Болезни Военный билет Призыв

Электрон является. Электрон (элементарная частица). Открытие новой частицы

У этого термина существуют и другие значения, см. Электрон (значения). «Электрон 2» «Электрон» серия из четырёх советских искусственных спутников Земли, запущенных в 1964 году. Цель … Википедия

Электрон - (Новосибирск,Россия) Категория отеля: 3 звездочный отель Адрес: 2 ой Краснодонский Переулок … Каталог отелей

- (символ е, е), первая элем. ч ца, открытая в физике; матер. носитель наименьшей массы и наименьшего электрич. заряда в природе. Э. составная часть атомов; их число в нейтр. атоме равно ат. номеру, т. е. числу протонов в ядре. Заряд (е) и масса… … Физическая энциклопедия

Электрон - (Москва,Россия) Категория отеля: 2 звездочный отель Адрес: Проспект Андропова 38 строение 2 … Каталог отелей

Электрон - (e , e) (от греческого elektron янтарь; вещество, легко электризующееся при трении), стабильная элементарная частица с отрицательным электрическим зарядом e=1,6´10 19 Кл и массой 9´10 28 г. Относится к классу лептонов. Открыт английским физиком… … Иллюстрированный энциклопедический словарь

- (е е), стабильная отрицательно заряженная элементарная частица со спином 1/2, массой ок. 9.10 28 г и магнитным моментом, равным магнетону Бора; относится к лептонам и участвует в электромагнитном, слабом и гравитационном взаимодействиях.… …

- (обозначение е), устойчивая ЭЛЕМЕНТАРНАЯ ЧАСТИЦА с отрицательным зарядом и массой покоя 9,1310 31 кг (что составляет 1/1836 от массы ПРОТОНА). Электроны были обнаружены в 1879 г. английским физиком Джозефом Томсоном. Они движутся вокруг ЯДРА,… … Научно-технический энциклопедический словарь

Сущ., кол во синонимов: 12 дельта электрон (1) лептон (7) минерал (5627) … Словарь синонимов

Искусственный спутник Земли, созданный в СССР для изучения радиационных поясов и магнитного поля Земли. Запускались парами один по траектории, лежащей ниже, а другой выше радиационных поясов. В 1964 запущено 2 пары Электронов … Большой Энциклопедический словарь

ЭЛЕКТРОН, элктрона, муж. (греч. elektron янтарь). 1. Частица с наименьшим отрицательным электрическим зарядом, образующая в соединении с протоном атом (физ.). Движение электронов создает электрический ток. 2. только ед. Легкий магниевый сплав,… … Толковый словарь Ушакова

ЭЛЕКТРОН, а, м. (спец.). Элементарная частица с наименьшим отрицательным электрическим зарядом. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Книги

  • Электрон. Энергия Космоса , Ландау Лев Давидович, Китайгородский Александр Исаакович. Книги лауреата Нобелевской премии Льва Ландау и Александра Китайгородского - тексты, переворачивающие обывательское представление об окружающем мире. Большинство из нас, постоянно сталкиваясь…
  • Электрон. Энергия космоса , Ландау Л., Китайгородский А.. Книги лауреата Нобелевской премии Льва Ландау и Александра Китайгородского тексты, переворачивающие обывательское представление об окружающем мире. Большинствоиз нас, постоянно сталкиваясь с…

Содержание статьи

ЭЛЕКТРОН, элементарная частица с отрицательным электрическим зарядом, входящая в состав всех атомов, а следовательно, и любого обычного вещества. Это – самая легкая из электрически заряженных частиц. Электроны участвуют почти во всех электрических явлениях. В металле часть электронов не связана с атомами и может свободно перемещаться, благодаря чему металлы хорошо проводят электричество. В плазме, т.е. ионизованном газе, положительно заряженные атомы также перемещаются свободно, но, имея гораздо большую массу, движутся значительно медленнее электронов, а потому вносят меньший вклад в электрический ток. Благодаря малой массе электрон оказался частицей, наиболее вовлеченной в развитие квантовой механики, частной теории относительности и их объединение – релятивистскую квантовую теорию поля. Считается, что в настоящее время полностью известны уравнения, описывающие поведение электронов во всех реально осуществимых физических условиях. (Правда, решение этих уравнений для систем, содержащих большое число электронов, таких, как твердое тело и конденсированная среда, все еще сопряжено с трудностями.)

Все электроны тождественны и подчиняются статистике Ферми – Дирака . Это обстоятельство выражается в принципе Паули, согласно которому два электрона не могут находиться в одном и том же квантовом состоянии. Одно из следствий принципа Паули заключается в том, что состояния наиболее слабо связанных электронов – валентных электронов, определяющих химические свойства атомов, – зависят от атомного номера (зарядового числа), который равен числу электронов в атоме. Атомный номер равен также заряду ядра, выраженному в единицах заряда протона е . Другое следствие состоит в том, что электронные «облака», окутывающие ядра атомов, сопротивляются их перекрытию, вследствие чего обычное вещество обладает свойством занимать определенное пространство. Как и полагается элементарной частице, число основных характеристик электрона невелико, а именно масса (m e » 0,51 МэВ » 0,91Ч 10 –27 г), заряд (- e » - 1,6Ч 10 –19 Кл) и спин (1 / 2 ћ » 1/ 2 Ч 0,66Ч 10 –33 ДжЧ с, где – постоянная Планка h , деленная на 2p ). Через них выражаются все остальные характеристики электрона, например магнитный момент (» 1,001m 3 » 1,001Ч 0,93Ч 10 –23 Дж/Тл), за исключением еще двух констант, характеризующих слабое взаимодействие электронов (см . ниже ).

Первые указания на то, что электричество не является непрерывным потоком, а переносится дискретными порциями, были получены в опытах по электролизу. Результатом явился один из законов Фарадея (1833): заряд каждого иона равен целому кратному заряда электрона, называемого ныне элементарным зарядом е . Наименование «электрон» вначале относилось к этому элементарному заряду. Электрон же в современном смысле слова был открыт Дж.Томсоном в 1897. Тогда было уже известно, что при электрическом разряде в разреженном газе возникают «катодные лучи», несущие отрицательный электрический заряд и идущие от катода (отрицательно заряженного электрода) к аноду (положительно заряженному электроду). Исследуя влияние электрического и магнитного полей на пучок катодных лучей, Томсон пришел к выводу: если предположить, что пучок состоит из частиц, заряд которых не превышает элементарного заряда ионов е , то масса таких частиц будет в тысячи раз меньше массы атома. (Действительно, масса электрона составляет примерно 1/1837 массы легчайшего атома, водорода.) Незадолго до этого Х.Лоренц и П.Зееман уже получили доказательства того, что электроны входят в состав атомов: исследования воздействия магнитного поля на атомные спектры (эффект Зеемана) показали, что у заряженных частиц в атоме, благодаря наличию которых свет взаимодействует с атомом, отношение заряда к массе такое же, как и установленное Томсоном для частиц катодных лучей.

Первая попытка описать поведение электрона в атоме связана с моделью атома Бора (1913). Представление о волновой природе электрона, выдвинутое Л.де Бройлем (1924) (и подтвержденное экспериментально К.Дэвиссоном и Л.Джермером в 1927), послужило основой волновой механики, разработанной Э.Шрёдингером в 1926. Одновременно на основании анализа атомных спектров С.Гаудсмитом и Дж.Уленбеком (1925) был сделан вывод о наличии у электрона спина. Строгое волновое уравнение для электрона было получено П.Дираком (1928). Уравнение Дирака согласуется с частной теорией относительности и адекватно описывает спин и магнитный момент электрона (без учета радиационных поправок).

Из уравнения Дирака вытекало существование еще одной частицы – положительного электрона, или позитрона, с такими же значениями массы и спина, как у электрона, но с противоположным знаком электрического заряда и магнитного момента. Формально уравнение Дирака допускает существование электрона с полной энергией либо і 2 ( 2 – энергия покоя электрона), либо Ј – 2 ; отсутствие радиационных переходов электронов в состояния с отрицательными энергиями можно было объяснить, предположив, что эти состояния уже заняты электронами, так что, согласно принципу Паули, для дополнительных электронов нет места. Если из этого дираковского «моря» электронов с отрицательными энергиями удалить один электрон, то возникшая электронная «дырка» будет вести себя как положительно заряженный электрон. Позитрон был обнаружен в космических лучах К.Андерсоном (1932).

По современной терминологии электрон и позитрон являются античастицами по отношению друг к другу. Согласно релятивистской квантовой механике, для частиц любого вида существуют соответствующие античастицы (античастица электрически нейтральной частицы может совпадать с ней). Отдельно взятый позитрон столь же стабилен, как и электрон, время жизни которого бесконечно, поскольку не существует более легких частиц с зарядом электрона. Однако в обычном веществе позитрон рано или поздно соединяется с электроном. (Вначале электрон и позитрон могут на короткое время образовать «атом», так называемый позитроний, сходный с атомом водорода, в котором роль протона выполняет позитрон.) Такой процесс соединения называется электрон-позитронной аннигиляцией; в нем полная энергия, импульс и момент импульса сохраняются, а электрон и позитрон превращаются в гамма-кванты, или фотоны, – обычно их два. (С точки зрения «моря» электронов данный процесс представляет собой радиационный переход электрона в так называемую дырку – незанятое состояние с отрицательной энергией.) Если скорости электрона и позитрона не очень велики, то энергия каждого из двух гамма-квантов приблизительно равна 2 . Это характеристическое излучение аннигиляции позволяет обнаруживать позитроны. Наблюдалось, например, такое излучение, исходящее из центра нашей Галактики. Обратный процесс превращения электромагнитной энергии в электрон и позитрон называется рождением электрон-позитронной пары. Обычно гамма-квант с высокой энергией «конвертируется» в такую пару, пролетая вблизи атомного ядра (электрическое поле ядра необходимо, поскольку при превращении отдельно взятого фотона в электрон-позитронную пару были бы нарушены законы сохранения энергии и импульса). Еще один пример – распад первого возбужденного состояния ядра 16 О, изотопа кислорода.

Испусканием электронов сопровождается один из видов радиоактивности ядер. Это бета-распад – процесс, обусловленный слабым взаимодействием, при котором нейтрон в исходном ядре превращается в протон. Наименование распада происходит от названия «бета-лучи», исторически присвоенного одному из видов радиоактивных излучений, которое, как потом выяснилось, представляет собой быстрые электроны. Энергия электронов этого излучения не имеет фиксированного значения, поскольку (в соответствии с гипотезой, выдвинутой Э.Ферми) при бета-распаде вылетает еще одна частица – нейтрино, уносящая часть энергии, выделяющейся при ядерном превращении. Основной процесс таков:

Нейтрон ® протон + электрон + антинейтрино.

Испускаемый электрон не содержится в нейтроне; появление электрона и антинейтрино представляет собой «рождение пары» из энергии и электрического заряда, освобождающихся при ядерном превращении. Существует также бета-распад с испусканием позитронов, при котором находящийся в ядре протон превращается в нейтрон. Подобные превращения могут также происходить в результате поглощения электрона; соответствующий процесс называется К -захватом. Электроны и позитроны испускаются при бета-распаде и других частиц, например мюонов.

Роль в науке и технике.

Быстрые электроны широко применяются в современной науке и технике. Они используются для получения электромагнитного излучения, например рентгеновского, возникающего в результате взаимодействия быстрых электронов с веществом, и для генерации синхротронного излучения, возникающего при их движении в сильном магнитном поле. Ускоренные электроны применяют и непосредственно, например в электронном микроскопе, или при более высоких энергиях – для зондирования ядер. (В таких исследованиях была обнаружена кварковая структура ядерных частиц.) Электроны и позитроны сверхвысоких энергий используются в электрон-позитронных накопительных кольцах – установках, аналогичных ускорителям элементарных частиц. За счет их аннигиляции накопительные кольца позволяют с высокой эффективностью получать элементарные частицы с очень большой массой.

Можно сравнить с облачком. Это связано с тем, что электроны обладают свойствами не только частиц, «кусочков» материи, но и свойствами . Электронные облачка слоями окружают ядро и расположены на строго определённых от него расстояниях. Учёные долго не могли объяснить, почему промежутки между ядром и электронами так строго определены и почему вообще каждый атом со всеми его электронными оболочками имеет всегда одни и те же размеры. Ответ на эту загадку тоже связан, как выяснилось, с волновыми свойствами электронов, с тем, что все части атома имеют свои постоянные места.

Но не думай, что электроны навечно закреплены на этих местах. Нет, они могут перескакивать с одной оболочки на другую. При этом происходят удивительные вещи.

Если электрон удаляется от ядра, его возрастает, если приближается- убывает. Это изменение энергии происходит не постепенно, а внезапно, скачком. Энергия прибавляется или убавляется совершенно определёнными порциями, которые называются квантами. Значит, перескакивая ближе к ядру, электрон выделяет один квант энергии, а чтобы уйти дальше от ядра, он должен, наоборот, получить откуда-то, «поглотить» один квант.

Что же это за кванты? Если ты уже читал рассказ « », то, вероятно, обратил внимание, что свет - это одновременно и волны, и частицы, которые носят название фотонов. Вот фотоны - это и есть кванты света, то есть наименьшие порции излучения.

Теперь тебе, должно быть, стало понятнее то, о чём коротко упомянуто в рассказе о свете, понятнее, как происходит излучение и поглощение света. Перескакивая ближе к ядру, электроны излучают свет. А когда вещество поглощает свет, они перескакивают на орбиты дальше от ядра. При этом электроны обогащаются энергией, и вещество нагревается. Чем энергичнее электроны движутся, тем чаще совершают скачки, тем выше температура тела. Вот почему, поглощая много света, вещество нагревается сильнее.

У каждого вещества своё расстояние между электронными оболочками и, значит, своя величина квантов, своя длина излучаемых световых волн, то есть свой цвет световых волн. И поэтому же каждое вещество лучше всего поглощает какие-то определённые лучи: одно - красные, другое - зелёные, а третье - невидимые ультрафиолетовые.

Электроны не только перескакивают с орбиты на орбиту, иногда они совсем отрываются от атома. Например, в металле все атомы отдают часть своих электронов «в общий котёл». Эти свободные электроны движутся между атомами, переносят и электрический ток.

Наконец, электроны порой вообще покидают своё вещество, тогда они могут лететь в пространстве с огромной скоростью. И тут опять проявляется сложная, противоречивая природа электрона.

Экран телевизора светится потому, что изнутри на него направлен электронный луч. Этот луч можно опускать и поднимать, сдвигать вправо или влево. Электроны при этом ведут себя как частицы, которые послушно летят точно туда, куда их посылают.

Такой же поток электронов будет двигаться совсем иначе, если его направить внутрь вещества. Пролетая между атомами или приближаясь к ним, этот поток может огибать препятствия, как волны на воде. Электрон, как всегда, непостоянен: то он похож на частицу, то на волну. Это зависит от размеров предметов, среди которых он движется. Телевизионная трубка относительно велика- там электрон - частица. Расстояние между атомами вещества несравнимо меньше - там электрон скорее волна.

Чтобы получить поток электронов, надо, например, нагреть вещество, как нагревают катод электронной лампы (об этом говорится в рассказах «Радио» и « »). Это значит, что надо затратить энергию. И от атома оторвать электрон часто совсем непросто, для этого нужна энергия - ведь электроны довольно прочно удерживаются в атоме.

Ты можешь спросить: а что держит их в атоме? Почему они не улетают прочь? Напомним: и электроны, и ядро имеют электрические заряды, и притом не одинаковые, а разные: ядро заряжено положительно, а электроны - отрицательно. Такие разноимённые, как их называют, заряды притягивают друг друга.

Электрон - это как бы единица отрицательного электричества, он имеет самый маленький из всех возможных отрицательных зарядов. Если ты прочтёшь рассказ « », увидишь, какую пользу приносит людям это свойство электрона, и узнаешь, как родилось его имя.

<-- -->
  • Ассоциативные примеры процесса эзоосмоса, передачи и распределения энергии и информации
  • Электрон
  • Формулы реакций, лежащие в основе управляемого термоядерного синтеза
  • Электрон


    Несмотря на то, что электрон является первой открытой элементарной частицей в физике (английским физиком Джозефом Томсоном в 1897 году), до сих пор природа электрона остаётся загадочной для учёных. Теория электрона считается не законченной, поскольку ей присущи внутренние логические противоречия и множество вопросов, на которые у официальной науки пока нет ответов.

    Название данной элементарной частицы было предложено в 1891 году ирландским физиком Джорджем Стоуни (George Stoney; 1826 – 1911) в качестве «фундаментальной единицы измерения электроэнергии». Слово «электрон» происходит от греческого слова «electron», что означает «янтарь». (Как известно, янтарь ‒ это затвердевшая ископаемая смола. При трении янтарь приобретает электрический заряд и притягивает лёгкие тела. Это свойство было известно с давних времён разным народам. Например, судя по сохранившимся сведениям, в Древней Греции о свойствах янтаря знали ещё в 600 году до н.э.). Учёные условились между собой считать электрический заряд электрона отрицательным в соответствии с более ранним соглашением называть отрицательным заряд наэлектризованного янтаря.

    Электрон является составной частью атома, одним из основных структурных элементов вещества. Электроны образуют электронные оболочки атомов всех известных на сегодняшний день химических элементов. Они участвуют почти во всех электрических явлениях, о которых ведают ныне учёные. Но что такое электричество на самом деле, официальная наука до сих пор не может объяснить, ограничиваясь общими фразами, что это, например, «совокупность явлений, обусловленных существованием, движением и взаимодействием заряженных тел или частиц носителей электрических зарядов». Известно, что электричество не является непрерывным потоком, а переносится порциями ‒ дискретно.

    Практически все основные сведения об электроне, которыми наука пользуется до сих пор, были получены на рубеже конца XIX ‒ начала XX веков. В том числе это касается и представления о волновой природе электрона (достаточно вспомнить работы Николы Тесла и его исследование вопроса о генерировании и беспроводной передаче энергии на расстояние). Однако согласно официальной истории физики, оно было выдвинуто в 1924 году французским физиком-теоретиком, одним из основоположников квантовой механики Луи де Бройлем (Louis de Broglie; 1892 – 1987; выходец из известной во Франции аристократической семьи). А экспериментально подтверждено в 1927 году американскими учёными Клинтоном Дэвиссоном (Clinton Davisson; 1881–1958) и Лестером Джермером (Lester Germer; 1896 –1971) в эксперименте по дифракции электронов. Слово «дифракция» образовано от латинского слова «diffractus», что буквально означает «переломанный, разломанный, огибание препятствия волнами». Дифракция ‒ это явление распространения волны, например, луча света, при прохождении сквозь узкое отверстие или при попадании на край препятствия. Представление о волновой природе электрона послужило основой для разработки волновой механики австрийским физиком-теоретиком, одним из создателей квантовой механики Эрвином Шрёдингером (Erwin Schrödinger; 1887–1961) в 1926 году. С тех пор официальная наука ненамного продвинулась в изучении природы электрона.

    В ДЕЙСТВИТЕЛЬНОСТИ ЭЛЕКТРОН состоит из 13 фантомных частичек По и имеет уникальное строение. Подробные знания об электроне здесь специально опущены, поскольку информация излагается публично и данные знания могут представлять опасность в случае, если они попадут в руки людей, желающих создать новый вид вооружения. Отметим лишь, что электрон имеет необычные свойства. То, что сегодня называют электричеством ‒ это на самом деле особое состояние септонного поля, в процессах которого электрон в большинстве случаев принимает участие наравне с другими его дополнительными «компонентами».

    Интересные сведения, свидетельствующие об уникальности электрона, были изложены в книге «АллатРа»:

    «Анастасия : А как Наблюдатель может внести изменения своим наблюдением?
    Ригден : Чтобы был понятен ответ на этот вопрос, давай совершим небольшой экскурс в квантовую физику. Чем больше учёные изучают вопросы, которые ставит эта наука, тем больше приходят к выводу, что всё в мире очень тесно взаимосвязано и существует не локально. Те же элементарные частицы существуют связанно между собой. Согласно теории квантовой физики, если одновременно спровоцировать образование двух частиц, то они не только будут находиться в состоянии «суперпозиции», то есть одновременно во множестве мест. Но ещё и изменение состояния одной частицы приведёт к мгновенному изменению состояния другой частицы, на каком бы расстоянии от неё она не находилась, даже если это расстояние превышает пределы действия всех известных современному человечеству сил в природе.
    Анастасия : А в чём секрет такой мгновенной взаимосвязи?
    Ригден : Сейчас объясню. Рассмотрим, например, электрон. Он состоит из информационных кирпичиков (или как их именовали древние - «зёрнышек По»), которые задают ему основные характеристики, в том числе и определяют его внутренний потенциал. По современным представлениям электрон двигается вокруг ядра атома как бы по «стационарной орбите» (орбитали). Точнее, его движение уже сейчас представляют не в виде материальной точки с заданной траекторией, а в виде электронного облака (условного изображения электрона, «размазанного» по всему объёму атома), имеющего области сгущения и разряжения электрического заряда. Электронное облако, как таковое, не имеет резких границ. Под орбитой (орбиталью) имеют в виду не движение электрона по какой-то конкретной линии, а некую часть пространства, область вокруг ядра атома, где сохраняется наибольшая вероятность местонахождения электрона в атоме (атомная орбиталь) или в молекуле (молекулярная орбиталь).


    Так вот, электрон, как известно, в материальном мире может существовать в двух состояниях одновременно: частицы и волны . Он может проявляться сразу в разных местах, согласно той же квантовой физике. Уходя или точнее исчезая со своей атомной орбиты, электрон мгновенно перемещается, то есть здесь исчезает, а на другой орбите проявляется.

    Но, что самое интересное в этом вопросе, так это то, о чём учёные пока ещё не знают. Рассмотрим, например, электрон атома водорода - элемента, который входит в состав воды, живых организмов, природных ископаемых и является одним из распространённых элементов в космосе. Электронное облако, расположенное вокруг ядра атома водорода, представляет собой форму шара. Это то, что может зафиксировать на современном этапе наука. Но учёные пока не знают, что электрон сам по себе закручен в спираль . Причём эта спираль (одна и та же) может быть закручена как в левую, так и правую сторону в зависимости от расположения на ней заряда. Вот именно благодаря такой спиралевидной форме и изменению места концентрации заряда этот электрон легко переходит из состояния частицы в волну и наоборот.

    Приведу образный пример. Представь, что в твоих руках апельсин. С помощью ножа ты аккуратно снимаешь с него кожуру цельно, по кругу, как бы по спирали, двигаясь от одной его вершины, скажем условно, от точки А к другой - точке Б. Если такую кожуру отделить от апельсина, то в привычном сложенном виде она будет представлять собой форму шара, повторяя контуры апельсина. А если её растянуть, то она будет похожа на волнообразную верёвку. Так вот, оранжевая сторона кожуры апельсина будет представлять собой в нашем образном примере спираль электрона, где на поверхности в районе точки А находится внешний заряд, а в районе точки Б изнутри (на белой стороне кожуры) - внутренний заряд. Любое внешнее изменение в точке А (на оранжевой стороне кожуры) приведёт к такому же мгновенному внутреннему, но противоположному по силе и воздействию, изменению в точке, расположенной на белой стороне кожуры под вершиной Б. Как только спадает внешний заряд электрона, то под воздействием внутреннего потенциала спираль растягивается и электрон переходит в состояние волны. Когда же снова появляется внешний заряд, который образуется вследствие взаимодействия волны с материей, спираль сжимается, и электрон опять переходит в состояние частички. В состоянии частички электрон имеет внешний отрицательный заряд и левостороннюю спираль, а в состоянии волны правостороннюю спираль и внешний положительный заряд. И всё это преобразование происходит благодаря эзоосмосу.

    Наблюдатель с позиции трёхмерного измерения может при создании определённых технических условий видеть электрон как частицу. Но Наблюдатель с позиции высших измерений, который будет видеть наш материальный мир в виде энергий, сможет наблюдать другую картину строения того же электрона. В частности, что информационные кирпичики, образующие этот электрон, будут проявлять исключительно свойства энергетической волны (растянутой спирали). Причём эта волна будет бесконечна в пространстве. Проще говоря, положение самого электрона в общей системе реальности таково, что он будет находиться везде в материальном мире.

    Анастасия : Можно сказать, что он будет существовать, вне зависимости от того, видим мы его как Наблюдатели трёхмерного мира или нет?

    Ригден : Да. Для того чтобы это понять, давай рассмотрим ещё один пример - с зеркалом. Допустим, несколько фундаментальных информационных кирпичиков образуют структуру, которая представляет собой локальную точку, некий объект. Поместим его посреди комнаты, в которой под определённым углом во множестве расставлены зеркала таким образом, что он отражается в каждом из них. Итак, объект находится посредине комнаты, отражается в каждом зеркале, к тому же мы видим его, следовательно, информация о нём есть и в нашем сознании. Одним словом, информация об этом объекте одновременно присутствует в нескольких местах. И если мы уберём одно из зеркал, то в том месте мы не будем наблюдать данный объект. Но когда вернём зеркало, он вновь появится. Значит в принципе, информация о нём не исчезала. Просто при определённых условиях проявления информации мы видим объект, изменились условия - мы его не видим. Однако объективно данный объект продолжает существовать в том месте в информационном плане. Отражение может иметь непрерывный поток, значит, этот объект есть в каждой точке данной комнаты (и, кстати, не только комнаты, но и пространства, выходящего за переделы комнаты), вне зависимости от того, видим мы его или нет.

    Согласно квантовой физике, пребывание электрона в состоянии частицы зависит от самого акта измерения или наблюдения. Другими словами неизмеряемый и ненаблюдаемый электрон ведёт себя не как частица, а как волна. В этом случае для него существует целое поле вероятностей, так как он находится здесь и сейчас во множестве мест одновременно, то есть в состоянии суперпозиции. При этом, несмотря на то, что электрон занимает множественное положение, это будет один и тот же электрон и одна и та же волна. Суперпозиция - это возможность одновременного нахождения во всех возможных альтернативных состояниях, пока не сделан выбор, пока Наблюдатель не совершил измерение (вычисление данного объекта). Как только Наблюдатель фокусирует внимание на поведении электрона, как он, в смысле электрон, сразу же схлопывается в частицу, то есть превращается из волны в материальный объект, положение которого можно локализовать. Словом, после измерения, так сказать, выбора Наблюдателя, один объект будет находиться только в одном месте.

    Анастасия : О, это интересная информация! Выводы квантовой физики, оказывается, ценны для тех, кто занимается самосовершенствованием. Это в некотором роде объясняет причину, почему у человека не получается медитация. Ведь что способствует, так сказать, «материализации» процесса медитации, то есть перехода из волнового в материальное состояние, в котором энергия вновь приобретает свойства материи? Именно наблюдение и контроль от Животного начала. Другими словами, не получается медитация тогда, когда включаются мыслительные процессы, свойственные привычному, ежедневному состоянию сознания. При этом мозг всё время пытается что-то идентифицировать и локализовать объект наблюдения. Такая ситуация развивается тогда, когда во время медитации Личность недостаточно погружается в изменённое состояние сознания или же утрачивает контроль за этим состоянием. Это позволяет Животному началу вмешаться в процесс наблюдения, вследствие чего рождаются ассоциативные образы и утрачивается Истина. Волна переходит в материю. Но как только ты «отключаешь мозг» с его мыслительными процессами и полноценно включаешься в медитацию, благодаря проявлению своих глубоких чувств, то происходит расширение сознания и наблюдаемая от Духовного начала материя превращается в волну. Ты сливаешься с настоящей реальностью мира, становишься единым целым с ним, одновременно ощущаешь всё его разнообразие, словно тебя много и ты везде. Тогда и происходит настоящая медитация, как процесс познания Истины.

    Ригден : Совершенно верно. Мир Животного начала - это мир главенствования материи и её законов. Мир Бога - это мир совершенных энергий. Когда ты находишься в медитации, в изменённом состоянии сознания, то становишься частью процесса, частью божественного проявления здесь. Как только в тебе включается Наблюдатель от Животного начала, то тебе кажется, что устанавливается факт твоего контроля над материей. На самом деле устанавливается факт контроля над тобой со стороны материи (Животного Разума). В результате ты становишься всего лишь более проявленным материальным объектом, по сути, превращаешься в корпускулярный объект общей материи (корпускула, от латинского corpusculum - «тельце», «мельчайшая частица материи») и подчиняешься её законам. Если ты переключаешься в состояние волны, ты становишься частью божественного проявления в этом мире, то есть Наблюдателем от Духовного начала. Почему и говорится: чего в тебе больше, тем ты и будешь.

    В состоянии медитации исчезает обычное восприятие. У опытного медитирующего, в частности, если рассмотреть его состояние в духовной практике «Цветок лотоса», действительно сознание значительно расширяется, выходит за границы привычного мира. Человек ощущает, что он одновременно находится везде. Можно сказать, что суперпозиция в квантовой физике, приобретение состояния волны, это всё равно, что в медитации приобретение состояния выхода в высшие измерения, где материя уже отсутствует. Суперпозиция в состоянии медитации, это когда ты «видишь», в смысле ощущаешь глубинными чувствами, весь мир и его разнообразные проявления. Но как только Наблюдатель концентрируется на каком-то объекте, его сознание сужается и ограничивается объектом наблюдения. То есть, как только ты делаешь выбор и сосредотачиваешься на конкретных деталях, волна преобразуется в материю. Ведь когда ты концентрируешься на деталях, то объёмное восприятие исчезает, и остаются только детали. Мысли от Животного начала - это своеобразный инструмент, сила для материализации объектов, а чувства от Духовного начала - это сила для расширения сознания, выхода в высшие измерения.

    Анастасия : Да, насколько сложен этот мир и как очевидны в нём могут быть простые вещи.

    Ригден : Так вот, касательно квантовой физики… С одной стороны, это понятие о Наблюдателе расширило границы познания учёных, с другой - завело в тупик. Ведь позиция Супернаблюдателя доказывает, что существует некая огромная сила, которая способна оказывать влияние извне на Вселенную, на все её объекты и все процессы, происходящие в ней.

    Анастасия : Фактически это ещё один путь научного доказательства существования Бога?

    Ригден : Да. Человек имеет Душу, как частицу божественной силы. Чем больше он преобразовывает свой внутренний мир, чем больше его Личность сливается с Душой, раскрываясь перед Богом, тем он становится духовно сильнее и получает возможность влияния на материальный мир из высших измерений. А чем больше таких людей, тем значительнее и масштабнее это влияние. Супернаблюдатель - это Бог, который может влиять на всё. А человек, как Наблюдатель от Духовного начала, - это Наблюдатель, который может вмешиваться в процессы мира и менять их на микроуровне. Людям, конечно, доступны определённые манипуляции с материей и с позиции Наблюдателя от Животного начала. Но человек получает настоящую силу влияния только тогда, когда включается его Наблюдатель от Духовного начала».

    Содержание статьи

    ЭЛЕКТРОН, элементарная частица с отрицательным электрическим зарядом, входящая в состав всех атомов, а следовательно, и любого обычного вещества. Это – самая легкая из электрически заряженных частиц. Электроны участвуют почти во всех электрических явлениях. В металле часть электронов не связана с атомами и может свободно перемещаться, благодаря чему металлы хорошо проводят электричество. В плазме, т.е. ионизованном газе, положительно заряженные атомы также перемещаются свободно, но, имея гораздо большую массу, движутся значительно медленнее электронов, а потому вносят меньший вклад в электрический ток. Благодаря малой массе электрон оказался частицей, наиболее вовлеченной в развитие квантовой механики, частной теории относительности и их объединение – релятивистскую квантовую теорию поля. Считается, что в настоящее время полностью известны уравнения, описывающие поведение электронов во всех реально осуществимых физических условиях. (Правда, решение этих уравнений для систем, содержащих большое число электронов, таких, как твердое тело и конденсированная среда, все еще сопряжено с трудностями.)

    Все электроны тождественны и подчиняются статистике Ферми – Дирака . Это обстоятельство выражается в принципе Паули, согласно которому два электрона не могут находиться в одном и том же квантовом состоянии. Одно из следствий принципа Паули заключается в том, что состояния наиболее слабо связанных электронов – валентных электронов, определяющих химические свойства атомов, – зависят от атомного номера (зарядового числа), который равен числу электронов в атоме. Атомный номер равен также заряду ядра, выраженному в единицах заряда протона е . Другое следствие состоит в том, что электронные «облака», окутывающие ядра атомов, сопротивляются их перекрытию, вследствие чего обычное вещество обладает свойством занимать определенное пространство. Как и полагается элементарной частице, число основных характеристик электрона невелико, а именно масса (m e » 0,51 МэВ » 0,91Ч 10 –27 г), заряд (- e » - 1,6Ч 10 –19 Кл) и спин (1 / 2 ћ » 1/ 2 Ч 0,66Ч 10 –33 ДжЧ с, где – постоянная Планка h , деленная на 2p ). Через них выражаются все остальные характеристики электрона, например магнитный момент (» 1,001m 3 » 1,001Ч 0,93Ч 10 –23 Дж/Тл), за исключением еще двух констант, характеризующих слабое взаимодействие электронов (см . ниже ).

    Первые указания на то, что электричество не является непрерывным потоком, а переносится дискретными порциями, были получены в опытах по электролизу. Результатом явился один из законов Фарадея (1833): заряд каждого иона равен целому кратному заряда электрона, называемого ныне элементарным зарядом е . Наименование «электрон» вначале относилось к этому элементарному заряду. Электрон же в современном смысле слова был открыт Дж.Томсоном в 1897. Тогда было уже известно, что при электрическом разряде в разреженном газе возникают «катодные лучи», несущие отрицательный электрический заряд и идущие от катода (отрицательно заряженного электрода) к аноду (положительно заряженному электроду). Исследуя влияние электрического и магнитного полей на пучок катодных лучей, Томсон пришел к выводу: если предположить, что пучок состоит из частиц, заряд которых не превышает элементарного заряда ионов е , то масса таких частиц будет в тысячи раз меньше массы атома. (Действительно, масса электрона составляет примерно 1/1837 массы легчайшего атома, водорода.) Незадолго до этого Х.Лоренц и П.Зееман уже получили доказательства того, что электроны входят в состав атомов: исследования воздействия магнитного поля на атомные спектры (эффект Зеемана) показали, что у заряженных частиц в атоме, благодаря наличию которых свет взаимодействует с атомом, отношение заряда к массе такое же, как и установленное Томсоном для частиц катодных лучей.

    Первая попытка описать поведение электрона в атоме связана с моделью атома Бора (1913). Представление о волновой природе электрона, выдвинутое Л.де Бройлем (1924) (и подтвержденное экспериментально К.Дэвиссоном и Л.Джермером в 1927), послужило основой волновой механики, разработанной Э.Шрёдингером в 1926. Одновременно на основании анализа атомных спектров С.Гаудсмитом и Дж.Уленбеком (1925) был сделан вывод о наличии у электрона спина. Строгое волновое уравнение для электрона было получено П.Дираком (1928). Уравнение Дирака согласуется с частной теорией относительности и адекватно описывает спин и магнитный момент электрона (без учета радиационных поправок).

    Из уравнения Дирака вытекало существование еще одной частицы – положительного электрона, или позитрона, с такими же значениями массы и спина, как у электрона, но с противоположным знаком электрического заряда и магнитного момента. Формально уравнение Дирака допускает существование электрона с полной энергией либо і 2 ( 2 – энергия покоя электрона), либо Ј – 2 ; отсутствие радиационных переходов электронов в состояния с отрицательными энергиями можно было объяснить, предположив, что эти состояния уже заняты электронами, так что, согласно принципу Паули, для дополнительных электронов нет места. Если из этого дираковского «моря» электронов с отрицательными энергиями удалить один электрон, то возникшая электронная «дырка» будет вести себя как положительно заряженный электрон. Позитрон был обнаружен в космических лучах К.Андерсоном (1932).

    По современной терминологии электрон и позитрон являются античастицами по отношению друг к другу. Согласно релятивистской квантовой механике, для частиц любого вида существуют соответствующие античастицы (античастица электрически нейтральной частицы может совпадать с ней). Отдельно взятый позитрон столь же стабилен, как и электрон, время жизни которого бесконечно, поскольку не существует более легких частиц с зарядом электрона. Однако в обычном веществе позитрон рано или поздно соединяется с электроном. (Вначале электрон и позитрон могут на короткое время образовать «атом», так называемый позитроний, сходный с атомом водорода, в котором роль протона выполняет позитрон.) Такой процесс соединения называется электрон-позитронной аннигиляцией; в нем полная энергия, импульс и момент импульса сохраняются, а электрон и позитрон превращаются в гамма-кванты, или фотоны, – обычно их два. (С точки зрения «моря» электронов данный процесс представляет собой радиационный переход электрона в так называемую дырку – незанятое состояние с отрицательной энергией.) Если скорости электрона и позитрона не очень велики, то энергия каждого из двух гамма-квантов приблизительно равна 2 . Это характеристическое излучение аннигиляции позволяет обнаруживать позитроны. Наблюдалось, например, такое излучение, исходящее из центра нашей Галактики. Обратный процесс превращения электромагнитной энергии в электрон и позитрон называется рождением электрон-позитронной пары. Обычно гамма-квант с высокой энергией «конвертируется» в такую пару, пролетая вблизи атомного ядра (электрическое поле ядра необходимо, поскольку при превращении отдельно взятого фотона в электрон-позитронную пару были бы нарушены законы сохранения энергии и импульса). Еще один пример – распад первого возбужденного состояния ядра 16 О, изотопа кислорода.

    Испусканием электронов сопровождается один из видов радиоактивности ядер. Это бета-распад – процесс, обусловленный слабым взаимодействием, при котором нейтрон в исходном ядре превращается в протон. Наименование распада происходит от названия «бета-лучи», исторически присвоенного одному из видов радиоактивных излучений, которое, как потом выяснилось, представляет собой быстрые электроны. Энергия электронов этого излучения не имеет фиксированного значения, поскольку (в соответствии с гипотезой, выдвинутой Э.Ферми) при бета-распаде вылетает еще одна частица – нейтрино, уносящая часть энергии, выделяющейся при ядерном превращении. Основной процесс таков:

    Нейтрон ® протон + электрон + антинейтрино.

    Испускаемый электрон не содержится в нейтроне; появление электрона и антинейтрино представляет собой «рождение пары» из энергии и электрического заряда, освобождающихся при ядерном превращении. Существует также бета-распад с испусканием позитронов, при котором находящийся в ядре протон превращается в нейтрон. Подобные превращения могут также происходить в результате поглощения электрона; соответствующий процесс называется К -захватом. Электроны и позитроны испускаются при бета-распаде и других частиц, например мюонов.

    Роль в науке и технике.

    Быстрые электроны широко применяются в современной науке и технике. Они используются для получения электромагнитного излучения, например рентгеновского, возникающего в результате взаимодействия быстрых электронов с веществом, и для генерации синхротронного излучения, возникающего при их движении в сильном магнитном поле. Ускоренные электроны применяют и непосредственно, например в электронном микроскопе, или при более высоких энергиях – для зондирования ядер. (В таких исследованиях была обнаружена кварковая структура ядерных частиц.) Электроны и позитроны сверхвысоких энергий используются в электрон-позитронных накопительных кольцах – установках, аналогичных ускорителям элементарных частиц. За счет их аннигиляции накопительные кольца позволяют с высокой эффективностью получать элементарные частицы с очень большой массой.