Болезни Военный билет Призыв

Что такое вихревые токи. Практическое применение вихревых токов. Токи Фуко в хозяйственной деятельности человека

Поместим виток провода в переменное магнитное поле. Виток замкнут, при этом в цепи отсутствует гальванометр, который мог бы показать наличие тока индукции в нашем контуре. Но ток можно обнаружить, так как проводник будет нагреваться при прохождении по нему тока. Если, не изменяя остальные размеры витка, увеличить только толщину провода, из которого сделан контур, то ЭДС индукции ($\varepsilon_i\sim \frac{\Delta Ф}{\Delta t}$) не изменится, так как останется прежней скорость изменения магнитного потока. Однако уменьшится сопротивление витка ($R\sim \frac{1}{S}$). Как результат, сила тока индукции увеличится ($I_i$). Мощность, которая выделяется в контуре в виде тепла, прямо пропорциональна $I_i \varepsilon_i$, следовательно, температура проводника увеличится. И так, опыт показывает, что кусок металла при помещении его в магнитное поле нагревается, что указывает на возникновение индукционных токов в массивных проводниках при изменении магнитного потока. Такие токи называют вихревыми токами или токами Фуко.

Определение токов Фуко

Определение

Токами Фуко называют вихревые индукционные объемные электрические токи, которые появляются в проводниках при помещении проводников в переменное магнитное поле.

Свойства токов Фуко

По своей природе вихревые токи не отличаются от токов индукции, которые возникают в проводах.

Направление и сила токов Фуко зависят от формы металлического проводника, от направления переменного магнитного потока, свойств металла, скорости изменения магнитного потока. Распределение токов Фуко в металле может быть очень сложным.

В проводниках, которые имеют большие размеры в направлении перпендикулярном к направлению тока индукции, вихревые токи могут быть весьма велики, что приводит к значительному повышению температуры тела.

Свойства вихревых токов нагревать проводник применяют в индукционных печах для плавления металлов.

Токи Фуко, как и другие токи индукции, подчиняются правилу Ленца, то есть они имеют такое направление, что взаимодействие их с первичным магнитным полем тормозит то движение, которым вызвана индукция.

Примеры задач с решением

Пример 1

Задание. Что такое «магнитное успокоение», которое применяют в электроизмерительных приборах?

Решение. Рассмотрим следующий эксперимент. Легкую магнитную стрелку подвесим к нити (рис.1).

Если эта стрелка предоставлена самой себе, она в положении равновесия устанавливается в направлении с севера на юг. При отклонении ее из положения равновесия, она будет долго совершать колебания, если трение в подвесе небольшое. Разместим под стрелкой на малом расстоянии от нее большую медную пластину значительной массы. Затухание колебаний стрелки в этом случае произойдет очень быстро, сделав одно - два качания стрелка займет положение равновесия. Причина заключается в том, что при движении магнитной стрелки в медном проводнике индуцируются токи Фуко, взаимодействие которых с магнитным полем в соответствии с правилом Ленца затормаживает движение магнита. Кинетическая энергия, которая была сообщена магнитной стрелке в момент толчка, благодаря вихревым токам, превращается во внутреннюю энергию меди, повышая ее температуру. Это явление называют «магнитным успокоением».

Пример 2

Задание. Металлическая монета падает между полюсами электромагнита. Первый раз магнит выключен, второй раз магнит включен. В каком случае скорость падения монеты будет меньше?

Решение. Если между полюсами электромагнита есть магнитное поле, то монета будет медленно опускаться вниз, как - будто она движется в вязкой жидкости, а не в атмосферном воздухе. Монета тормозится силами, которые действуют со стороны магнитного поля на вихревые токи, индуцированные в монете при его падении в магнитном поле. Скорость ее движения будет существенно меньше, чем при выключенном магнитном поле.

Ответ. Скорость падения меньше при включенном магните.

Иллюстрация возникновения токов Фуко в движущейся в постоянном магнитном поле проводящей (металлической) пластине C . Вектор магнитной индукции B показан зелеными стрелками, вектор V скорости движения пластин - черными стрелками, силовые линии вектора плотности электрического тока I - красным цветом (эти линии замкнутые, "вихревые").
Источником магнитного поля является постоянный магнит, его фрагмент показан вверху рисунка серым цветом. Вектор магнитной индукции B направлен от северного (N ) полюса магнита, магнитное поле пронизывает пластину. В материале пластины, входящем под магнит, т.е. слева, магнитная индукция изменяется во времени, возрастает (dB n /dt > 0), и в соответствии с законами Фарадея и Ома в материале пластины возникает (наводится, "индуцируется") замкнутый (вихревой) электрический ток . Этот ток течет против часовой стрелки и, по закону Ампера, создает свое собственное магнитное поле, вектор магнитной индукции которого показан синей стрелкой, направленной перпендикулярно плоскости протекания тока, вверх.
Справа, в материале пластины, удаляющемся от магнита, магнитное поле тоже меняется во времени, однако оно ослабевает, и силовые линии возникающего справа еще одного электрического тока направлены по часовой стрелке.
Точно под магнитом "левый" и "правый" вихри токов направлены в одну и ту же сторону, плотность суммарного электрического тока максимальна. На движущиеся в этой области электрические заряды, поток которых образует электрический ток , в сильном магнитном поле действует сила Лоренца, направленная (по правилу левой руки) против вектора скорости V . Эта сила Лоренца тормозит пластину C . Взаимодействие магнитного поля магнита и магнитного поля индуцированных токов приводит к тому, что результирующее распределение потока магнитного поля в окрестности полюса N магнита отличается от случая неподвижной пластины C (и зависит от скорости V ), хотя суммарный поток вектора магнитной индукции остается неизменным (при условии, что материал магнита и пластины C не входит в насыщение).

Вихревые токи , или токи Фуко́ (в честь Ж. Б. Л. Фуко) - вихревой индукционный объёмный электрический ток , возникающий в электрических проводниках при изменении во времени потока действующего на них магнитного поля.

Впервые вихревые токи были обнаружены французским учёным Д. Ф. Араго (1786-1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M. Фарадеем с позиций открытого им закона электромагнитной индукции: вращаемое магнитное поле наводит в медном диске вихревые токи, которые взаимодействуют с магнитной стрелкой. Вихревые токи были подробно исследованы французским физиком Фуко (1819-1868) и названы его именем. Фуко также открыл явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.

Токи Фуко возникают под действием изменяющегося во времени (переменного) магнитного поля и по физической природе ничем не отличаются от индукционных токов, возникающих в проводах и вторичных обмотках электрических трансформаторов .

Поскольку электрическое сопротивление массивного проводника может быть мало, то сила индукционного электрического тока, обусловленного токами Фуко, может достигать чрезвычайно больших значений. В соответствии с правилом Ленца токи Фуко в объеме проводника выбирают такой путь, чтобы в наибольшей мере противодействовать причине, вызывающей их протекание. Поэтому, в частности, движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с внешним магнитным полем. Этот эффект используется для демпфирования подвижных частей гальванометров, сейсмографов и других приборов без использования силы трения, а также в некоторых конструкциях тормозных систем железнодорожных поездов.

Применение [ | ]

Тепловое действие токов Фуко используется в индукционных печах , где в катушку, питаемую высокочастотным генератором большой мощности, помещают проводящее тело, в котором возникают вихревые токи, разогревающие его до плавления. Подобным образом работают индукционные плиты , в которых металлическая посуда разогревается вихревыми токами, создаваемыми переменным магнитным полем катушки, расположенной внутри плиты.

С помощью токов Фуко осуществляется прогрев металлических частей вакуумных установок для их дегазации.

В соответствии с правилом Ленца вихревые токи протекают внутри проводника по таким путям и направлениям, чтобы своим действием возможно сильнее противиться причине, которая их вызывает. Вследствие этого при движении в магнитном поле на хорошие проводники действует тормозящая сила, вызываемая взаимодействием вихревых токов с магнитным полем. Этот эффект используется в ряде приборов для демпфирования колебаний их подвижных частей.

Во многих случаях токи Фуко могут быть нежелательными. Для борьбы с ними принимаются специальные меры: с целью предотвращения потерь энергии на нагревание сердечников трансформаторов , эти сердечники набирают из тонких пластин, разделённых изолирующими прослойками (шихтовка). Появление

Индукционные токи, возникающие в массивных сплошных проводниках, называются вихревыми токами, или токами Фуко.

Сила вихревого тока удовлетворяет соотношению (15.5), где - потокосцепление замкнутого контура вихревого

R - электрическое сопротивление цепи этого тока.

В массивных проводниках R мало, и токи Фуко могут достигать большой силы даже в не очень быстро меняющихся магнитных полях.

В соответствии с правилом Ленца токи Фуко выбирают внутри проводника такой путь и направление, чтобы противодействовать изменению магнитного потока, индуцировавшего их. Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем. Это используют для демпфирования (успокоения) подвижных частей гальванометров, сейсмографов и других приборов.

Вихревые токи приводят к неравномерному распределению магнитного потока по сечению проводящего сердечника (рис. 15.6): при высокой частоте тока магнитный поток проходит лишь в тонком поверхностном слое сердечника.

Вихревые токи вызывают сильное нагревание проводников. Чтобы предотвратить потери энергии на нагревание сердечников трансформаторов и якорей генераторов, их делают не сплошными, а набирают из тонких пластин, разделенных изолирующими прослойками, располагая их перпендикулярно возможным направлением токов Фуко. (Появление ферритов (см. п. 13.10.1)- полупроводниковых магнитных материалов с большим удельным сопротивлением – сделало возможным изготовление сплошных сердечников).

Тепловое действие токов Фуко используется в индукционных печах. Индукционная печь представляет собой катушку, по обмотке которой пропускается ток высокой частоты. Внутрь катушки помещают тигель с веществом (металлом), в котором возникают интенсивные вихревые токи. Джоулево тепло, выделяемое в единицу времени вихревым током, пропорционально квадрату частоты изменения магнитного потока. Этим способом осуществляется плавление металлов в вакууме. В результате получаются сверхчистые материалы.

Вихревые токи возникают и в самих проводниках, по которым текут переменные токи: их направление определяется по правилу Ленца, как показано на рис. 15.7.

Р
ис. 15.7

В обоих случаях направление вихревых токов таково, что они противодействуют изменению первичного тока внутри проводника и способствуют его изменению вблизи поверхности. В результате быстропеременный ток как бы вытесняется на поверхность провода. Это явление называется скин-эффектом (от англ. skin – кожа) или поверхностным эффектом. Из-за скин-эффекта провода для токов высокой частоты делают полыми.

15.4. Явление самоиндукции. Индуктивность

Самоиндукцией называется явление возникновения э.д.с индукции в электрической цепи вследствие изменения в ней электрического тока.

Самоиндукция – частный случай электромагнитной индукции. При изменении электрического тока в каком-либо замкнутом контуре изменяется полный магнитный поток , обусловленный собственным магнитным полем этого тока. По основному закону электромагнитной индукции (15.4), в контуре возникает электродвижущая сила самоиндукции

. (15.6)

Из закона Био-Савара-Лапласа (12.10) следует, что магнитная индукция В поля замкнутого контура с током пропорциональна силе тока I , следовательно, полный магнитный поток тоже пропорционален силе тока, т.е.

. (15.7)

Коэффициент пропорциональности L между ними называется индуктивностью контура.

Выразим э.д.с. самоиндукции через индуктивность контура, подставив (15.7) в (15.6):

(15.8)

Если при изменении силы тока индуктивность остается постоянной (это возможно при отсутствии ферромагнетиков), т.е. L=const , то dL/dt=0 , и соотношение (15.8) примет вид

. (15.9)

По правилу Ленца э.д.с. самоиндукции противодействует изменению тока в контуре, то есть замедляет его возрастание или убывание. Это означает, что индуктивность контура является мерой его инертности в отношении изменения силы тока.

Индуктивность L контура зависит от его формы и размеров, а также от магнитных свойств (от) окружающей контур среды. Если контур жесткий и находится в однородной, изотропной, неферромагнитной среде, то его индуктивность является постоянной величиной.

За единицу индуктивности в системе СИ принимают индуктивность такого контура, у которого при силе тока в 1А возникает сцепленный с ним поток в 1Вб. Эту единицу называют генри (Гн):

Рассмотрим некоторые примеры.

Пример 1. Индуктивность тонкого соленоида.

Токами Фуко (или вихревыми токами) называют токи, имеющие индукционную природу, которые появляются в массивных проводниках в переменном магнитном поле. Замкнутые цепи вихревых токов появляются в глубине самого проводника. Электросопротивление массивного проводника невелико, следовательно, токи Фуко могут достигнуть большого значения. Сила вихревых токов зависит от формы и свойств материала проводника, направления переменного магнитного поля, скорости, с которой изменяется магнитный поток. Распределение токов Фуко в проводнике может быть очень сложным.

Количество тепла, которое выделяется за $1 с$ токами Фуко пропорционально квадрату частоты изменения магнитного поля.

По закону Ленца, токи Фуко выбирают такие направления, чтобы своим воздействовать причину, которая их вызывает. Значит, если проводник движется в магнитном поле, то он должен испытывать сильное торможение, которое вызвано взаимодействием токов Фуко и магнитного поля.

Приведем пример возникновения оков Фуко. Медный диск диаметром $5 см$, толщиной $6 мм$ заставим падать в узком зазоре между полюсами электромагнита. Если магнитное поле отключено, диск быстро падает. Включим электромагнит. Поле должно быть большим (порядка $0,5Тл$). Падение диска станет медленным и будет напоминать движение в очень вязкой среде.

Применение токов Фуко

Токи Фуко играют полезную роль в роторе асинхронного двигателя, который приводится во вращательное движение магнитным полем. Сама реализация принципа работы асинхронного двигателя требует появления токов Фуко.

Токи Фуко используют при демпфировании подвижных частей гальванометров, сейсмографов и ряда других приборов. Так, на подвижную часть прибора устанавливают пластинку - проводник в виде сектора. Она вводится в промежуток между полюсами сильного постоянного магнита. Когда пластинка движется, в ней появляются токи Фуко, это вызывает торможение системы. Причем торможение появляется только тогда, когда пластинка движется. Следовательно, подобного рода успокаивающее устройство не мешает точному приходу системы в состояние равновесия.

Теплоту, которая выделяется токами Фуко, используют в процессах разогрева. Так, плавка металлов с использованием токов Фуко является весьма выгодной в сравнении с другими методами разогрева. Так называемая индукционная печь представляет собой катушку, по которой идет ток высокой частоты и большой силы. Внутрь катушки помещают проводящее тело, в нем появляются вихревые токи большой интенсивности, которые и разогревают вещество до плавления. Так проводят плавление металлов в вакууме, что ведет к получению материалов высокой чистоты.

При использовании токов Фуко проводят прогрев внутренних металлических частей вакуумных установок с целью их обезгаживания.

Проблемы, которые вызывают вихревые токи. Скин - эффект

Токи Фуко могут играть не только полезную роль. Вихревые токи являются токами проводимости, и часть энергии рассеивают на выделение джоулевой теплоты. Такая энергия, например, в роторе асинхронного двигателя, который изготавливается, обычно из ферромагнетиков, нагревает сердечники, тем самым ухудшаются их характеристики. Для борьбы с таким явлением сердечники производят в виде тонких пластин, которые отделяются тонкими слоями изолятора и устанавливают пластины так, чтобы токи Фуко имели направление поперек пластин. При небольшой толщине пластин вихревые токи имеют малую объемную плотность. С появлением ферритов и веществ с большим магнитосопротивлением стало возможным изготовление сердечников сплошными.

Вихревые токи возникают в проводах, в которых текут переменные токи, причем направление токов Фуко таково, что они ослабляют ток внутри провода и усиливают его около поверхности. Следовательно, быстро изменяющийся ток распределен по сечению провода неравномерно. Такое явление называется скин - эффектом (поверхностным эффектом). Из-за этого явления внутренняя часть проводника становится бесполезной и в цепях с большой частотой используют трубки в качестве проводников. Скин - эффект может применяться для разогрева поверхностного слоя металла, что позволяет использовать это явление для закалки металла, причем, изменяя частоту поля, можно проводить закалку на любой необходимой глубине.

Приближенные формулы, которыми можно описать скин-эффект в однородном цилиндрическом проводнике:

Рисунок 1.

где $R_w$ - эффективное сопротивление проводника радиусом $r$ переменному току с циклической частотой $w$. $R_0$ - сопротивление проводника постоянному току.

где эффективная глубина проникновения переменного тока ($\delta $) (расстояние от поверхности проводника, на котором плотность тока уменьшается в $e=2,7\ $раз в сравнении с плотностью на его поверхности) равна:

$\mu $ - относительная магнитная проницаемость, ${\mu }_0$ - магнитная постоянная, $\sigma $ - удельная электропроводность проводника для постоянного тока. Чем толще проводник, тем существеннее скин - эффект, тем меньше величины $w$ и $\sigma $, при которых его следует учесть.

Пример 1

Задание: В опыте с центробежной машиной к ней прикрепили массивный медный диск, привели этот диск во вращение с большой скоростью. Над диском подвесили (без соприкосновения) магнитную стрелку. Что будет происходить со стрелкой, почему?

Решение:

Магнитная стрелка выступает в роли магнита, который создает магнитное поле, в этом поле вращается медный проводник. Следовательно, в проводнике возникают индукционные токи - токи Фуко. По правилу Ленца вихревые токи, взаимодействуя с магнитным полем, стремятся остановить вращение диска или в соответствии с третьим законом Ньютона увлечь за собой магнитную стрелку. Значит, магнитная стрелка, которая висит над диском, будет поворачиваться вслед за ним и закрутит подвес (нить).

Ответ: Магнитная стрелка будет вращаться, причина - вихревые токи.

Пример 2

Задание: Объясните, почему подземный кабель, по которому передается переменный ток нельзя прокладывать вблизи от металлических газовых и водопроводных труб?

Решение:

Под действием переменного тока вокруг кабеля возникает переменное магнитное поле, если в это поле попадает проводник (металлическая труба), то возникнут индукционные вихревые токи. Эти токи вызывают коррозию металлических труб. Кроме того наличие токов в трубах опасно, так как возникает возможность поражения током.

Пример 3

Задание: Маятник, изготовленный из толстой листовой меди, имеет форму усеченного сектора. Он подвешен на стержне и может совершать свободные колебания вокруг горизонтальной оси в магнитном поле между полюсами сильного электромагнита. В отсутствии магнитного поля маятник совершает колебания практически без затухания. Опишите колебания маятника в магнитном поле электромагнита. Как заставить маятник колебаться почти без затухания в присутствии магнитного поля?

Решение:

Если описанный массивный маятник, осуществляющий колебания, поместить в сильное магнитное поле, то в маятнике возникают токи Фуко. Эти токи по правилу Ленца тормозят движения маятника, амплитуда колебаний уменьшается, и сами колебания скоро прекращаются.

Для того чтобы уменьшить вихревые индукционные токи в маятнике, осуществляющем колебания в магнитном поле, можно его сплошной сектор заменить гребенкой с удлинёнными зубцами. Токи Фуко будут уменьшены, и маятник будет совершать колебания практически без затухания.

До сих пор мы рассматривали индукционные токи в линейных проводниках. Но индукционные токи будут возникать и в толще сплошных проводников при изменении в них потока вектора магнитной индукции . Они будут циркулировать в веществе проводника (напомним, что линии – замкнуты). Так как электрическое поле вихревое, то и токи называются вихревыми токами, или токами Фуко .

Если медную пластину отклонить от положения равновесия и отпустить так, чтобы она вошла со скоростью υ в пространство между полосами магнита, то пластина практически остановится в момент ее вхождения в магнитное поле (рис. 3.8).

Рис. 3.8 Рис. 3.9

Замедление движения связано с возбуждением в пластине вихревых токов, препятствующих изменению потока вектора магнитной индукции. Поскольку пластина обладает конечным сопротивлением, токи индукции постепенно затухают и пластина медленно двигается в магнитном поле. Если электромагнит отключить, то медная пластина будет совершать обычные колебания, характерные для маятника.

Сила и расположение вихревых токов очень чувствительны к форме пластины. Если заменить сплошную медную пластину «гребенкой» – медной пластиной с пропилами, то вихревые токи в каждой части пластины возбуждаются меньшими потоками. Индукционные токи уменьшаются, уменьшается и торможение (рис. 3.9). Маятник в виде гребенки колеблется в магнитном поле почти без сопротивления. Этим опытом объясняется, почему сердечники электромагнитов, трансформаторов делают не из сплошного куска железа, а набранными из тонких пластин, изолированных друг от друга. В результате уменьшаются токи Фуко и выделяемое ими тепло.

Если взять медный диск диаметром » 5 см и толщиной » 5 мм и уронить его между полюсами электромагнита, то при выключенном магните диск падает с обычным ускорением. При включении магнитного поля » 1 Тл падение диска резко замедляется и его движение напоминает падение тела в очень вязкой среде.

Тормозящее действие тока Фуко используется для создания магнитных успокоителей – демпферов. Если под качающейся в горизонтальной плоскости магнитной стрелкой расположить массивную медную пластину, то возбуждаемые в медной пластине токи Фуко будут тормозить колебание стрелки. Магнитные успокоители такого рода используются в сейсмографах, гальванометрах и других приборах.

Токи Фуко применяются в электрометаллургии для плавки металлов. Металл помещают в переменное магнитное поле, создаваемое током частотой 500 – 2000 Гц. В результате индуктивного разогрева металл плавится, а тигль, в котором он находится, при этом остается холодным. Например, при подведенной мощности 600 кВт тонна металла плавится за 40–50 минут.