Болезни Военный билет Призыв

Геометрический смысл параболы. Квадратичная функция. Парабола и её каноническое уравнение

Остальным же читателям предлагаю существенно пополнить свои школьные знания о параболе и гиперболе. Гипербола и парабола – это просто? …Не дождётесь =)

Гипербола и её каноническое уравнение

Общая структура изложения материала будет напоминать предыдущий параграф. Начнём с общего понятия гиперболы и задачи на её построение.

Каноническое уравнение гиперболы имеет вид , где – положительные действительные числа. Обратите внимание, что в отличие от эллипса , здесь не накладывается условие , то есть, значение «а» может быть и меньше значения «бэ».

Надо сказать, довольно неожиданно… уравнение «школьной» гиперболы и близко не напоминает каноническую запись. Но эта загадка нас ещё подождёт, а пока почешем затылок и вспомним, какими характерными особенностями обладает рассматриваемая кривая? Раскинем на экране своего воображения график функции ….

У гиперболы две симметричные ветви.

Неплохой прогресс! Данными свойствами обладает любая гипербола, и сейчас мы с неподдельным восхищением заглянем в декольте этой линии:

Пример 4

Построить гиперболу, заданную уравнением

Решение : на первом шаге приведём данное уравнение к каноническому виду . Пожалуйста, запомните типовой порядок действий. Справа необходимо получить «единицу», поэтому обе части исходного уравнения делим на 20:

Здесь можно сократить обе дроби, но оптимальнее сделать каждую из них трёхэтажной :

И только после этого провести сокращение:

Выделяем квадраты в знаменателях:

Почему преобразования лучше проводить именно так? Ведь дроби левой части можно сразу сократить и получить . Дело в том, что в рассматриваемом примере немного повезло: число 20 делится и на 4 и на 5. В общем случае такой номер не проходит. Рассмотрим, например, уравнение . Здесь с делимостью всё печальнее и без трёхэтажных дробей уже не обойтись:

Итак, воспользуемся плодом наших трудов – каноническим уравнением :

Как построить гиперболу?

Существует два подхода к построению гиперболы – геометрический и алгебраический.
С практической точки зрения вычерчивание с помощью циркуля... я бы даже сказал утопично, поэтому гораздо выгоднее вновь привлечь на помощь нехитрые расчёты.

Целесообразно придерживаться следующего алгоритма, сначала готовый чертёж, потом комментарии:

На практике часто встречается комбинация поворота на произвольный угол и параллельного переноса гиперболы. Данная ситуация рассматривается на уроке Приведение уравнения линии 2-го порядка к каноническому виду .

Парабола и её каноническое уравнение

Свершилось! Она самая. Готовая раскрыть немало тайн. Каноническое уравнение параболы имеет вид , где – действительное число. Нетрудно заметить, что в своём стандартном положении парабола «лежит на боку» и её вершина находится в начале координат. При этом функция задаёт верхнюю ветвь данной линии, а функция – нижнюю ветвь. Очевидно, что парабола симметрична относительно оси . Собственно, чего париться:

Пример 6

Построить параболу

Решение : вершина известна, найдём дополнительные точки. Уравнение определяет верхнюю дугу параболы, уравнение – нижнюю дугу.

В целях сократить запись вычисления проведём «под одной гребёнкой» :

Для компактной записи результаты можно было свести в таблицу.

Перед тем, как выполнить элементарный поточечный чертёж, сформулируем строгое

определение параболы:

Параболой называется множество всех точек плоскости, равноудалённых от данной точки и данной прямой , не проходящей через точку .

Точка называется фокусом параболы, прямая – директрисой (пишется с одной «эс») параболы. Константа «пэ» канонического уравнения называется фокальным параметром , который равен расстоянию от фокуса до директрисы. В данном случае . При этом фокус имеет координаты , а директриса задаётся уравнением .
В нашем примере :

Определение параболы понимается ещё проще, чем определения эллипса и гиперболы. Для любой точки параболы длина отрезка (расстояние от фокуса до точки) равна длине перпендикуляра (расстоянию от точки до директрисы):

Поздравляю! Многие из вас сегодня сделали самое настоящие открытие. Оказывается, гипербола и парабола вовсе не являются графиками «рядовых» функций, а имеют ярко выраженное геометрическое происхождение.

Очевидно, что при увеличении фокального параметра ветви графика будут «раздаваться» вверх и вниз, бесконечно близко приближаясь к оси . При уменьшении же значения «пэ» они начнут сжиматься и вытягиваться вдоль оси

Эксцентриситет любой параболы равен единице:

Поворот и параллельный перенос параболы

Парабола – одна из самых распространённых линий в математике, и строить её придётся действительно часто. Поэтому, пожалуйста, особенно внимательно отнестись к заключительному параграфу урока, где я разберу типовые варианты расположения данной кривой.

! Примечание : как и в случаях с предыдущими кривыми, корректнее говорить о повороте и параллельном переносе координатных осей, но автор ограничится упрощённым вариантом изложения, чтобы у читателя сложились элементарные представления о данных преобразованиях.

Установим основные свойства параболы. Рассечем прямой круговой конус с вершиной S плоскостью, параллельной одной из его образующих. В сечении получим параболу. Проведем через ось ST конуса плоскость АSB, перпендикулярную к плоскости (рис. 11). Образующая SА, лежащая в ней, будет параллельна плоскости. Впишем в конус шаровую поверхность, касающуюся конуса по окружности UV и касающуюся плоскости в точке F. Проведем через точку F прямую, параллельную образующей SA. Обозначим точку ее пересечения с образующей SB через P. Точка F называется фокусом параболы, точка Р - ее вершиной, а прямая РF, проходящая через вершину и фокус (и параллельная образующей SA), называется осью параболы. Второй вершины - точки пересечения оси РF с образующей SA у параболы не будет: эта точка «уходит в бесконечность». Назовем директрисой (в переводе значит «направляющая») линию q 1 q 2 пересечения плоскости с плоскостью, в которой лежит окружность UV. Возьмем на параболе произвольную точку М и соединим ее с вершиной конуса S. Прямая МS коснется шара в точке D, лежащей на окружности UV. Соединим точку М с фокусом F и опустим из точки М перпендикуляр МК на директрису. Тогда оказывается, что расстояния произвольной точки М параболы до фокуса (МF) и до директрисы (МК) равны друг другу (основное свойство параболы), т.е. МF=МК.

Доказательство: МF=MD (как касательные к шару из одной точки). Обозначим угол между любой из образующих конуса и осью ST через ц. Спроектируем отрезки МD и МК на ось ST. Отрезок MD образует проекцию на ось ST, равную МDcosц, так как MD лежит на образующей конуса; отрезок МК образует проекцию на ось ST, равную МКсоsц, так как отрезок МК параллелен образующей SA. (Действительно, директриса q 1 q 1 перпендикулярна плоскости АSB. Следовательно, прямая РF пересекает директрису в точке L под прямым углом. Но прямые МК и РF лежат в одной плоскости, причем МК тоже перпендикулярна директрисе). Проекции обоих отрезков МК и МD на ось ST равны друг другу, так как один их конец - точка М - общий, а два других D и К лежат в плоскости, перпендикулярной оси ST (рис.). Тогда МDcosц= МКсоsц или МD= МК. Следовательно, МF=MK.

Свойство 1. (Фокальное свойство параболы).

Расстояние от любой точки параболы до середины главной хорды равно её расстоянию до директрисы.

Доказательство.

Точка F - точка пересечения прямой QR и главной хорды. Эта точка лежит на оси симметрии Оу. Действительно, треугольники RNQ и ROF равны, как прямоугольные

треугольники с раными катетами (NQ=OF, OR=RN). Поэтому какую бы точку N мы не взяли, построенная по ней прямая QR пересечёт главную хорду в её середине F. Теперь ясно, что треугольник FMQ - равнобедренный. Действительно, отрезок MR является одновременно и медианой и высотой этого треугольника. Отсюда следует, что MF=MQ.

Свойство 2. (Оптическое свойство параболы).

Всякая касательная к параболе составляет равные углы с фокальным радиусом, проведённым в точку касания, и лучом, прходящим из точки касания и сонаправленным с осью (или, лучи, выходящие из единственного фокуса, отражаясь от параболы, пойдут параллельно оси).

Доказательство. Для точки N, лежащей на самой параболе справедливо равенство |FN|=|NH|, а для точки N", лежащей во внутренней области параболы, |FN"|<|N"H"|. Если теперь провести биссектрису l угла FМК, то для любой отличной от М точки M" прямой l найдём:

|FM"|=|M"K"|>|M"K"|, то есть точка M" лежит во внешней области параболы. Итак, вся прямая l, кроме точки М, лежит во внешней области, то есть внутренняя область параболы лежит по одну сторону от l, а это означает, что l - касательная к параболе. Это даёт доказательство оптического свойства параболы: угол 1 равен углу 2, так как l - биссектриса угла FМК.

Что такое парабола знают, пожалуй, все. А вот как ее правильно, грамотно использовать при решении различных практических задач, разберемся ниже.

Сначала обозначим основные понятия, которые дает этому термину алгебра и геометрия. Рассмотрим все возможные виды этого графика.

Узнаем все основные характеристики этой функции. Поймем основы построения кривой (геометрия). Научимся находить вершину, другие основные величины графика данного типа.

Узнаем: как правильно строится искомая кривая по уравнению, на что надо обратить внимание. Посмотрим основное практическое применение этой уникальной величины в жизни человека.

Что такое парабола и как она выглядит

Алгебра: под этим термином понимается график квадратичной функции.

Геометрия: это кривая второго порядка, имеющая ряд определенных особенностей:

Каноническое уравнение параболы

На рисунке изображена прямоугольная система координат (XOY), экстремум, направление ветвей чертежа функции вдоль оси абсцисс.

Каноническое уравнение имеет вид:

y 2 = 2 * p * x,

где коэффициент p – фокальный параметр параболы (AF).

В алгебре оно запишется иначе:

y = a x 2 + b x + c (узнаваемый шаблон: y = x 2).

Свойства и график квадратичной функции

Функция обладает осью симметрии и центром (экстремум). Область определения – все значения оси абсцисс.

Область значений функции – (-∞, М) или (М, +∞) зависит от направления ветвей кривой. Параметр М тут означает величину функции в вершине линии.

Как определить, куда направлены ветви параболы

Чтобы найти направление кривой такого типа из выражения, нужно определить знак перед первым параметром алгебраического выражения. Если а ˃ 0, то они направлены вверх. Если наоборот – вниз.

Как найти вершину параболы по формуле

Нахождение экстремума является основным этапом при решении множества практических задач. Конечно, можно открыть специальные онлайн калькуляторы, но лучше это уметь делать самому.

Как же ее определить? Есть специальная формула. Когда b не равно 0, надо искать координаты этой точки.

Формулы нахождения вершины:

  • x 0 = -b / (2 * a);
  • y 0 = y (x 0).

Пример.

Имеется функция у = 4 * x 2 + 16 * x – 25. Найдём вершины этой функции.

Для такой линии:

  • х = -16 / (2 * 4) = -2;
  • y = 4 * 4 - 16 * 2 - 25 = 16 - 32 - 25 = -41.

Получаем координаты вершины (-2, -41).

Смещение параболы

Классический случай, когда в квадратичной функции y = a x 2 + b x + c, второй и третий параметры равны 0, а = 1 – вершина находится в точке (0; 0).

Движение по осям абсцисс или ординат обусловлено изменением параметров b и c соответственно. Сдвиг линии на плоскости будет осуществляться ровно на то количество единиц, чему равно значение параметра.

Пример.

Имеем: b = 2, c = 3.

Это означает, что классический вид кривой сдвинется на 2 единичных отрезка по оси абсцисс и на 3 — по оси ординат.

Как строить параболу по квадратному уравнению

Школьникам важно усвоить, как правильно начертить параболу по заданным параметрам.

Анализируя выражения и уравнения, можно увидеть следующее:

  1. Точка пересечения искомой линии с вектором ординат будет иметь значение, равное величине с.
  2. Все точки графика (по оси абсцисс) будут симметричны относительно основного экстремума функции.

Кроме того, места пересечения с ОХ можно найти, зная дискриминант (D) такой функции:

D = (b 2 — 4 * a * c).

Для этого нужно приравнять выражение к нулю.

Наличие корней параболы зависит от результата:

  • D ˃ 0, то х 1, 2 = (-b ± D 0,5) / (2 * a);
  • D = 0, то х 1, 2 = -b / (2 * a);
  • D ˂ 0, то нет точек пересечения с вектором ОХ.

Получаем алгоритм построения параболы:

  • определить направление ветвей;
  • найти координаты вершины;
  • найти пересечение с осью ординат;
  • найти пересечение с осью абсцисс.

Пример 1.

Дана функция у = х 2 — 5 * х + 4. Необходимо построить параболу. Действуем по алгоритму:

  1. а = 1, следовательно, ветви направлены вверх;
  2. координаты экстремума: х = — (-5) / 2 = 5/2; y = (5/2) 2 - 5 * (5/2) + 4 = -15/4;
  3. с осью ординат пересекается в значении у = 4;
  4. найдем дискриминант: D = 25 - 16 = 9;
  5. ищем корни:
  • Х 1 = (5 + 3) / 2 = 4; (4, 0);
  • Х 2 = (5 - 3) / 2 = 1; (1, 0).

Пример 2.

Для функции у = 3 * х 2 — 2 * х — 1 нужно построить параболу. Действуем по приведенному алгоритму:

  1. а = 3, следовательно, ветви направлены вверх;
  2. координаты экстремума: х = — (-2) / 2 * 3 = 1/3; y = 3 * (1/3) 2 - 2 * (1/3) - 1 = -4/3;
  3. с осью у будет пересекаться в значении у = -1;
  4. найдем дискриминант: D = 4 + 12 = 16. Значит корни:
  • Х 1 = (2 + 4) / 6 = 1; (1;0);
  • Х 2 = (2 - 4) / 6 = -1/3; (-1/3; 0).

По полученным точкам можно построить параболу.

Директриса, эксцентриситет, фокус параболы

Исходя из канонического уравнения, фокус F имеет координаты (p/2, 0).

Прямая АВ – директриса (своего рода хорда параболы определенной длины). Ее уравнение: х = -р/2.

Эксцентриситет (константа) = 1.

Заключение

Мы рассмотрели тему, которую изучают школьники в средней школе. Теперь вы знаете, глядя на квадратичную функцию параболы, как найти её вершину, в какую сторону будут направлены ветви, есть ли смещение по осям, и, имея алгоритм построения, сможете начертить её график.

ОПР 1. Параболой называется геометрическое место точек на плоскости, расстояния от которых до некоторой точки, называемой фокусом, и до некоторой прямой, называемой директрисой, равны.

Для вывода уравнения параболы введем на плоскости прямоугольную систему координат так, чтобы ось абсцисс проходила через фокус перпендикулярно директрисе, и будем считать ее положительным направлением направление от директрисы к фокусу. Начало координат расположим посередине между фокусом и директрисой. Выведем уравнение параболы в выбранной системе координат.

Пусть М (х ; у ) – произвольная точка плоскости.

Обозначим через r расстояние от точки М до фокуса F, пусть r = FM,

через d – расстояние от точки до директрисы, а через р расстояние от фокуса до директрисы.

Величину р называют параметром параболы, его геометрический смысл раскрыт далее.

Точка М будет лежать на данной параболе в том и только в том случае, когда r = d .

В этом случае имеем

Уравнение

y 2 = 2 p x

называется каноническим уравнением параболы .

Свойства параболы

1. Парабола проходит через начало координат, т.к. координаты начала координат удовлетворяют уравнению параболы.

2. Парабола симметрична относительно оси ОХ, т.к. точки с координатами (x , y ) и (x , − y ) удовлетворяют уравнению параболы.

3. Если р > 0, то ветви параболы направлены вправо и парабола находится в правой полуплоскости.

4. Точка О называется вершиной параболы, ось симметрии (ось Ох ) - осью параболы.

Параболой называется геометрическое место точек плоскости, равноудаленных от заданной точки F

и заданной прямой dd, не проходящей через заданную точку. Это геометрическое определение выражает директориальное свойство параболы .

Директориальное свойство парабол

Точка F называется фокусом параболы, прямая d - директрисой параболы, середина O перпендикуляра, опущенного из фокуса на директрису, - вершиной параболы, расстояние p от фокуса до директрисы - параметром параболы, а расстояние p2от вершины параболы до её фокуса - фокусным расстоянием. Прямая, перпендикулярная директрисе и проходящая через фокус, называется осью параболы (фокальной осью параболы). Отрезок FM, соединяющий произвольную точку M параболы с её фокусом, называется фокальным радиусом точки

M. Отрезок, соединяющий две точки параболы, называется хордой параболы.

Для произвольной точки параболы отношение расстояния до фокуса к расстоянию до директрисы равно единице. Сравнивая директориальные свойства эллипса, гиперболы и параболы, заключаем, что эксцентриситет параболы по определению равен единице

Геометрическое определение параболы , выражающее её директориальное свойство, эквивалентно её аналитическому определению - линии, задаваемой каноническим уравнением параболы:

Свойства

  • Она имеет ось симметрии, называемой осью параболы . Ось проходит через фокус и вершину перпендикулярно директрисе.
  • Оптическое свойство. Пучок лучей, параллельных оси параболы, отражаясь в параболе, собирается в её фокусе. И наоборот, свет от источника, находящегося в фокусе, отражается параболой в пучок параллельных её оси лучей.
  • Если фокус параболы отразить относительно касательной, то его образ будет лежать на директрисе.
  • Отрезок, соединяющий середину произвольной хорды параболы и точку пересечения касательных к ней в концах этой хорды, перпендикулярен директрисе, а его середина лежит на параболе.
  • Парабола является антиподерой прямой.
  • Все параболы подобны. Расстояние между фокусом и директрисой определяет масштаб.

Функция одной действительной переменной: основные понятия, примеры.

Определение: Если каждому значению х числового множества X по правилу f соответствует единственное число множества Y, то говорят, что на числовом множестве X задана функция у = f(x), значения х определяются множеством значений, входящих в область определения функции (Х) .
В этом случае х называется аргументом, а у - значением функции. Множество X называется областью определения функции, Y - множеством значений функции.
Часто задают это правило формулой; например, у = 2х + 5. Указанный способ задания функции при помощи формулы называется аналитическим.
Функцияю можно так же задать графиком - Графиком функции у - f(x) называется множество точек плоскости, координаты х, у которых удовлетворяют соотношению у = f(x).