Болезни Военный билет Призыв

Физические явления приводящие к уравнению лапласа. Локальная и интегральная теоремы лапласа. Свойства жидкого состояния. Поверхностный слой. Поверхностное натяжение. Смачивание. Формула Лапласа. Капиллярные явления

Локальная теорема Муавра -Лапласа. 0 и 1, то вероятность Р т п того , что событие А произойдет т раз в п независимых испытаниях при достаточно большом числе п, приближенно равна

- функция Гаусса и

Чем больше и, тем точнее приближенная формула (2.7), называемая локальной формулой Муавра-Лапласа. Приближенные значения вероятности Р тпУ даваемые локальной формулой (2.7), на практике используются как точные при пру порядка двух и более десятков, т.е. при условии пру > 20.

Для упрощения расчетов, связанных с применением формулы (2.7), составлена таблица значений функции /(х) (табл. I, приведенная в приложениях). Пользуясь этой таблицей, необходимо иметь в виду очевидные свойства функции /(х) (2.8).

  • 1. Функция /(х) является четной , т.е. /(-х) = /(х).
  • 2. Функция /(х) - монотонно убывающая при положительных значениях х, причем при х -> со /(х) -» 0.
  • (Практически можно считать, что уже при х > 4 /(х) « 0.)

[> Пример 2.5. В некоторой местности из каждых 100 семей 80 имеют холодильники. Найти вероятность того, что из 400 семей 300 имеют холодильники.

Решение. Вероятность того, что семья имеет холодильник, равна р = 80/100 = 0,8. Так как п = 100 достаточно велико (условие пру = = 100 0,8(1-0,8) = 64 > 20 выполнено), то применяем локальную формулу Муавра - Лапласа.

Вначале определим по формуле (2.9)

Тогда по формуле (2.7)

(значение /(2,50) найдено по табл. I приложений). Весьма малое значение вероятности /300,400 не должно вызывать сомнения, так как кроме события

«ровно 300 семей из 400 имеют холодильники» возможно еще 400 событий: «0 из 400», «1 из 400»,..., «400 из 400» со своими вероятностями. Все вместе эти события образуют полную группу, а значит, сумма их вероятностей равна единице. ?

Пусть в условиях примера 2.5 необходимо найти вероятность того, что от 300 до 360 семей (включительно) имеют холодильники. В этом случае по теореме сложения вероятность искомого события

В принципе вычислить каждое слагаемое можно по локальной формуле Муавра - Лапласа, но большое количество слагаемых делает расчет весьма громоздким. В таких случаях используется следующая теорема.

Интегральная теорема Муавра - Лапласа. Если вероятность р наступления события А в каждом испытании постоянна и отлична от 0 и 1, то вероятность того , что число т наступления события А в п независимых испытаниях заключено в пределах от а до Ь (включительно ), при достаточно большом числе п приближенно равна

- функция (или интеграл вероятностей) Лапласа",

(Доказательство теоремы приведено в параграфе 6.5.)

Формула (2.10) называется интегральной формулой Муавра-Лапласа. Чем больше п, тем точнее эта формула. При выполнении условия пру > > 20 интегральная формула (2.10), так же как и локальная, дает, как правило, удовлетворительную для практики погрешность вычисления вероятностей.

Функция Ф(дг) табулирована (см. табл. II приложений). Для применения этой таблицы нужно знать свойства функции Ф(х).

1. Функция ф(х) нечетная, т.е. Ф(-х) = -Ф(х).

? Сделаем замену переменной? = -г. Тогда (к =

= -(12. Пределами интегрирования но переменной 2 будут 0 и х. Получим

поскольку величина определенного интеграла не зависит от обозначения переменной интегрирования. ?

2. Функция Ф(х)монотонно возрастающая , причем при х -> +со ф(.г) -> 1 (практически можно считать, что уже при х > 4 Ф(х)~ 1).

Так как производная интеграла по переменному верхнему пределу равна подынтегральной функции при значении верхнего предела, г.с.

, и всегда положительна, то Ф(х) монотонно возрастает

на всей числовой прямой.

Сделаем замену переменнойтогда пределы интегрирования не меняются и

(так как интеграл от четной функции

Учитывая, что (интеграл Эйлера - Пуассона), получим

?

О Пример 2.6. По данным примера 2.5 вычислить вероятность того, что от 300 до 360 (включительно) семей из 400 имеют холодильники.

Решение. Применяем интегральную теорему Муавра - Лапласа {пру = 64 > 20). Вначале определим по формулам (2.12)

Теперь по формуле (2.10), учитывая свойства Ф(.т), получим

(по табл. II приложений ?

Рассмотрим следствие интегральной теоремы Муавра - Лапласа. Следствие. Если вероятность р наступления события А в каждом испытании постоянна и отлична от 0 и I, то при достаточно большом числе п независимых испытаний вероятность того, что:

а) число т наступлений события А отличается от произведения пр не более чем на величину е > 0 {по абсолютной величине), т.е.

б) частость т/п события А заключена в пределах от а до р (вклю - чительноУ , т.е.

в) частость события А отличается от его вероятности р не более чем на величину А > 0 {по абсолютной величине ), т.е.

А) Неравенство |/?7-7?/?| равносильно двойному неравенству пр-е Поэтому по интегральной формуле (2.10)

  • б) Неравенство а равносильно неравенству а при а = па и Ь = /?р. Заменяя в формулах (2.10), (2.12) величины а и Ь полученными выражениями, получим доказываемые формулы (2.14) и (2.15).
  • в) Неравенство mjn- р равносильно неравенству т-пр Заменяя в формуле (2.13) г = Ап, получим доказываемую формулу (2.16). ?

[> Пример 2.7. По данным примера 2.5 вычислить вероятность того, что от 280 до 360 семей из 400 имеют холодильники.

Решение. Вычислить вероятность Р 400 (280 т пр = 320. Тогда по формуле (2.13)

[> Пример 2.8. По статистическим данным, в среднем 87% новорожденных доживают до 50 лет.

  • 1. Найти вероятность того, что из 1000 новорожденных доля (частость) доживших до 50 лет будет: а) заключена в пределах от 0,9 до 0,95; б) будет отличаться от вероятности этого события не более чем на 0,04 (но абсолютной величине).
  • 2. При каком числе новорожденных с надежностью 0,95 доля доживших до 50 лет будет заключена в границах от 0,86 до 0,88?

Решение. 1, а) Вероятность р того, что новорожденный доживет до 50 лет, равна 0,87. Так как п = 1000 велико (условие прд =1000 0,87 0,13 = = 113,1 > 20 выполнено), то используем следствие интегральной теоремы Муавра - Лапласа. Вначале определим по формулам (2.15)

Теперь по формуле (2.14)

1, б) По формуле (2.16)

Таккак неравенство равносильно неравенству

полученный результат означает, что практически достоверно, что от 0,83 до 0,91 числа новорожденных из 1000 доживут до 50 лет. ?

2. По условию или

По формуле (2.16) при А = 0,01

По табл. II приложений Ф(Г) = 0,95 при Г = 1,96, следовательно,

откуда

т.е. условие (*) может быть гарантировано при существенном увеличении числа рассма триваемых новорожденных до п = 4345. ?

  • Доказательство теоремы приведено в параграфе 6.5. Вероятностный смысл величинпр, прс{ устанавливается в параграфе 4.1 (см. замечание на с. 130).
  • Вероятностный смысл величины рч/п устанавливается в параграфе 4.1.

Известно, что поверхность жидкости около стенок сосуда искривляется. Свободная поверхность жидкости, искривлённая около стенок сосуда, называется мениском (рис. 145).

Рассмотрим тонкую жидкую плёнку, толщиной которой можно пренебречь. Стремясь минимизировать свою свободную энергию, плёнка создаёт разность давления с разных сторон. Из-за действия сил поверхностного натяжения в каплях жидкости и внутри мыльных пузырей возникает добавочное давление (плёнка сжимается до тех пор, пока давление внутри пузыря не будет превышать атмосферное на величину добавочного давления плёнки ).

Рис. 146.

Рассмотрим поверхность жидкости, опирающуюся на некоторый плоский контур (рис.146, а ). Если поверхность жидкости не плоская, то стремление ее к сокращению и приведет к возникновению давления , дополнительного к тому, которое испытывает жидкость с плоской поверхностью. В случае выпуклой поверхности это дополнительное давление положительно (рис. 146, б ), в случае вогнутой поверхности – отрицательно (рис. 146, в ). В последнем случае поверхностный слой, стремясь сократиться, растягивает жидкость.

Величина добавочного давления, очевидно, должна возрастать с увеличением коэффициента поверхностного натяжения и кривизны поверхности .

Рис. 147.
Вычислим добавочное давление для сферической поверхности жидкости. Для этого рассечем мысленно сферическую каплю жидкости диаметральной плоскостью на два полушария (рис. 147). Из-за поверхностного натяжения оба полушария притягиваются друг к другу с силой, равной:

.

Эта сила прижимает друг к другу оба полушария по поверхности и, следовательно, обусловливает дополнительное давление:

Кривизна сферической поверхности всюду одинакова и определяется радиусом сферы . Очевидно, что чем меньше , тем больше кривизна сферической поверхности.

Избыточное давление внутри мыльного пузыря в два раза больше, так как пленка имеет две поверхности:

Добавочное давление обусловливает изменение уровня жидкости в узких трубках (капиллярах), вследствие чего называется иногда капиллярным давлением .

Кривизну произвольной поверхности принято характеризовать так называемой средней кривизной , которая может оказаться различной для разных точек поверхности.

Величина дает кривизну сферы. В геометрии доказывается, что полусумма обратных радиусов кривизны для любой пары взаимно перпендикулярных нормальных сечений имеет одно и то же значение:

. (1)

Эта величина и есть средняя кривизна поверхности в данной точке. В этой формуле радиусы – алгебраические величины. Если центр кривизны нормального сечения находится под данной поверхностью, соответствующий радиус кривизны положителен; если центр кривизны лежит над поверхностью, радиус кривизны отрицателен (рис.148).

Рис. 148.
Таким образом, неплоская поверхность может иметь среднюю кривизну, равную нулю. Для этого нужно, чтобы радиусы кривизны были одинаковы по величине и противоположны по знаку.

Например, для сферы центры кривизны в любой точке поверхности совпадают с центром сферы, поэтому и . Для случая поверхности кругового цилиндра радиуса имеем: , и .

Можно доказать, что для поверхности любой формы справедливо соотношение:

Подставив в формулу (2) выражение (1), получим формулу добавочного давления под произвольной поверхностью, называемую формулой Лапласа (рис. 148):

. (3)

Радиусы и в формуле (3) – алгебраические величины. Если центр кривизны нормального сечения находится под данной поверхностью, соответствующий радиус кривизны положителен; если центр кривизны лежит над поверхностью, радиус кривизны отрицателен.

Пример. Если в жидкости имеется пузырек газа, то поверхность пузырька, стремясь сократиться, будет оказывать на газ дополнительное давление . Найдем радиус пузырька в воде, при котором добавочное давление равно1 aтм . .Коэффициент поверхностного натяжения воды при равен . Следовательно, для получается следующее значение: .

Решим следующую задачу (задача Банаха). Некто носит в кармане две коробки спичек (по 60 спичек каждая) и всякий раз, когда нужна спичка, наугад берет коробку и вынимает спичку. Какова вероятность того, что когда первая коробка будет пуста, во второй все еще останется 20 спичек? Выбор коробки можно рассматривать как независимое испытание, в котором с вероятностью выбирается первая коробка. Всего опытов производитсяn = 60+40=100, и в этих ста опытах первая коробка должна быть выбрана 60 раз. Вероятность этого равна:

.

Из записи видно, что при больших n пользоваться формулой Бернулли затруднительно из-за громоздких вычислений. Существуют специальные приближенные формулы, которые позволяют находить вероятности
, еслиn велико. Одну из таких формул дает следующая теорема.

Теорема 2.1. (Лапласа локальная). Если в схеме Бернулли
, то вероятность того, что событиеA наступит ровноk раз, удовлетворяет при большихn соотношению

где
.

Для удобства вводится в рассмотрение функция
– локальная функция Лапласа, с помощью которой теорему Лапласа можно записать так:

Существуют специальные таблицы функции
, по которым для любого значения:
можно найти соответствующее значение функции. Получены эти таблицы путем разложения функции
в ряд.

Геометрически этот результат означает, что для больших n многоугольник распределения хорошо вписывается в график функции, стоящей в формуле справа (рис. 2.3) и вместо истинного значения вероятности
можно для каждогоk брать значение функции в точкеk .

Рис. 2.3. Локальная функция Лапласа

Вернемся теперь к задаче. Используя формулу (2.1) находим:

,

где значение
определено по таблице .

2.2.2. Интегральная теорема Лапласа

Теорема 2.2 (Лапласа интегральная). Вероятность того, что в схемеn независимых испытаний событие наступит отk 1 доk 2 раз, приближенно равна

P n (k 1
k
2 )
,

– интегральная функция Лапласа, для которой составлены таблицы. ФункцияФ(х) нечетная:Ф(-х)=-Ф(х) иФ (х4)=0,5.

Рассмотрим пока без доказательства еще одно утверждение.

Отклонение относительной частоты от вероятностиp вn независимых испытаниях равно

(

.

Замечание. Обоснование этих фактов будет рассмотрено далее в разделе 7 (подразд. 7.2, 7.3). Теоремы Лапласа иногда называют теоремами Муавра–Лапласа.

Пример 2.3.

Вероятность появления события в каждом из 900 независимых испытаний равна 0.5. 1) найти вероятность того, что событие произойдет от 400 до 500 раз, 2) найти вероятность того, что относительная частота появления события отклонится от его вероятности по абсолютной величине не более чем на 0,02.

Решение

1) Р 900 (400<k <500)=
=

2)

=

2.3. Формула Пуассона

Если зафиксировать число опытов n , а вероятность появления события в одном опытер изменять, то многоугольник распределения будет иметь различный вид в зависимости от величиныр (рис.2.4). При значенияхp , близких к 1/2, многоугольник почти симметричен и хорошо вписывается в симметричный график функции Лапласа. Поэтому приближенная формула Лапласа дает хорошую точность.

Для малых р (на практике меньших) приближение плохое из-за несимметричности многоугольника распределения. Поэтому возникает задача найти приближенную формулу для вычисления вероятностей
в случае большихn и малых р . Ответ на этот вопрос дает формула Пуассона.

Итак, рассмотрим схему независимых испытаний, в которой n велико (чем больше, тем лучше), ар мало (чем меньше, тем лучше). Обозначимn р =λ . Тогда по формуле Бернулли имеем

.

Последнее равенство верно в силу того, что
(второй замечательный предел). При получении формулы наивероятнейшего числа появления событияk 0 было рассмотрено отношение вероятностей. Из него следует, что

Таким образом, при k много меньшихn имеем рекуррентное соотношение

.

Для k =0 учтем полученный ранее результат:
, тогда

………………

Итак, если в схеме независимых испытаний nвелико, ар мало, то имеет местоформула Пуассона

Р n (к)
, где λ= n р.

Закон Пуассона еще называют законом редких явлений.

Пример 2.4.

Вероятность выпуска бракованной детали равна 0,02. Детали упаковываются в коробки по 100 штук. Какова вероятность того, что а) в коробке нет бракованных деталей, б) в коробке больше двух бракованных деталей?

Решение

a ) Так какn велико, ар мало, имеем ; Р 100 (0)
;

б )Р 100 (k >2)= 1-Р 1-

Таким образом, в схеме независимых испытаний для вычисления вероятности Р n (k ) следует пользоваться формулой Бернулли, еслиn невелико, а еслиn велико, то в зависимости от величиныр используется одна из приближенных формул Лапласа или формула Пуассона.

Рассмотрим выпуклую поверхность (рис. 5.18), кривизна ко­торой в точке О для каждого из двух взаимно перпендикуляр­ных нормальных сечений различна. Пусть я-внешняя нормаль

к поверхности в точке О; MN и Р г Р 2 -главные сечения. Вы­делим мысленно элемент поверхности AS U и рассчитаем силы поверхностного натяжения, действующие на отрезки АВ и CD, АС и BD, полагая, что АВ = CD и AC ~ BD. На каждую еди­ницу длины контура ABDC действует сила поверхностного на­тяжения а окружающей жидкости, стремящаяся растянуть элемент поверхности AS n во все стороны. Все силы, действую­щие на сторону АВ, заменим одной равнодействующей силой A.F, приложенной к середине отрезка АВ = А/ в перпендикуные параллельно п, только в них вместо R x будет радиус кри­визны £? 2 перпендикулярного сечения Р г Р. г. Радиус R 2 изобра­жен на рис. 5.18 отрезком P-fi". Отсюда равнодействующая AF-* всех нормальных сил, действующих на четыре стороны

элемента поверхности А5 П, AF~ = ДК. + AF, + af s f AF. = V af, да (rAS n | - -|- -V

Сила AF^ прижимает элемент поверхности А5 П к слоям, распо­ложенным ниже его. Отсюда среднее давление р ср, обусловлен­ное искривлением поверхности,

Чтобы получить давление р а в точке, устремим AS, к нулю. Переходя к пределу отношения AF^ к площади as n , на кото­рую действует эта сила, получим AF^ dF.

AS n -*o AS n dS n \ R, R 2

Но по определению

p. = о 14-+ 4-\ (5 - 8)

p„ = a I ■

где R lt R 2 - главные радиусы кривизны в данной точке по­верхности.

В дифференциальной геометрии выражение е = -~ ^--\-

J--) называют средней кривизной поверхности в точке Р.

Она имеет одно и то же значение для всех пар нормальных се­чений, перпендикулярных друг к другу.

Выражение (5.8), устанавливающее зависимость перепада гидростатического давления р а на поверхности раздела двух фаз (жидкость - жидкость, жидкость -■ газ или пар) от меж­фазного поверхностного натяжения а и средне!! кривизны по­верхности 8 в рассматриваемой точке называется формулой Лапласа в честь французского физика Лапласа.

Величина р а прибавляется к капиллярному давлению р ь соответствующему плоской поверхности. Если поверхность вог­нута, тогда в формуле (5.8) ставится знак минус. В общем случае произвольной поверхности радиусы кривизны R x и R 2 мо­гут отличаться друг от друга как по величине, так и по зна­ку. Так, например, у поверхности, изображенной на рис. 5.19, радиусы кривизны R x и R 2 в двух взаимно перпендикулярных нормальных сечениях различны по величине и знаку. Этот слу­чай может привести к положительным или отрицательным зна­чениям р а в зависимости от абсолютной величины R x и R 2 . Принято считать, что если центр кривизны нормального сече­ния находится под поверхностью, то соответствующий ей ра­диус кривизны является положительным, если над поверх­ностью - отрицательным. Поверхности, средняя кривизна которых



во всех точках равна нулю е == ~(~--1" - 0 , называ­ют минимальными поверхностями. Если в одной точке такой поверхности /? 1 >0, то автоматически /? 2 <С0.

Для сферы любое нормальное сечение представляет собой окружность радиуса R, поэтому в формуле (5.8) /? х = R 2 = R и добавочное капиллярное давление

Р. = ~. (5-9)

Для мыльного пузыря вследствие существования у него внеш­ней и внутренней поверхностей

Р*=-~- (5-Ю)

Если для кругового цилиндра одним из нормальных сечений считать сечение, идущее вдоль образующей, то R x = со. Второе, перпендикулярное к нему сечение дает окружность радиуса

R (R 2 = R). Поэтому в соответствии с формулой (5.8) добавочное капиллярное давление под цилиндрической поверхностью

Р. = -}|- (5-И)

Из выражений (5.9) - (5.11) видно, что при изменении фор­мы поверхности меняется лишь коэффициент перед отношением a/R. Если поверхность жидкости плоская, то R x ~ R 2 = со и, следовательно, р з = 0. В этом случае суммарное давление

Р = Pi ± р а = Pi ± 0 = p t .

Добавочное капиллярное давление, определяемое формулой Лапласа, всегда направлено к центру кривизны. Поэтому для выпуклой поверхности оно направлено внутрь жидкости, для вогнутой -наружу. В первом случае оно прибавляется к ка­пиллярному давлению p h во втором--вычитается из него. Ма­тематически это учитывается тем, что для выпуклой поверхности радиус кривизны считается положительным, для вогнутой - от­рицательным.



Качественную зависимость добавочного капиллярного давле­ния от кривизны поверхности можно наблюдать на следующем опыте (рис. 5.20). Концы А я В стеклянного тройника опускают в раствор мыльной воды. В результате оба конца тройника затя­гиваются мыльной пленкой. Вынув тройник из раствора, через отросток С выдувают два мыльных пузыря. Как правило, вслед­ствие различных причин пузыри имеют разные размеры. Если закрыть отверстие С, то пузырь большего размера будет постепен­но раздуваться, а меньшего-сокращаться. Это убеждает нас в том, что капиллярное давление, вызванное кривизной поверх­ности, растет с уменьшением радиуса кривизны.

Чтобы составить представление о величине добавочного ка: пиллярного давления, вычислим его для капли диаметра 1 мкм (примерно из таких капель часто состоят облака):

2а 2.72,75-Ю- 3 „ мгт

р --= -==-= 0,1455 МПа.

5.8. Смачивание

Поверхностным натяжением обладает не только свободная поверхность жидкости, но и граница раздела двух жидкостей, жидкости и твердого тела, а также свободная поверхность твердого тела. Во всех случаях поверхностная энергия опреде­ляется как разность между энергией молекул у поверхности раздела и энергией в объеме соответствующей фазы. При этом величина поверхностной энергии на границе раздела зависит от свойств обеих фаз. Так, например, на границе вода - воздух а = 72,75-10 ~ 3 Н/м (при 20 °С и нормальном атмосферном дав­лении), на границе вода-эфир а= 12-10 3 Н/м, а на границе вода - ртуть а = 427-10~ 3 Н/м.

Молекулы (атомы, ионы), находящиеся на поверхности твер­дого тела, испытывают притяжение с одной стороны. Поэтому твердые тела так же, как и жидкости, обладают поверхностным натяжением.

Опыт показывает, что капля жидкости, находящейся на по­верхности твердой подложки, приобретает ту или иную форму в зависимости от природы твердого тела, жидкости и среды, в ко­торой они находятся. Чтобы уменьшить потенциальную энергию в поле силы тяжести, жидкость всегда стремится принять такую форму, при которой центр ее массы занимает наинизшее положе­ние. Эта тенденция и приводит к растеканию жидкости по по­верхности твердого тела. С другой стороны, силы поверхностного натяжения стремятся придать жидкости форму, соответствующую минимуму поверхностной энергии. Конкуренция между этими силами и приводит к созданию той или иной формы.

Самопроизвольное увеличение площади фазовой границы твер­дое тело - жидкость или жидкость А - жидкость В под влияни­ем молекулярных сил сцепления называется растеканием.

Выясним причины, приводящие к растеканию капли по поверх­ности. На молекулу С (рис. 5.21, а), находящуюся в месте соприкосновения капли жидкости с твердой подложкой, с одной

стороны действуют силы притяжения молекул жидкости, равно­действующая которых Fj_ направлена по биссектрисе краевого угла с другой - молекулы твердого тела, равнодействующая которых F 2 перпендикулярна к его поверхности. Равнодействую­щая R этих двух сил наклонена влево от вертикали, как пока­зано на рисунке. В этом случае стремление жидкости расположить свою поверхность перпендикулярно к R приведет к ее растеканию (смачиванию).

Процесс растекания жидкости прекращается, когда угол Ф (его называют краевым) между касательной к поверхности жид­кости в точке С и поверхностью твердого тела достигает неко­торого предельного значения гт к, характерного для каждой пары жидкость -твердое тело. Если краевой угол острый

(0 ^ ■& ^ -), то жидкость смачивает поверхность твердого

тела и тем лучше, чем он меньше. При $ к = 0 имеет место полное Смачивание, при котором жидкость растекается по по­верхности до образования мономолекулярной пленки. Смачива­ние обычно наблюдается на границе соприкосновения трех фаз, одна из которых является твердым телом (фаза 3), а две дру­гие - несмешивающимися жидкостями или жидкостью и газом (фазы / и 2) (см. рис. 5.21, с).

Если сила F x больше, чем F. 2 , т. е. со стороны жидкости силы притяжения на выделенную молекулу больше, чем со стороны твердого тела, то краевой угол $ будет большим и картина вы­глядит так, как показано на рис. 5.21, б. В этом случае угол Ф тупой (я/2 < § ^ я) и жидкость частично (при неравенстве) или полностью (при равенстве) не смачивает твердую подложку. По отношению к стеклу такой несмачивающей жидкостью яв­ляется, например, ртуть, гдесозд = - 1. Однако та же самая ртуть хорошо смачивает другую твердую подложку, например цинк.

Количественно эти соображения могут быть выражены на

основе следующих представлений. Обозначим через o"i_ 2 , °1-з, 0-2-3 соответственно поверхностное натяжение на границе жидкость - газ, твердое вещество - газ и жидкость -■ твердая поверхность. Направления действия этих сил в сечении будем изображать стрелками (рис. 5.22). На каплю жидкости, нахо­дящуюся на твердой подложке, действуют следующие силы поверхностного натяжения: на границе /-3 -ffi-з, стремя­щаяся растянуть каплю, и на границе 2 - 3 -Ог-з. стремящая­ся стянуть ее к центру. Поверхностное натяжение 04-2 на гра­нице 1-2 направлено по касательной к поверхности капли в точке С. Если краевой угол Ф острый, то проекция силы cri_ 2 на плоскость твердой подложки (ov 2 cos Ф) совпадет по напра­влению с о 2 .-з (рис. 5.22 ; а). В этом случае действия обеих сил

будут складываться. Если же угол ft тупой, как показано на рис. 5.21, б, то cos ft отрицательный и проекция cri._ 2 cosft сов­падет по направлению с O1-.3. При равновесии капли на твер­дой подложке должно соблюдаться следующее равенство:

= 02-3 + СГ1-2 соэФ. (5.12)

Это уравнение было получено в 1805 г. Юнгом и названо его име­нем. Отношение

В = ---^- = cos ft

называют критерием смачивания.

Таким образом, краевой угол ft зависит лишь от поверх­ностных натяжений на границах соответствующих сред, опреде­ляемых их природой, и не зависит от формы сосуда и величи­ны силы тяжести. Когда равенство (5.12) не соблюдено, могут иметь место следующие случаи. Если 01-3 больше правой части уравнения (5.12), то капля будет растекаться, а угол ft-■ уменьшаться. Может случиться так, что cos ft увеличится настолько, что правая часть равенства (5,12) станет равной о"ь_ 3 , тогда наступит равновесие капли в растянутом состоянии. Если же ov_ 3 настолько велико, что даже при cos ft = 1 левая часть равенства (5.12) больше правой (01 _з > 0 2 -з + o"i_ 2)> то капля будет растягиваться в жидкую пленку. Если же правая часть равенства (5.12) больше, чем o"i 3 , то капля стягивается к центру, угол ft увеличивается, a cos ft соответственно умень­шается до тех пор, пока не наступит равновесие. Когда cos ft станет отрицательным, капля примет форму, показанную на рис. 5.22, б. Если окажется, что 0 2 - 3 настолько велико, что даже при cos ft = -1 (ft = я) правая часть равенства (5.12) бу­дет больше o"i (01 <02 з-01-2)1 то в отсутствие силы тя­жести капля стянется в шар. Этот случай можно наблюдать на маленьких каплях ртути на поверхности стекла.

Критерий смачивания можно выразить через работу адгезии и когезии. Адгезией А а называется возникновение связи между поверхностными слоями двух разнородных (твердых или жидких) тел (фаз), приведенных в соприкосновение. Частный случай ад­гезии, когда соприкасающиеся тела одинаковы, называют ко-гезией (обозначается А с). Адгезия характеризуется удельной ра­ботой, затрачиваемой на разделение тел. Эта работа рассчиты­вается на единицу площади соприкосновения поверхностей и зависит от того, как производится их разделение: сдвигом вдоль поверхности раздела или отрывом в направлении, перпендику­лярном к поверхности. Для двух различных тел (фаз) А и В ее можно выразить уравнением

А а = ста + а в -Од-в,

где а а , а в, а А -в - коэффициенты поверхностного натяжения фаз Л и В на границе с воздухом и между ними.

В случае когезии для каждой из фаз Л и В имеем:

АШ = 2аа , А <*> = 2а в.

Для рассматриваемой нами капли

Л С| =2а]_ 2 ; А а = ffi^ 3 -f ai_ 2 - сЬ-з-

Отсюда критерий смачивания можно выразить равенством

В - с

Таким образом, по мере увеличения разности 2А а -Л с смачива­ние улучшается.

Заметим, что коэффициенты cti-з и Оо„ 3 обычно отождест­вляются с поверхностным натяжением твердого тела на грани­цах с газом и жидкостью, тогда как в состоянии термодинами­ческого равновесия поверхность твердого тела обычно покры­та равновесным адсорбционным слоем вещества, образующего каплю. Поэтому при точном решении задачи для равновесных краевых углов величины cri_ 3 и (Тг-з. вообще говоря, следова­ло бы относить не к самому твердому телу, а к покрывающему его адсорбционному слою, термодинамические свойства кото­рого определяются силовым полем твердой подложки.

Явления смачивания особенно ярко проявляются в невесомости. Иссле­дование жидкости в состоянии космической невесомости впервые провел советский летчик-космонавт П. Р. Попович на корабле «Восток-4». В кабине корабля находилась сферическая стеклянная колба, наполовину заполненная водой. Поскольку вода полностью смачивает чистое стекло (О = 0), то в условиях невесомости она растеклась по всей поверхности и замкнула воз­дух внутри колбы. Таким образом, граница раздела между стеклом и воз­духом исчезла, что оказалось энергетически выгодным. Однако краевой угол i} между поверхностью жидкости и стенками колбы и в состоянии не­весомости оставался таким же, каким он был на Земле.

Явления смачивания и несмачивапия широко используются в техни­ке и быту. Например, чтобы сделать ткань водоотталкивающей, ее обра­батывают гидрофобизирующим (ухудшающим смачивание водой) веще­ством (мылонафт, олеиновая кислота и др.). Эти вещества образуют вокруг волокон тонкую пленку, увеличивающую поверхностное натяжение па границе вода - ткань, по лишь незначительно меняющую его на гра­нице ткань - воздух. При этом краевой угол О при контакте с водой воз­растает. В этом случае, если поры малы, вода в них не проникает, а за­держивается выпуклой поверхностной пленкой и собирается в капли, которые легко скатываются с материала.

Песмачивающая жидкость не вытекает через очень малые отверстия. Например, если нити, из которых сплетено решето, покрыть парафином, то в нем можно носить воду, если, конечно, слой жидкости невелик. Бла­годаря этому свойству водоплавающие насекомые, быстро бегающие по воде, не смачивают лапок. Хорошее смачивание необходимо при краше­нии, склеивании, пайке, при диспергировании твердых тел в жидкой сре­де и т. д.

Соприкасающаяся с другой средой, находится в особых условиях по сравнению с остальной массой жидкости. Силы, действующие на каждую молекулу поверхностного слоя жидкости, граничащей с паром, направлены в сторону объёма жидкости, то есть внутрь жидкости. Вследствие этого для перемещения молекулы из глубины жидкости на поверхность требуется совершить работу. Если при постоянной температуре увеличить площадь поверхности на бесконечно малую величину dS , то необходимая для этого работа будет равна . Работа по увеличению площади поверхности совершается против сил поверхностного натяжения, которые стремятся сократить, уменьшить поверхность. Поэтому работа самих сил поверхностного натяжения по увеличению площади поверхности жидкости будет равна:

Здесь коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения и определяется величиной работы сил поверхностного натяжения по изменению площади поверхности на единицу. В СИ коэффициент поверхностного натяжения измеряется в Дж/м 2 .

Молекулы поверхностного слоя жидкости обладают избыточной по сравнению с глубинными молекулами, потенциальной энергией, которая прямо пропорциональна площади поверхности жидкости:

Приращение потенциальной энергии поверхностного слоя связано только с приращением площади поверхности: . Силы поверхностного натяжения - консервативные силы , поэтому выполняется равенство: . Силы поверхностного натяжения стремятся уменьшить потенциальную энергию поверхности жидкости. Обычно та энергия, которая может быть преобразована в работу, называется свободной энергией U S . Поэтому можно записать. Используя понятие свободной энергии, можно записать формулу (6.36) так: . Используя последнее равенство можно определить коэффициент поверхностного натяжения как физическую величину, численно равную свободной энергии единицы площади поверхности жидкости.

Действие сил поверхностного натяжения можно наблюдать с помощью простого эксперимента над тонкой плёнкой жидкости (например, мыльного раствора), которая обволакивает проволочный прямоугольный каркас, у которого одна сторона может перемешаться (рис.6.11). Предположим, что на подвижную сторону, длиной l, действует внешняя сила F B , перемещающая подвижную сторону рамки равномерно на очень малое расстояние dh. Элементарная работа этой силы будет равна , так как сила и перемещение сонаправлены. Поскольку плёнка имеет две поверхности и, то вдоль каждой из них направлены силы поверхностного натяжения F, векторная сумма которых равна внешней силе. Модуль внешней силы равен удвоенному модулю одной из сил поверхностного натяжения: . Минимальная работа, совершаемая внешней силой, равна по величине сумме работ сил поверхностного натяжения: . Величина работы силы поверхностного натяжения будет определяться так:


, где . Отсюда . То есть коэффициент поверхностногонатяжения может быть определён как величина, равная силе поверхностного натяжения, действующей по касательной к поверхности жидкости, приходящейся на единицу длины линии раздела. Силы поверхностного натяжения стремятся сократить площадь поверхности жидкости. Это заметно для малых объёмов жидкости, когда она принимает форму капель-шариков. Как известно, именно сферическая поверхность имеет минимальную площадь при данном объёме. Жидкость, взятая в большом количестве, под действием силы тяжести растекается по поверхности, на которой она находится. Как известно, сила тяжести зависит от массы тела, поэтому её величина по мере уменьшения массы тоже уменьшается и при определённой массе становится сравнимой или даже много меньше величины силы поверхностного натяжения. В этом случае силой тяжести можно пренебречь. Если жидкость находится в состоянии невесомости, то даже при большом объёме её поверхность стремится к сферической. Подтверждение тому - знаменитый опыт Плато. Если подобрать две жидкости с одинаковой плотностью, то действие силы тяжести на одну из них (взятую в меньшем количестве) будет скомпенсировано архимедовой силой и она примет форму шара. При этом условии она будет плавать внутри другой жидкости.

Рассмотрим, что происходит с каплей жидкости 1, граничащей с одной стороны с паром 3, с другой стороны с жидкостью 2 (рис.6.12). Выберем очень малый элемент границы раздела всех трёх веществ dl. Тогда силы поверхностного натяжения на границах раздела сред будут направлены по касательным к контуру границ раздела и равны:

Действием силы тяжести пренебрежём. Капля жидкости 1 находится в равновесии, если выполняются условия:

(6.38)

Подставив (6.37) в (6.38), сократив на dl обе части равенств (6.38), возведя в квадрат обе части равенств (6.38) и сложив их, получим:

где - угол между касательными к линиям раздела сред, называется краевым углом.

Анализ уравнения (6.39) показывает, что при получим и жидкость 1 полностью смачивает поверхность жидкости 2, растекаясь по ней тонким слоем (явление полного смачивания ).

Аналогичное явление можно наблюдать и при растекании тонким слоем жидкости 1 по поверхности твёрдого тела 2. Иногда жидкость наоборот не растекается по поверхности твёрдого тела. Если , то и жидкость 1 полностью не смачивает твёрдое тело 2 (явление полного несмачивания ). В этом случае есть только одна точка касания жидкости 1 и твёрдого тела 2. Полное смачивание или несмачивание являются предельными случаями. Реально можно наблюдать частичное смачивание , когда краевой угол острый () и частичное несмачивание , когда краевой угол тупой ().

На рисунке 6.13 а приведены случаи частичного смачивания, а на рис.6.13 б приведены примеры частичного несмачивания. Рассмотренные случаи показывают, что наличие сил поверхностного натяжения граничащих жидкостей или жидкости на поверхности твёрдого тела приводит к искривлению поверхностей жидкостей.

Рассмотрим силы, действующие на кривую поверхность. Кривизна поверхности жидкости приводит к появлению сил, действующих на жидкость под этой поверхностью. Если поверхность сферическая, то к любому элементу длины окружности (см. рис.6.14) приложены силы поверхностного натяжения, направленные по касательной к поверхности и стремящиеся её сократить. Результирующая этих сил направлена к центру сферы.

Отнесённая к единице площади поверхности эта результирующая сила оказывает дополнительное давление, которое испытывает жидкость под искривлённой поверхностью. Это дополнительное давление называется давлением Лапласа . Оно всегда направлено к центру кривизны поверхности. На рисунке 6.15 приведены примеры вогнутой и выпуклой сферических поверхностей и показаны давления Лапласа, соответственно.

Определим величину давления Лапласа для сферической, цилиндрической и любой поверхности.

Сферическая поверхность . Капля жидкости . При уменьшении радиуса сферы (рис.6.16) поверхностная энергия уменьшается, а работа производится силами, действующими в капле. Следовательно, объём жидкости под сферической поверхностью всегда несколько сжат, то есть испытывает давление Лапласа, направленное к центру кривизны радиально. Если под действием этого давления шар уменьшит свой объём на dV , то величина работы сжатия будет определяться формулой:

Уменьшение поверхностной энергии произошло на величину, определяемую формулой: (6.41)

Уменьшение поверхностной энергии произошло за счёт работы сжатия, следовательно, dA=dU S . Приравнивая правые части равенств (6.40) и (6.41), а также учитывая, что и , получим давление Лапласа: (6.42)

Объём жидкости под цилиндрической поверхностью также как и под сферической всегда несколько сжат, то есть испытывает давление Лапласа, направленное к центру кривизны радиально. Если под действием этого давления цилиндр уменьшит свой объём на dV , то величина работы сжатия будет определяться формулой (6.40), только величина давления Лапласа и приращение объёма будут другими. Уменьшение поверхностной энергии произошло на величину, определяемую формулой(6.41). Уменьшение поверхностной энергии произошло за счёт работы сжатия, следовательно, dA=dU S . Приравнивая правые части равенств (6.40) и (6.41), а также учитывая, что для цилиндрической поверхности и , получим давление Лапласа:

Используя формулу (6.45), можно перейти к формулам (6.42) и (6.44). Так для сферической поверхности, следовательно, формула (6.45) упростится до формулы (6.42); для цилиндрической поверхности r 1 = r , а , тогда формула (6.45) упростится до формулы (6.44). Чтобы отличить выпуклую поверхность от вогнутой, принято считать давление Лапласа положительным для выпуклой поверхности, а соответственно и радиус кривизны выпуклой поверхности будет тоже положительным. Для вогнутой поверхности радиус кривизны и давление Лапласа считают отрицательными.