любым априорно предполагаемым распределением вероятностей.
  • Ш Специальные критерии согласия предполагают специальные нулевые гипотезы, формулирующие согласие с определенной формой распределения вероятностей.

Критерий согласия

Наиболее распространенные критерии согласия - омега-квадрат, хи-квадрат, Колмогорова и Колмогорова-Смирнова.

Непараметрические критерии согласия Колмогорова, Смирнова, омега квадрат широко используются. Однако с ними связаны и широко распространенные ошибки в применении статистических методов.

Дело в том, что перечисленные критерии были разработаны для проверки согласия с полностью известным теоретическим распределением. Расчетные формулы, таблицы распределений и критических значений широко распространены. Основная идея критериев Колмогорова, омега квадрат и аналогичных им состоит в измерении расстояния между функцией эмпирического распределения и функцией теоретического распределения. Различаются эти критерии видом расстояний в пространстве функций распределения.

Критерии согласия ч2 Пирсона для простой гипотезы

Теорема К. Пирсона относится к независимым испытаниям с конечным числом исходов, т.е. к испытаниям Бернулли (в несколько расширенном смысле). Она позволяет судить о том, согласуются ли наблюдения в большом числе испытаний частоты этих исходов с их предполагаемыми вероятностями.

Во многих практических задачах точный закон распределения неизвестен. Поэтому выдвигается гипотеза о соответствии имеющегося эмпирического закона, построенного по наблюдениям, некоторому теоретическому. Данная гипотеза требует статистической проверки по результатам которой будет либо подтверждена, либо опровергнута.

Пусть X - исследуемая случайная величина. Требуется проверить гипотезу H0 о том, что данная случайная величина подчиняется закону распределения F(x). Для этого необходимо произвести выборку из n независимых наблюдений и по ней построить эмпирический закон распределения F"(x). Для сравнения эмпирического и гипотетического законов используется правило, называемое критерием согласия. Одним из популярных является критерий согласия хи-квадрат К. Пирсона. В нем вычисляется статистика хи-квадрат:

где N - число интервалов, по которому строился эмпирический закон распределения (число столбцов соответствующей гистограммы), i - номер интервала, pt i -вероятность попадания значения случайной величины в i-й интервал для теоретического закона распределения, pe i - вероятность попадания значения случайной величины в i-й интервал для эмпирического закона распределения. Она и должна подчиняться распределению хи-квадрат.

Если вычисленное значение статистики превосходит квантиль распределения хи-квадрат с k-p-1 степенями свободы для заданного уровня значимости, то гипотеза H0 отвергается. В противном случае она принимается на заданном уровне значимости. Здесь k - число наблюдений, p число оцениваемых параметров закона распределения.

Рассмотрим статистику:

Статистика ч2 называется статистикой хи-квадрат Пирсона для простой гипотезы.

Ясно, что ч2 представляем собой квадрат некоего расстояния между двумя r-мерными векторами: вектором относительных частот (mi /n, …, mr /n) и вектором вероятностей (pi , …, pr). От евклидового расстояния это расстояние отличается лишь тем, что разные координаты входят в него с разными весами.

Обсудим поведение статистики ч2 в случае, когда гипотеза Н верна, и в случае, когда Н неверна. Если верна Н, то асимптотическое поведение ч2 при n > ? указывает теорема К. Пирсона. Чтобы понять, что происходит с (2.2), когда Н неверна, заметим, что по закону больших чисел mi /n > pi при n > ?, для i = 1, …, r. Поэтому при n > ?:

Эта величина равна 0. Поэтому если Н неверна, то ч2 >? (при n > ?).

Из сказанного следует, что Н должна быть отвергнута, если полученное в опыте значение ч2 слишком велико. Здесь, как всегда, слова «слишком велико» означают, что наблюденное значение ч2 превосходит критическое значение, которое в данном случае можно взять из таблиц распределения хи-квадрат. Иначе говоря, вероятность Р(ч2 npi ч2) - малая величина и, следовательно, маловероятно случайно получить такое же, как в опыте, или еще большее расхождение между вектором частот и вектором вероятностей.

Асимптотический характер теоремы К. Пирсона, лежащий в основе этого правила, требует осторожности при его практическом использовании. На него можно полагаться только при больших n. Судить же о том, достаточно ли n велико, надо с учетом вероятностей pi , …, pr . Поэтому нельзя сказать, к примеру, что ста наблюдений будет достаточно, поскольку не только n должно быть велико, но и произведения npi , …, npr (ожидаемые частоты) тоже не должны быть малы. Поэтому проблема аппроксимации ч2 (непрерывное распределение) к статистике ч2 , распределение которой дискретно, оказалась сложной. Совокупность теоретических и экспериментальных доводов привела к убеждению, что эта аппроксимация применима, если все ожидаемые частоты npi>10. если число r (число различных исходов) возрастает, граница для снижена (до 5 или даже до 3, если r порядка нескольких десятков). Чтобы соблюсти эти требования, на практике порой приходится объединять несколько исходов, т.е. переходить к схеме Бернулли с меньшим r.

Описанный способ для проверки согласия можно прилагать не только к испытаниям Бернулли, но и к произвольным выборкам. Предварительно их наблюдения надо превратить в испытания Бернулли путем группировки. Делают это так: пространство наблюдений разбивают на конечное число непересекающихся областей, а затем для каждой области подсчитывают наблюденную частоту и гипотетическую вероятность.

В данном случае к перечисленным ранее трудностям аппроксимации прибавляется еще одна - выбор разумного разбиения исходного пространства. При этом надо заботится о том, чтобы в целом правило проверки гипотезы об исходном распределении выборки было достаточно чувствительным к возможным альтернативам. Наконец, отмечу, что статистические критерии, основные на редукции к схеме Бернулли, как правило, не являются состоятельными против всех альтернатив. Так что такой метод проверки согласия имеет ограниченную ценность.

Критерий согласия Колмогорова - Смирнова в своем классическом виде является более мощным, чем критерий ч2 и может быть использован для проверки гипотезы о соответствии эмпирического распределения любому теоретическому непрерывному распределению F(x) с заранее известными параметрами. Последнее обстоятельство накладывает ограничения на возможность широкого практического приложения этого критерия при анализе результатов механических испытаний, так как параметры функции распределения характеристик механических свойств, как правило, оценивают по данным самой выборки.

Критерий Колмогорова - Смирнова применяют для негруппированных данных или для группированных в случае малой ширины интервала (например, равной цене деления шкалы силоизмерителя, счетчика циклов нагружения и т. д.). Пусть результатом испытаний серии из n образцов является вариационный ряд характеристики механических свойств

x1 ? x2 ? ... ? xi ? ... ? xn. (3.93)

Требуется проверить нулевую гипотезу о принадлежности выборочного распределения (3.93) теоретическому закону F(x).

Критерий Колмогорова - Смирнова базируется на распределении максимального отклонения накопленной частности от значения функции распределения. При его использовании вычисляют статистики

являющуюся статистикой критерия Колмогорова. Если выполняется неравенство

Dnvn ? лб (3.97)

для больших объемов выборки (n > 35) или

Dn(vn + 0.12 + 0.11/vn) ? лб (3.98)

для n ? 35, то нулевую гипотезу не отвергают.

При невыполнении неравенств (3.97) и (3.98) принимают альтернативную гипотезу о принадлежности выборки (3.93) неизвестному распределению.

Критические значения лб составляют: л0.1 = 1.22; л0.05 = 1.36; л0.01 = 1.63.

Если параметры функции F(x) заранее не известны, а оцениваются по данным выборки, критерий Колмогорова - Смирнова теряет свою универсальность и может быть использован только для проверки соответствия опытных данных лишь некоторым конкретным функциям распределения.

При использовании в качестве нулевой гипотезы принадлежность опытных данных нормальному или логарифмически нормальному распределению вычисляют статистики:

где Ц(zi) - значение функции Лапласа для

Ц(zi) = (xi - xср)/s Критерий Колмогорова - Смирнова для любых объемов выборки n записывают в виде

Критические значения лб в этом случае составляют: л0.1 = 0.82; л0.05 = 0.89; л0.01 = 1.04.

Если проверяют гипотезу о соответствии выборки ***экспоненциальному распределению, параметр которого оценивают по опытным данным, вычисляют аналогичные статистики:

критерий эмпирический вероятность

и составляют критерий Колмогорова - Смирнова.

Критические значения лб для этого случая: л0.1 = 0.99; л0.05 = 1.09; л0.01 = 1.31.

В настоящем п° мы рассмотрим один из вопросов, связанных с проверкой правдоподобия гипотез, а именно-вопрос о согласован­ности теоретического и статистического распределения.

Допустим, что данное статистическое распределение выравнено с помощью некоторой теоретической кривой f (х) (рис. 7.6.1). Как бы хорошо ни была подобрана теоретическая кривая, между нею и статистическим распределением неизбежны некоторые расхождения. Естественно возникает вопрос: объясняются ли эти расхождения только случайными обстоятельствами, связанными с ограниченным числом наблюдений, или они являются существенными и связаны с тем, что подобранная нами кривая плохо выравнивает данное ста­тистическое распределение. Для ответа на такой вопрос служат так называемые «критерии согласия».

ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН



Идея применения критериев согласия заключается в следующем.

На основании данного статистического материала нам предстоит проверить гипотезу Н, состоящую в том, что случайная величина X подчиняется некоторому определенному закону распределения. Этот закон может быть задан в той или иной форме: например, в виде функции распределения F(x) или в виде плотности распределения f (х), или же в виде совокупности вероятностей p t , где p t - вероятность того, что величина X попадет в пределы l-то разряда.

Так как из этих форм функция распределения F (х) является наиболее общей и определяет собой любую другую, будем форму­лировать гипотезу Н, как состоящую в том, что величина X имеет функцию распределения ^(д:).

Для того чтобы принять или опровергнуть гипотезу Н, рассмот­рим некоторую величину U, характеризующую степень расхожде­ния теоретического и статистического распределений. Величина U может быть выбрана различными способами; например, в качестве U можно взять сумму квадратов отклонений теоретических вероятно­стей p t от соответствующих частот р* или же сумму тех"*же квад­ратов с некоторыми коэффициентами («весами»), или же максимальное отклонение статистической функции распределения F*(x) от теоре­тической F(x) и т. д. Допустим, что величина U выбрана тем или иным способом. Очевидно, это есть некоторая случайная величина. Закон распределения этой случайной величины зависит от закона распределения случайной величины X, над которой производились опыты, и от числа опытов п. Если гипотеза Н верна, то закон рас­пределения величины U определяется законом распределения вели­чины X (функцией F(x)) и числом п.

Допустим, что этот закон распределения нам известен. В рез­ультате данной серии опытов обнаружено, что выбранная нами мера



КРИТЕРИИ СОГЛАСИЯ


расхождения U приняла некоторое значение а. Спрашивается, можно ли объяснить это случайными причинами или же это расхождение слишком велико и указывает на наличие существенной разницы между теоретическим и статистическим распределениями и, следовательно, на непригодность гипотезы Н? Для ответа на этот вопрос предпо­ложим, что гипотеза Н верна, и вычислим в этом предположении вероятность того, что за счет случайных причин, связанных с недо­статочным объемом опытного материала, мера расхождения U ока­жется не меньше, чем наблюденное нами в опыте значение и, т. е. вычислим вероятность события:

Если эта вероятность весьма мала, то гипотезу Н следует отверг­нуть как мало правдоподобную; если же эта вероятность значительна, следует признать, что экспериментальные данные не противоречат гипотезе Н.

Возникает вопрос о том, каким же способом следует выбирать меру расхождения £/? Оказывается, что при некоторых способах ее выбора закон распределения величины U обладает весьма простыми свойствами и при достаточно большом п практически не зависит от функции F(x). Именно такими мерами расхождения и пользуются в математической статистике в качестве критериев согласия.

Рассмотрим один из наиболее часто применяемых критериев со­гласия- так называемый «критерий у?» Пирсона.

Предположим, что произведено га независимых опытов, в каждом из которых случайная величина X приняла определенное значение. Результаты опытов сведены в k разрядов и оформлены в виде ста­тистического ряда.

Теоретические и эмпирические частоты. Проверка на нормальность распределения

При анализе вариационных рядов распределения большое значение имеет, насколько эмпирическое распределение признака соответствует нормальному . Для этого частоты фактического распределения нужно сравнить с теоретическими, которые характерны для нормального распределения. Значит, нужно по фактическим данным вычислить теоретические частоты кривой нормального распределения, являющиеся функцией нормированных отклонений.

Иначе говоря, эмпирическую кривую распределения нужно выровнять кривой нормального распределения.

Объективная характеристика соответствия теоретических и эмпирических частот может быть получена при помощи специальных статистических показателей, которые называют критериями согласия .

Критерием согласия называют критерий, который позволяет установить, является ли расхождение эмпирического и теоретического распределений случайным или значимым, т. е. согласуются ли данные наблюдений с выдвинутой статистической гипотезой или не согласуются. Распределение генеральной совокупности, которое она имеет в силу выдвинутой гипотезы, называют теоретическим.

Возникает необходимость установить критерий (правило), которое позволяло бы судить, является ли расхождение между эмпирическим и теоретическим распределениями случайным или значимым. Если расхождение окажется случайным , то считают, что данные наблюдений (выборки) согласуются с выдвинутой гипотезой о законе распределения генеральной совокупности и, следовательно, гипотезу принимают; если же расхождение окажется значимым , то данные наблюдений не согласуются с гипотезой и ее отвергают.

Обычно эмпирические и теоретические частоты различаются в силу того, что:

    расхождение случайно и связано с ограниченным количеством наблюдений;

    расхождение неслучайно и объясняется тем, что статистическая гипотеза о том, что генеральная совокупность распределена нормально - ошибочна.

Таким образом, критерии согласия позволяют отвергнуть или подтвердить правильность выдвинутой при выравнивании ряда гипотезы о характере распределения в эмпирическом ряду.

Эмпирические частоты получают в результате наблюдения. Теоретические частоты рассчитывают по формулам.

Для закона нормального распределения их можно найти следующим образом:

    Σƒ i- сумма накопленных (кумулятивных) эмпирических частот

    h - разность между двумя соседними вариантами

    σ - выборочное среднеквадратическое отклонение

    t–нормированное (стандартизированное) отклонение

    φ(t)–функция плотности вероятности нормального распределения (находят по таблице значений локальной функции Лапласа для соответствующего значения t)

Имеется несколько критериев согласия, наиболее распространенными из которых являются: критерий хи-квадрат (Пирсона), критерий Колмогорова, критерий Романовского.

Критерий согласия Пирсона χ 2 – один из основных, который можно представить как сумму отношений квадратов расхождений между теоретическими (f Т) и эмпирическими (f) частотами к теоретическим частотам:

    k–число групп, на которые разбито эмпирическое распределение,

    f i –наблюдаемая частота признака в i-й группе,

    f T –теоретическая частота.

Для распределения χ 2 составлены таблицы, где указано критическое значение критерия согласия χ 2 для выбранного уровня значимости α и степеней свободы df (или ν). Уровень значимости α – вероятность ошибочного отклонения выдвинутой гипотезы, т.е. вероятность того, что будет отвергнута правильная гипотеза. Р - статистическая достоверность принятия верной гипотезы. В статистике чаще всего пользуются тремя уровнями значимости:

α=0,10, тогда Р=0,90 (в 10 случаях из 100)

α=0,05, тогда Р=0,95 (в 5 случаях из 100)

α=0,01, тогда Р=0,99 (в 1 случае из 100) может быть отвергнута правильная гипотеза

Число степеней свободы df определяется как число групп в ряду распределения минус число связей: df = k –z. Под числом связей понимается число показателей эмпирического ряда, использованных при вычислении теоретических частот, т.е. показателей, связывающих эмпирические и теоретические частоты. Например, при выравнивании по кривой нормального распределения имеется три связи. Поэтому при выравнивании по кривой нормального распределения число степеней свободы определяется как df =k–3. Для оценки существенности, расчетное значение сравнивается с табличным χ 2 табл

При полном совпадении теоретического и эмпирического распределений χ 2 =0, в противном случае χ 2 >0. Если χ 2 расч > χ 2 табл, то при заданном уровне значимости и числе степеней свободы гипотезу о несущественности (случайности) расхождений отклоняем. В случае, если χ 2 расч < χ 2 табл то гипотезу принимаем и с вероятностью Р=(1-α) можно утверждать, что расхождение между теоретическими и эмпирическими частотами случайно. Следовательно, есть основания утверждать, что эмпирическое распределение подчиняется нормальному распределению . Критерий согласия Пирсона используется, если объем совокупности достаточно велик (N>50), при этом, частота каждой группы должна быть не менее 5.

Критерий согласия Колмогорова основан на определении максимального расхождения между накопленными эмпирическими и теоретическими частотами:

где D и d – соответственно, максимальная разность между накопленными частотами и накопленными частостями эмпирического и теоретического распределений. По таблице распределения статистики Колмогорова определяют вероятность, которая может изменяться от 0 до 1. При Р(λ)=1- происходит полное совпадение частот, Р(λ)=0 – полное расхождение. Если величина вероятности Р значительна по отношению к найденной величине λ, то можно предположить, что расхождения между теоретическим и эмпирическим распределениями несущественны, т. е. носят случайный характер. Основное условие использования критерия Колмогорова – достаточно большое число наблюдений.

Критерий согласия Колмогорова

Рассмотрим как критерий Колмогорова (λ) применяется при проверке гипотезы о нормальном распределении генеральной совокупности. Выравнивание фактического распределения по кривой нормального распределения состоит из нескольких этапов:

    Сравнивают фактические и теоретические частоты.

    По фактическим данным определяют теоретические частоты кривой нормального распределения, которая является функцией нормированного отклонения.

    Проверяют на сколько распределение признака соответствует нормальному.

Для IV колонки таблицы:

В MS Excel нормированное отклонение (t) рассчитывается с помощью функции НОРМАЛИЗАЦИЯ. Необходимо выделить диапазон свободных ячеек по количеству вариант (строк электронной таблицы). Не снимая выделения, вызвать функцию НОРМАЛИЗАЦИЯ. В появившемся диалоговом окне указать следующие ячейки, в которых размещены, соответственно, наблюдаемые значения (X i), средняя (X) и среднеквадратическое отклонение Ϭ. Операцию обязательно завершить одновременным нажатием клавиш Ctrl+Shift+Enter

Для V колонки таблицы:

Функцию плотности вероятности нормального распределения φ(t) находим по таблице значений локальной функции Лапласа для соответствующего значения нормированного отклонения (t)

Для VI колонки таблицы:

Критерий согласия Колмогорова (λ) определяется путем деления модуля max разности между эмпирическими и теоретическими кумулятивными частотами на корень квадратный из числа наблюдений:

По специальной таблице вероятности для критерия согласия λ определяем, что значению λ=0,59 соответствует вероятность 0,88 (λ

Распределение эмпирических и теоретических частот, плотности вероятности теоретического распределения

Применяя критерии согласия для проверки соответствия наблюдаемого (эмпирического) распределения теоретическому, следует различать проверку простых и сложных гипотез.

Одновыборочный критерий нормальности Колмогорова-Смирнова основан на максимуме разности между кумулятивным эмпирическим распределением выборки и предполагаемым (теоретическим) кумулятивным распределением. Если D статистика Колмогорова-Смирнова значима, то гипотеза о том, что соответствующее распределение нормально, должна быть отвергнута.