Болезни Военный билет Призыв

Гидроксид кальция нахождение в природе. Свойства и применение кальция

Кальций — химический элемент II группы с атомным номером 20 в периодической системе, обозначается символом Ca (лат. Calcium). Кальций - мягкий щелочно-земельный металл серебристо-серого цвета.

20 элемент таблицы МенделееваНазвание элемента происходит от лат. calx (в родительном падеже calcis) — «известь», «мягкий камень». Оно было предложено английским химиком Хэмфри Дэви, в 1808 г. выделившим металлический кальций.
Соединения кальция — известняк, мрамор, гипс (а также известь — продукт обжига известняка) применялись в строительном деле уже несколько тысячелетий назад.
Кальций один из наиболее распространенных на Земле элементов. Соединения кальция находятся практически во всех животных и растительных тканях. На его долю приходится 3,38 % массы земной коры (5-е место по распространенности после кислорода, кремния, алюминия и железа).

Нахождение кальция в природе

Из-за высокой химической активности кальций в свободном виде в природе не встречается.
На долю кальция приходится 3,38 % массы земной коры (5-е место по распространенности после кислорода, кремния, алюминия и железа). Содержание элемента в морской воде — 400 мг/л.

Изотопы

Кальций встречается в природе в виде смеси шести изотопов: 40Ca, 42Ca, 43Ca, 44Ca, 46Ca и 48Ca, среди которых наиболее распространённый — 40Ca — составляет 96,97 %. Ядра кальция содержат магическое число протонов: Z = 20. Изотопы
40
20
Ca20 и
48
20
Ca28 являются двумя из пяти существующих в природе ядер с дважды магическим числом.
Из шести природных изотопов кальция пять стабильны. Шестой изотоп 48Ca, самый тяжелый из шести и весьма редкий (его изотопная распространённость равна всего 0,187 %), испытывает двойной бета-распад с периодом полураспада 1,6·1017 лет.

В горных породах и минералах

Большая часть кальция содержится в составе силикатов и алюмосиликатов различных горных пород (граниты, гнейсы и т. п.), особенно в полевом шпате — анортите Ca.
В виде осадочных пород соединения кальция представлены мелом и известняками, состоящими в основном из минерала кальцита (CaCO3). Кристаллическая форма кальцита — мрамор — встречается в природе гораздо реже.
Довольно широко распространены такие минералы кальция, как кальцит CaCO3, ангидрит CaSO4, алебастр CaSO4·0.5H2O и гипс CaSO4·2H2O, флюорит CaF2, апатиты Ca5(PO4)3(F,Cl,OH), доломит MgCO3·CaCO3. Присутствием солей кальция и магния в природной воде определяется её жёсткость.
Кальций, энергично мигрирующий в земной коре и накапливающийся в различных геохимических системах, образует 385 минералов (четвёртое место по числу минералов).

Биологическая роль кальция

Кальций — распространенный макроэлемент в организме растений, животных и человека. В организме человека и других позвоночных большая его часть находится в скелете и зубах. В костях кальций содержится в виде гидроксиапатита. Из различных форм карбоната кальция (извести) состоят «скелеты» большинства групп беспозвоночных (губки, коралловые полипы, моллюски и др.). Ионы кальция участвуют в процессах свертывания крови, а также служат одним из универсальных вторичных посредников внутри клеток и регулируют самые разные внутриклеточные процессы — мышечное сокращение, экзоцитоз, в том числе секрецию гормонов и нейромедиаторов. Концентрация кальция в цитоплазме клеток человека составляет около 10−4 ммоль/л, в межклеточных жидкостях около 2,5 ммоль/л.

Потребность в кальции зависит от возраста. Для взрослых в возрасте 19-50 лет и детей 4-8 лет включительно дневная потребность (RDA) составляет 1000 мг (содержится примерно в 790 мл молока с жирностью 1 %), а для детей в возрасте от 9 до 18 лет включительно — 1300 мг в сутки (содержится примерно в 1030 мл молока жирностью 1 %). В подростковом возрасте потребление достаточного количества кальция очень важно из-за интенсивного роста скелета. Однако по данным исследований в США всего 11 % девочек и 31 % мальчиков в возрасте 12-19 лет достигают своих потребностей. В сбалансированной диете большая часть кальция (около 80 %) поступает в организм ребёнка с молочными продуктами. Оставшийся кальций приходится на зерновые (в том числе цельнозерновой хлеб и гречку), бобовые, апельсины, зелень, орехи. В «молочных» продуктах на основе молочного жира (сливочном масле, сливках, сметане, мороженом на основе сливок) кальция практически не содержится. Чем больше в молочном продукте молочного жира, тем меньше в нём кальция. Всасывание кальция в кишечнике происходит двумя способами: чрезклеточно (трансцеллюлярно) и межклеточно (парацелюллярно). Первый механизм опосредован действием активной формы витамина D (кальцитриола) и её кишечными рецепторами. Он играет большую роль при малом и умеренном потреблении кальция. При большем содержании кальция в диете основную роль начинает играть межклеточная абсорбция, которая связана с большим градиентом концентрации кальция. За счёт чрезклеточного механизма кальций всасывается в большей степени в двенадцатиперстной кишке (из-за наибольшей концентрации там рецепторов в кальцитриолу). За счёт межклеточного пассивного переноса абсорбция кальция наиболее активна во всех трёх отделах тонкого кишечника. Всасыванию кальция парацеллюлярно способствует лактоза (молочный сахар).

Усвоению кальция препятствуют некоторые животные жиры (включая жир коровьего молока и говяжий жир, но не сало) и пальмовое масло. Содержащиеся в таких жирах пальмитиновая и стеариновая жирные кислоты отщепляются при переваривании в кишечнике и в свободном виде прочно связывают кальций, образуя пальмитат кальция и стеарат кальция (нерастворимые мыла). В виде этого мыла со стулом теряется как кальций, так и жир. Этот механизм ответственен за снижение всасывания кальция, снижение минерализации костей и снижение косвенных показателей их прочности у младенцев при использовании детских смесей на основе пальмового масла (пальмового олеина). У таких детей образование кальциевых мыл в кишечнике ассоциируется с уплотнением стула, уменьшением его частоты, а также более частым срыгиванием и коликами.

Концентрация кальция в крови из-за её важности для большого числа жизненно важных процессов точно регулируется, и при правильном питании и достаточном потреблении обезжиренных молочных продуктов и витамина D дефицита не возникает. Длительный дефицит кальция и/или витамина D в диете приводит к увеличению риска остеопороза, а в младенчестве вызывает рахит.

Избыточные дозы кальция и витамина D могут вызвать гиперкальцемию. Максимальная безопасная доза для взрослых в возрасте от 19 до 50 лет включительно составляет 2500 мг в сутки (около 340 г сыра Эдам).

Теплопроводность Электроотрицательность 1,00 (шкала Полинга) Электродный потенциал −2,76 Степени окисления 2 Энергия ионизации
(первый электрон) 589,4 (6,11) кДж /моль (эВ) Термодинамические свойства простого вещества Плотность (при н. у.) 1,55 г/см³ Температура плавления 1112 К; 838,85 °C Температура кипения 1757 К; 1483,85 °C Уд. теплота плавления 9,20 кДж/моль Уд. теплота испарения 153,6 кДж/моль Молярная теплоёмкость 25,9 Дж/(K·моль) Молярный объём 29,9 см ³/моль Кристаллическая решётка простого вещества Структура решётки кубическая гранецентрированная Параметры решётки 5,580 Температура Дебая 230 Прочие характеристики Теплопроводность (300 K) (201) Вт/(м·К) Номер CAS 7440-70-2 Эмиссионный спектр

История и происхождение названия

Название элемента происходит от лат. calx (в родительном падеже calcis ) - «известь», «мягкий камень». Оно было предложено английским химиком Гемфри Дэви , в 1808 г. выделившим металлический кальций электролитическим методом . Дэви подверг электролизу смесь влажной гашёной извести с на платиновой пластине, которая являлась анодом . Катодом служила платиновая проволока, погруженная в жидкую . В результате электролиза получалась амальгама кальция. Отогнав из неё ртуть, Дэви получил металл , названный кальцием.

Изотопы

Кальций встречается в природе в виде смеси шести изотопов : 40 Ca, 42 Ca, 43 Ca, 44 Ca, 46 Ca и 48 Ca, среди которых наиболее распространённый - 40 Ca - составляет 96,97 %. Ядра кальция содержат магическое число протонов: Z = 20 . Изотопы 40
20 Ca20
и 48
20 Ca28
являются двумя из пяти существующих в природе дважды магических ядер .

Из шести природных изотопов кальция пять стабильны. Шестой изотоп 48 Ca, самый тяжёлый из шести и весьма редкий (его изотопная распространённость равна всего 0,187 %), испытывает двойной бета-распад с периодом полураспада (4,39 ± 0,58)⋅10 19 лет .

В горных породах и минералах

Кальций, энергично мигрирующий в земной коре и накапливающийся в различных геохимических системах, образует 385 минералов (четвёртое место по числу минералов).

Большая часть кальция содержится в составе силикатов и алюмосиликатов различных горных пород (граниты , гнейсы и т. п.), особенно в полевом шпате - анортите Ca.

Довольно широко распространены такие минералы кальция, как кальцит CaCO 3 , ангидрит CaSO 4 , алебастр CaSO 4 ·0.5H 2 O и гипс CaSO 4 ·2H 2 O, флюорит CaF 2 , апатиты Ca 5 (PO 4) 3 (F,Cl,OH), доломит MgCO 3 ·CaCO 3 . Присутствием солей кальция и магния в природной воде определяется её жёсткость .

Осадочная порода, состоящая в основном из скрытокристаллического кальцита - известняк (одна из его разновидностей - мел). Под действием регионального метаморфизма известняк преобразуется в мрамор .

Миграция в земной коре

В естественной миграции кальция существенную роль играет «карбонатное равновесие», связанное с обратимой реакцией взаимодействия карбоната кальция с водой и углекислым газом с образованием растворимого гидрокарбоната:

C a C O 3 + H 2 O + C O 2 ⇄ C a (H C O 3) 2 ⇄ C a 2 + + 2 H C O 3 − {\displaystyle {\mathsf {CaCO_{3}+H_{2}O+CO_{2}\rightleftarrows Ca(HCO_{3})_{2}\rightleftarrows Ca^{2+}+2HCO_{3}^{-}}}}

(равновесие смещается влево или вправо в зависимости от концентрации углекислого газа).

Огромную роль играет биогенная миграция.

В биосфере

Соединения кальция находятся практически во всех животных и растительных тканях (см. ниже). Значительное количество кальция входит в состав живых организмов. Так, гидроксиапатит Ca 5 (PO 4) 3 OH, или, в другой записи, 3Ca 3 (PO 4) 2 ·Са(OH) 2 - основа костной ткани позвоночных, в том числе и человека; из карбоната кальция CaCO 3 состоят раковины и панцири многих беспозвоночных, яичная скорлупа и др. В живых тканях человека и животных 1,4-2 % Са (по массовой доле); в теле человека массой 70 кг содержание кальция - около 1,7 кг (в основном в составе межклеточного вещества костной ткани).

Получение

Свободный металлический кальций получают электролизом расплава , состоящего из CaCl 2 (75-80 %) и KCl или из CaCl 2 и CaF 2 , а также алюминотермическим восстановлением CaO при 1170-1200 °C 4 C a O + 2 A l → C a A l 2 O 4 + 3 C a {\displaystyle {\mathsf {4CaO+2Al\rightarrow CaAl_{2}O_{4}+3Ca}}}

Физические свойства

Металл кальций существует в двух аллотропных модификациях . До 443 °C устойчив α -Ca с кубической гранецентрированной решеткой (параметр а = 0,558 нм ), выше устойчив β -Ca с кубической объемно-центрированной решеткой типа α -Fe (параметр a = 0,448 нм ). Стандартная энтальпия Δ H 0 {\displaystyle \Delta H^{0}} перехода α → β составляет 0,93 кДж/моль .

При постепенном повышении давления начинает проявлять свойства полупроводника , но не становится полупроводником в полном смысле этого слова (металлом уже тоже не является). При дальнейшем повышении давления возвращается в металлическое состояние и начинает проявлять сверхпроводящие свойства (температура сверхпроводимости в шесть раз выше, чем у ртути, и намного превосходит по проводимости все остальные элементы). Уникальное поведение кальция похоже во многом на стронций (то есть параллели в периодической системе сохраняются) .

Химические свойства

В ряду стандартных потенциалов кальций расположен слева от водорода . Стандартный электродный потенциал пары Ca 2+ /Ca 0 −2,84 В , так что кальций активно реагирует с водой, но без воспламенения:

C a + 2 H 2 O → C a (O H) 2 + H 2 . {\displaystyle {\mathsf {Ca+2H_{2}O\rightarrow Ca(OH)_{2}+H_{2}\uparrow .}}}

Наличие в воде растворенного гидрокарбоната кальция во многом определяет вре́менную жёсткость воды. Вре́менной её называют потому, что при кипячении воды гидрокарбонат разлагается, и в осадок выпадает СаСО 3 . Это явление приводит, например, к тому, что в чайнике со временем образуется накипь .

Применение

Главное применение металлического кальция - это использование его как восстановителя при получении металлов, особенно никеля, меди и нержавеющей стали. Кальций и его гидрид используются также для получения трудно восстанавливаемых металлов, таких, как хром , торий и уран . Сплавы кальция со свинцом применяются в некоторых видах аккумуляторных батарей и при производстве подшипников. Кальциевые гранулы используются также для удаления следов воздуха из электровакуумных приборов. Чистый металлический кальций широко применяется в металлотермии при получении редкоземельных элементов .

Кальций широко применяется в металлургии для раскисления стали наряду с алюминием или в сочетании с ним. Внепечная обработка кальцийсодержащими проволоками занимает ведущее положение в связи с многофакторностью влияния кальция на физико-химическое состояние расплава, макро- и микроструктуры металла, качество и свойства металлопродукции и является неотъемлемой частью технологии производства стали . В современной металлургии для ввода в расплав кальция используется инжекционная проволока, представляющая из себя кальций (иногда силикокальций или алюмокальций) в виде порошка или прессованного металла в стальной оболочке. Наряду с раскислением (удалением растворенного в стали кислорода) использование кальция позволяет получить благоприятные по природе, составу и форме неметаллические включения, не разрушающиеся в ходе дальнейших технологических операций .

Изотоп 48 Ca - один из эффективных и употребительных материалов для производства сверхтяжёлых элементов и открытия новых элементов таблицы Менделеева . Это связано с тем, что кальций-48 является дважды магическим ядром , поэтому его устойчивость позволяет ему быть достаточно нейтроноизбыточным для лёгкого ядра; при синтезе сверхтяжёлых ядер необходим избыток нейтронов.

Биологическая роль

Концентрация кальция в крови из-за её важности для большого числа жизненно важных процессов точно регулируется, и при правильном питании и достаточном потреблении обезжиренных молочных продуктов и витамина D дефицита не возникает. Длительный дефицит кальция и/или витамина D в диете приводит к увеличению риска остеопороза , а в младенчестве вызывает рахит .

Примечания

  1. Твёрдость по Бринеллю 200-300 МПа
  2. Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry . - 2013. - Vol. 85 , no. 5 . - P. 1047-1078 . - DOI :10.1351/PAC-REP-13-03-02 .
  3. Редкол.:Кнунянц И. Л. (гл. ред.). Химическая энциклопедия: в 5 т. - Москва: Советская энциклопедия, 1990. - Т. 2. - С. 293. - 671 с. - 100 000 экз.
  4. Riley J.P. and Skirrow G. Chemical Oceanography V. 1, 1965.
  5. Pritychenko B. Systematics of Evaluated Half-lives of Double-beta Decay // Nuclear Data Sheets. - 2014. - Июнь (т. 120 ). - С. 102-105 . - ISSN 0090-3752 . - DOI :10.1016/j.nds.2014.07.018 . [исправить]
  6. Pritychenko B. List of Adopted Double Beta (ββ) Decay Values (неопр.) . National Nuclear Data Center, Brookhaven National Laboratory. Проверено 6 декабря 2015.
  7. Справочник химика / Редкол.: Никольский Б. П. и др. - 2-е изд., испр. - М.-Л.: Химия, 1966. - Т. 1. - 1072 с.
  8. Газета. Ру: Элементы под давлением
  9. Кальций // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров . - 3-е изд. - М. : Советская энциклопедия, 1969-1978.
  10. Дюдкин Д. А., Кисиленко В. В. Влияние различных факторов на усвоение кальция из порошковой проволоки с комплексным наполнителем СК40 (рус.) // Электрометаллургия: журнал. - 2009. - Май (№ 5 ). - С. 2-6 .
  11. Михайлов Г. Г., Чернова Л. А. Термодинамический анализ процессов раскисления стали кальцием и алюминием (рус.) // Электрометаллургия: журнал. - 2008. - Март (№ 3 ). - С. 6-8 .
  12. Shell Model of Nucleus
  13. Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium; Ross AC, Taylor CL, Yaktine AL, Del Valle HB, editors (2011).

Кальций - элемент главной подгруппы второй группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 20. Обозначается символом Ca (лат. Calcium ). Простое вещество кальций - мягкий, химически активный щёлочноземельный металл серебристо-белого цвета.

Кальций в окружающей среде

В природе его очень много: из солей кальция образованы горные массивы и глинистые породы, он есть в морской и речной воде, входит в состав растительных и животных организмов. На долю кальция приходится 3,38 % массы земной коры (5-е место по распространенности после кислорода, кремния, алюминия и железа).

Изотопы кальция

Кальций встречается в природе в виде смеси шести изотопов: 40 Ca, 42 Ca, 43 Ca, 44 Ca, 46 Ca и 48 Ca, среди которых наиболее распространённый - 40 Ca - составляет 96,97 %.

Из шести природных изотопов кальция пять стабильны. Шестой изотоп 48 Ca, самый тяжелый из шести и весьма редкий (его изотопная распространённость равна всего 0,187 %), как было недавно обнаружено, испытывает двойной бета-распад с периодом полураспада 5,3×10 19 лет.

Содержание кальция в горных породах и минералах

Большая часть кальция содержится в составе силикатов и алюмосиликатов различных горных пород (граниты, гнейсы и т. п.), особенно в полевом шпате - анортите Ca.

В виде осадочных пород соединения кальция представлены мелом и известняками, состоящими в основном из минерала кальцита (CaCO 3). Кристаллическая форма кальцита - мрамор - встречается в природе гораздо реже.

Довольно широко распространены такие минералы кальция, как кальцит CaCO 3 , ангидрит CaSO 4 , алебастр CaSO 4 ·0.5H 2 O и гипс CaSO 4 ·2H 2 O, флюорит CaF 2 , апатиты Ca 5 (PO 4) 3 (F,Cl,OH), доломит MgCO 3 ·CaCO 3 . Присутствием солей кальция и магния в природной воде определяется её жёсткость.

Кальций, энергично мигрирующий в земной коре и накапливающийся в различных геохимических системах, образует 385 минералов (четвёртое место по числу минералов).

Миграция кальция в земной коре

В естественной миграции кальция существенную роль играет «карбонатное равновесие», связанное с обратимой реакцией взаимодействия карбоната кальция с водой и углекислым газом с образованием растворимого гидрокарбоната:

СаСО 3 + H 2 O + CO 2 ↔ Са (НСО 3) 2 ↔ Ca 2+ + 2HCO 3 -

(равновесие смещается влево или вправо в зависимости от концентрации углекислого газа).

Огромную роль играет биогенная миграция.

Содержание кальция в биосфере

Соединения кальция находятся практически во всех животных и растительных тканях (см. тж. ниже). Значительное количество кальция входит в состав живых организмов. Так, гидроксиапатит Ca 5 (PO 4) 3 OH, или, в другой записи, 3Ca 3 (PO 4) 2 ·Са(OH) 2 - основа костной ткани позвоночных, в том числе и человека; из карбоната кальция CaCO 3 состоят раковины и панцири многих беспозвоночных, яичная скорлупа и др. В живых тканях человека и животных 1,4-2 % Са (по массовой доле); в теле человека массой 70 кг содержание кальция - около 1,7 кг (в основном в составе межклеточного вещества костной ткани).

Получение кальция

Кальций впервые получен Дэви в 1808 г. с помощью электролиза. Но, как и другие щелочные и щелочноземельные металлы, элемент №20 нельзя получить электролизом из водных растворов. Кальций получают при электролизе его расплавленных солей.

Это сложный и энергоемкий процесс. В электролизере расплавляют хлорид кальция с добавками других солей (они нужны для того, чтобы снизить температуру плавления СаСl 2).

Стальной катод только касается поверхности электролита; выделяющийся кальций прилипает и застывает на нем. По мере выделения кальция катод постепенно поднимают и в конечном счете получают кальциевую «штангу» длиной 50...60 см. Тогда ее вынимают, отбивают от стального катода и начинают процесс сначала. «Методом касания» получают кальций сильно загрязненный хлористым кальцием, железом, алюминием, натрием. Очищают его переплавкой в атмосфере аргона.

Если стальной катод заменить катодом из металла, способного сплавляться с кальцием, то при электролизе будет получаться соответствующий сплав. В зависимости от назначения его можно использовать как сплав, либо отгонкой в вакууме получить чистый кальций. Так получают сплавы кальция с цинком, свинцом и медью.

Другой метод получения кальция – металлотермический – был теоретически обоснован еще в 1865 г. известным русским химиком Н.Н. Бекетовым. Кальций восстанавливают алюминием при давлении всего в 0,01 мм ртутного столба. Температура процесса 1100...1200°C. Кальций получается при этом в виде пара, который затем конденсируют.

В последние годы разработан еще один способ получения элемента. Он основан на термической диссоциации карбида кальция: раскаленный в вакууме до 1750°C карбид разлагается с образованием паров кальция и твердого графита.

Физические свойства кальция

Металл кальций существует в двух аллотропных модификациях. До 443 °C устойчив α-Ca с кубической гранецентрированной решеткой (параметр а = 0,558 нм), выше устойчив β-Ca с кубической объемно-центрированной решеткой типа α-Fe (параметр a = 0,448 нм). Стандартная энтальпия ΔH 0 перехода α → β составляет 0,93 кДж/моль.

При постепенном повышении давления начинает проявлять свойства полупроводника, не становится полупроводником в полном смысле этого слова (металлом уже тоже не является). При дальнейшем повышении давления возвращается в металлическое состояние и начинает проявлять сверхпроводящие свойства (температура сверхпроводимости в шесть раз выше, чем у ртути, и намного превосходит по проводимости все остальные элементы). Уникальное поведение кальция похоже во многом на стронций.

Несмотря на повсеместную распространенность элемента, даже химики и то не все видели элементарный кальций. А ведь этот металл и внешне и по поведению совсем непохож на щелочные металлы, общение с которыми чревато опасностью пожаров и ожогов. Его можно спокойно хранить на воздухе, он не воспламеняется от воды. Механические свойства элементарного кальция не делают его «белой вороной» в семье металлов: по прочности и твердости кальций превосходит многие из них; его можно обтачивать на токарном станке, вытягивать в проволоку, ковать, прессовать.

И все-таки в качестве конструкционного материала элементарный кальций почти не применяется. Для этого он слишком активен. Кальций легко реагирует с кислородом, серой, галогенами. Даже с азотом и водородом при определенных условиях он вступает в реакции. Среда окислов углерода, инертная для большинства металлов, для кальция – агрессивная. Он сгорает в атмосфере CO и CO 2 .

Естественно, что, обладая такими химическими свойствами, кальций не может находиться в природе в свободном состоянии. Зато соединения кальция – и природные и искусственные – приобрели первостепенное значение.

Химические свойства кальция

Кальций - типичный щелочноземельный металл. Химическая активность кальция высока, но ниже, чем всех других щелочноземельных металлов. Он легко взаимодействует с кислородом, углекислым газом и влагой воздуха, из-за чего поверхность металлического кальция обычно тускло серая, поэтому в лаборатории кальций обычно хранят, как и другие щелочноземельные металлы, в плотно закрытой банке под слоем керосина или жидкого парафина.

В ряду стандартных потенциалов кальций расположен слева от водорода. Стандартный электродный потенциал пары Ca 2+ /Ca 0 −2,84 В, так что кальций активно реагирует с водой, но без воспламенения:

Ca + 2Н 2 О = Ca(ОН) 2 + Н 2 + Q.

С активными неметаллами (кислородом, хлором, бромом) кальций реагирует при обычных условиях:

2Са + О 2 = 2СаО, Са + Br 2 = CaBr 2 .

При нагревании на воздухе или в кислороде кальций воспламеняется. С менее активными неметаллами (водородом, бором, углеродом, кремнием, азотом, фосфором и другими) кальций вступает во взаимодействие при нагревании, например:

Са + Н 2 = СаН 2 , Ca + 6B = CaB 6 ,

3Ca + N 2 = Ca 3 N 2 , Са + 2С = СаС 2 ,

3Са + 2Р = Са 3 Р 2 (фосфид кальция), известны также фосфиды кальция составов СаР и СаР 5 ;

2Ca + Si = Ca 2 Si (силицид кальция), известны также силициды кальция составов CaSi, Ca 3 Si 4 и CaSi 2 .

Протекание указанных выше реакций, как правило, сопровождается выделением большого количества теплоты (то есть эти реакции - экзотермические). Во всех соединениях с неметаллами степень окисления кальция +2. Большинство из соединений кальция с неметаллами легко разлагается водой, например:

СаН 2 + 2Н 2 О = Са(ОН) 2 + 2Н 2 ,

Ca 3 N 2 + 3Н 2 О = 3Са(ОН) 2 + 2NH 3 .

Ион Ca 2+ бесцветен. При внесении в пламя растворимых солей кальция пламя окрашивается в кирпично-красный цвет.

Такие соли кальция, как хлорид CaCl 2 , бромид CaBr 2 , иодид CaI 2 и нитрат Ca(NO 3) 2 , хорошо растворимы в воде. Нерастворимы в воде фторид CaF 2 , карбонат CaCO 3 , сульфат CaSO 4 , ортофосфат Ca 3 (PO 4) 2 , оксалат СаС 2 О 4 и некоторые другие.

Важное значение имеет то обстоятельство, что, в отличие от карбоната кальция СаСО 3 , кислый карбонат кальция (гидрокарбонат) Са(НСО 3) 2 в воде растворим. В природе это приводит к следующим процессам. Когда холодная дождевая или речная вода, насыщенная углекислым газом, проникает под землю и попадает на известняки, то наблюдается их растворение:

СаСО 3 + СО 2 + Н 2 О = Са(НСО 3) 2 .

В тех же местах, где вода, насыщенная гидрокарбонатом кальция, выходит на поверхность земли и нагревается солнечными лучами, протекает обратная реакция:

Са(НСО 3) 2 = СаСО 3 + СО 2 + Н 2 О.

Так в природе происходит перенос больших масс веществ. В результате под землей могут образоваться огромные провалы, а в пещерах образуются красивые каменные «сосульки» - сталактиты и сталагмиты.

Наличие в воде растворенного гидрокарбоната кальция во многом определяет временную жёсткость воды. Временной её называют потому, что при кипячении воды гидрокарбонат разлагается, и в осадок выпадает СаСО 3 . Это явление приводит, например, к тому, что в чайнике со временем образуется накипь.

Применение кальция

До последнего времени металлический кальций почти не находил применения. США, например, до второй мировой войны потребляли в год всего 10...25 т кальция, Германия – 5...10 т. Но для развития новых областей техники нужны многие редкие и тугоплавкие металлы. Выяснилось, что кальции – очень удобный и активный восстановитель многих из них, и элемент стали применять при получении тория, ванадия, циркония, бериллия, ниобия, урана, тантала и других тугоплавких металлов. Чистый металлический кальций широко применяется в металлотермии при получении редких металлов.

Чистый кальций применяется для легирования свинца, идущего на изготовление аккумуляторных пластин, необслуживаемых стартерных свинцово-кислотных аккумуляторов с малым саморазрядом. Также металлический кальций идет на производство качественных кальциевых баббитов БКА.

Применение металлического кальция

Главное применение металлического кальция - это использование его как восстановителя при получении металлов, особенно никеля, меди и нержавеющей стали. Кальций и его гидрид используются также для получения трудновосстанавливаемых металлов, таких, как хром, торий и уран. Сплавы кальция со свинцом находят применение в аккумуляторных батареях и подшипниковых сплавах. Кальциевые гранулы используются также для удаления следов воздуха из электровакуумных приборов.

Природный мел в виде порошка входит в составы для полировки металлов. Но чистить зубы порошком из природного мела нельзя, так как он содержит остатки раковин и панцирей мельчайших животных, которые обладают повышенной твердостью и разрушают зубную эмаль.

Использование кальция в ядерном синтезе

Изотоп 48 Ca - наиболее эффективный и употребительный материал для производства сверхтяжёлых элементов и открытия новых элементов таблицы Менделеева. Например, в случае использования ионов 48 Ca для получения сверхтяжёлых элементов на ускорителях ядра этих элементов образуются в сотни и тысячи раз эффективней, чем при использовании других «снарядов» (ионов). Радиоактивный кальций широко используют в биологии и медицине в качестве изотопного индикатора при изучении процессов минерального обмена в живом организме. С его помощью установлено, что в организме происходит непрерывный обмен ионами кальция между плазмой, мягкими тканями и даже костной тканью. Большую роль сыграл 45 Са также при изучении обменных процессов, происходящих в почвах, и при исследовании процессов усвоения кальция растениями. С помощью этого же изотопа удалось обнаружить источники загрязнения стали и сверхчистого железа соединениями кальция в процессе выплавки.

Способность кальция связывать кислород и азот позволила применить его для очистки инертных газов и как геттер (Геттер – вещество, служащее для поглощения газов и создания глубокого вакуума в электронных приборах.) в вакуумной радиоаппаратуре.

Применение соединений кальция

Некоторые соединения кальция, получаемые искусственным путем, стали даже более известными и привычными, чем известняки или гипс. Так, гашеную Са(OH) 2 и негашеную СаО известь применяли еще строители древности.

Цемент – это тоже соединение кальция, полученное искусственным путем. Сначала обжигают смесь глины или песка с известняком и получают клинкер, который затем размалывают в тонкий серый порошок. О цементе (вернее, о цементах) можно рассказывать очень много, это тема самостоятельной статьи.

То же самое относится и к стеклу, в состав которого тоже обычно входит элемент.

Гидрид кальция

Нагреванием кальция в атмосфере водорода получают CaH 2 (гидрид кальция), используемый в металлургии (металлотермии) и при получении водорода в полевых условиях.

Оптические и лазерные материалы

Фторид кальция (флюорит) применяется в виде монокристаллов в оптике (астрономические объективы, линзы, призмы) и как лазерный материал. Вольфрамат кальция (шеелит) в виде монокристаллов применяется в лазерной технике, а также как сцинтиллятор.

Карбид кальция

Карбид кальция – вещество, открытое случайно при испытании новой конструкции печи. Еще недавно карбид кальция CaCl 2 использовали главным образом для автогенной сварки и резки металлов. При взаимодействии карбида с водой образуется ацетилен, а горение ацетилена в струе кислорода позволяет получать температуру почти 3000°C. В последнее время ацетилен, а вместе с ним и карбид все меньше расходуются для сварки и все больше – в химической промышленности.

Кальций как химический источник тока

Кальций, а также его сплавы с алюминием и магнием используются в резервных тепловых электрических батареях в качестве анода(например кальций-хроматный элемент). Хромат кальция используется в таких батареях в качестве катода. Особенность таких батарей - чрезвычайно долгий срок хранения (десятилетия) в пригодном состоянии, возможность эксплуатации в любых условиях (космос, высокие давления), большая удельная энергия по весу и объёму. Недостаток в недолгом сроке действия. Такие батареи используются там, где необходимо на короткий срок создать колоссальную электрическую мощность (баллистические ракеты, некоторые космические аппараты и.др.).

Огнеупорные материалы из кальция

Оксид кальция, как в свободном виде, так и в составе керамических смесей, применяется в производстве огнеупорных материалов.

Лекарственные средства

Соединения кальция широко применяются в качестве антигистаминного средства.

  • Хлорид кальция
  • Глюконат кальция
  • Глицерофосфат кальция

Кроме того, соединения кальция вводят в состав препаратов для профилактики остеопороза, в витаминные комплексы для беременных и пожилых.

Кальций в организме человека

Кальций - распространенный макроэлемент в организме растений, животных и человека. В организме человека и других позвоночных большая его часть содержится в скелете и зубах в виде фосфатов. Из различных форм карбоната кальция (извести) состоят скелеты большинства групп беспозвоночных (губки, коралловые полипы, моллюски и др.). Потребность в кальции зависит от возраста. Для взрослых необходимая дневная норма составляет от 800 до 1000 миллиграммов (мг), а для детей от 600 до 900 мг, что для детей очень важно из-за интенсивного роста скелета. Большая часть кальция, поступающего в организм человека с пищей, содержится в молочных продуктах, оставшийся кальций приходится на мясо, рыбу, и некоторые растительные продукты (особенно много содержат бобовые).

Усваиванию кальция препятствуют аспирин, щавелевая кислота, производные эстрогенов. Соединяясь с щавелевой кислотой, кальций дает нерастворимые в воде соединения, которые являются компонентами камней в почках.

Избыточные дозы кальция и витамина Д могут вызвать гиперкальцемию, после которой следует интенсивная кальцификация костей и тканей (в основном затрагивает мочевыделительную систему). Максимальная дневная безопасная доза составляет для взрослого от 1500 до 1800 миллиграмм.

Кальций в жёсткой воде

Комплекс свойств, определяемых одним словом «жесткость», воде придают растворенные в ней соли кальция и магния. Жесткая вода непригодна во многих случаях жизни. Она образует слой накипи в паровых котлах и котельных установках, затрудняет окраску и стирку тканей, но годится для варки мыла и приготовления эмульсий в парфюмерном производстве. Поэтому раньше, когда способы умягчения воды были несовершенны, текстильные и парфюмерные предприятия обычно размещались поблизости от источников «мягкой» воды.

Различают жесткость временную и постоянную. Временную (или карбонатную) жесткость придают воде растворимые гидрокарбонаты Са(НCO 3) 2 и Mg(HCO 3) 2 . Устранить ее можно простым кипячением, при котором гидрокарбонаты превращаются в нерастворимые в воде карбонаты кальция и магния.

Постоянная жесткость создается сульфатами и хлоридами тех же металлов. И ее можно устранить, но сделать это намного сложнее.

Сумма обоих жесткостей составляет общую жесткость воды. Оценивают ее в разных странах по-разному. Принято выражать жесткость воды числом миллиграмм-эквивалентов кальция и магния в одном литре воды. Если в литре воды меньше 4 мг-экв, то вода считается мягкой; по мере увеличения их концентрации – все более жесткой и, если содержание превышает 12 единиц, – очень жесткой.

Жесткость воды обычно определяют с помощью раствора мыла. Такой раствор (определенной концентрации) прибавляют по каплям к отмеренному количеству воды. Пока в воде есть ионы Са 2+ или Mg 2+ , они будут мешать образованию пены. По затратам мыльного раствора до появления пены вычисляют содержание ионов Са 2+ и Mg 2+ .

Интересно, что аналогичным путем определяли жесткость воды еще в Древнем Риме. Только реактивом служило красное вино – его красящие вещества тоже образуют осадок с ионами кальция и магния.

Хранение кальция

Металлический кальций длительно хранить можно в кусках весом от 0,5 до 60 кг. Такие куски хранят в бумажных мешках, вложенных в железные оцинкованные барабаны с пропаянными и покрашенными швами. Плотно закрытые барабаны укладывают в деревянные ящики. Куски весом меньше 0,5 кг подолгу хранить нельзя – они быстро превращаются в окись, гидроокись и карбонат кальция.

Соединения кальция - известняк, мрамор, гипс (а также известь - продукт известняка) уже в глубокой древности применялись в строительном деле. Вплоть до конца 18 века химики считали известь простым телом. В 1789 году А. Лавуазье предположил, что известь, магнезия, барит, глинозём и кремнезём - вещества сложные. В 1808 году Дэви, подвергая электролизу с ртутным катодом смесь влажной гашеной извести с окисью ртути, приготовил амальгаму кальция, а отогнав из неё ртуть, получил металл, названный «кальций» (от лат. Calх, род. падеж calcis - известь).

Размещение электронов по орбиталям.

+20Са… |3s 3p 3d | 4s

Кальций называется щелочноземельным металлом, его относят к S - элементам. На внешнем электронном уровне у кальция два электрона, поэтому он даёт соединения: CaO, Ca(OH)2, CaCl2, CaSO4, CaCO3 и т.д. Кальций относится к типичным металлам - он имеет большое сродство к кислороду, восстанавливает почти все металлы из их окислов, образует довольно сильное основание Ca(OH)2.

Кристаллические решётки металлов могут быть различных типов, однако для кальция характерна гранецентрированная кубическая решётка.

Размеры, форму и взаимное расположение кристаллов в металлах излучают металлографическими методами. Наиболее полную оценку структуры металла в этом отношении даёт микроскопический анализ его шлифа. Из испытуемого металла вырезают образец и его плоскость шлифуют, полируют и протравливают специальным раствором (травителем). В результате травления выделяется структура образца, которую рассматривают или фотографируют с помощью металлографического микроскопа.

Кальцый - лёгкий металл (d = 1,55), серебристо-белого цвета. Он более твёрд и плавится при более высокой температуре (851 °С) по сравнению с натрием, который расположен рядом с ним в периодической системе. Это объясняется тем, что на один ион кальция в металле приходится два электрона. Поэтому химическая связь между ионами и электронным газом у него более прочная, чем у натрия. При химических реакциях валентные электроны кальция переходят к атомам других элементов. При этом образуются двухзарядные ионы.

Кальций обладает большой химической активностью по отношению к металлам, особенно к кислороду. На воздухе он окисляется медленнее щелочных металлов, так как окисная плёнка на нём менее проницаема для кислорода. При нагревании кальций сгорает с выделением громадных количеств теплоты:

C водой кальций вступает в реакцию, вытесняя из неё водород и образуя основание:

Са + 2H2O = Ca(OH)2 + H2

Благодаря большой химической активности к кислороду кальций находит некоторое применение для получения редких металлов из их окислов. Окислы металлов нагревают совместно с кальциевой стружкой; в результате реакций получается окись кальция и металл. На этом же свойстве основано применение кальция и его некоторых сплавов для так называемого раскисления металлов. Кальций добавляют в расплавленный металл, и он удаляет следы растворённого кислорода; образующаяся окись кальция всплывает на поверхность металла. Кальций входит в состав некоторых сплавов.

Получают кальций электролизом расплавленного хлорида кальция или алюминотермическим методом. Окись кальция, или гашеная известь, представляет собой порошок белого цвета, плавится она при 2570 °С. Получают её прокаливанием известняка:

СаСО3 = СаО + СО2^

Окись кальция - основной окисел, поэтому она вступает в реакцию с кислотами и ангидридами кислот. С водой она даёт основание - гидроокись кальция:

СаО + H2О = Са(ОН)2

Присоединение воды к окиси кальция, называемое гашением извести, протекает с выделением большого количества теплоты. Часть воды при этом превращается в пар. Гидроокись кальция, или гашеная известь, - вещество белого цвета, немного растворимое в воде. Водный раствор гидроокиси кальция называется известковой водой. Такой раствор обладает довольно сильными щелочными свойствами, так как гидроокись кальция хорошо диссоциирует:

Са(ОН)2 = Са + 2ОН

По сравнению с гидратами окислов щелочных металлов гидроокись кальция - более слабое основание. Объясняется это тем, что ион кальция двухзарядный и более сильно притягивает гидроксильные группы.

Гашеная известь и её раствор, называемый известковой водой, вступают в реакции с кислотами и ангидридами кислот, в том числе и с двуокисью углерода. Известковая вода служит в лабораториях для открытия двуокиси углерода, так как образующийся нерастворимый углекислый кальций вызывает помутнение воды:

Са + 2ОН + СО2 = СаСО3v + Н2О

Однако при длительном пропускании двуокиси углерода раствор снова становится прозрачным. Это объясняется тем, что карбонат кальция превращается в растворимую соль - гидрокарбонат кальция:

СаСО3 + СО2 + Н2О = Са(НСО3)2

В промышленности кальций получают двумя способами:

Нагреванием брикетированной смеси СаО и порошка Аl при 1200 °С в вакууме 0,01 - 0,02 мм. рт. ст.; выделяющиеся по реакции:

6СаО + 2Аl = 3CaO · Al2O3 + 3Ca

Пары кальция кондонсируются на холодной поверхности.

Электролизом расплава СаСl2 и КСl с жидким медно-кальциевым катодом приготовляют сплав Сu - Ca (65% Ca), из которого кальций отгоняют при температуре 950 - 1000 °С в вакууме 0,1 - 0,001 мм.рт.ст.

Разработан также способ получения кальция термической диссоциацией карбида кальция СаС2.

Кальций принадлежит к числу самых распространённых в природе элементов. В земной коре его содержится приблизительно 3% (масс.). Соли кальция образуют в природе большие скопления в виде карбонатов (мел, мрамор), сульфатов (гипс), фосфатов (фосфоритов). Под действием воды и двуокиси углерода карбонаты переходят в раствор в виде гидрокарбонатов и переносятся подземными и речными водами на большие расстояния. При вымывании солей кальция могут образовываться пещеры. За счёт испарения воды или повышения температуры на новом месте могут образовываться отложения карбоната кальция. Так, например, образуются сталактиты и сталагмиты в пещерах.

Растворимые соли кальция и магния обуславливают общую жёсткость воды. Если они присутствуют в воде в небольших количествах, то вода называется мягкой. При большом содержании этих солей (100 - 200 мг. солей кальция - в 1 л. в пересчёте на ионы) вода считается жёсткой. В такой воде мыло плохо пенится, так как соли кальция и магния образуют с ним нерастворимые соединения. В жёсткой воде плохо развариваются пищевые продукты, и при кипячении она даёт на стенках паровых котлов накипь. Накипь плохо проводит теплоту, вызывает увеличение расхода топлива и ускоряет изнашивание стенок котла. Образование накипи - сложный процесс. При нагревании кислые соли угольной кислоты кальция и магния разлагаются и переходят в нерастворимые карбонаты:

Са + 2НСО3 = Н2О + СО2 + СаСО3v

Растворимость сульфата кальция СаSO4 при нагревании также снижается, поэтому он входит в состав накипи.

Жёсткость вызванная присутствием в воде гидрокарбонатов кальция и магния, называется карбонатной или временной, так как она устраняется при кипячении. Помимо карбонатной жёсткости, различают ещё некарбонатную жёсткость, которая зависит от содержания в воде сульфатов и хлоридов кальция и магния. Эти соли не удаляются при кипячении, и поэтому некарбонатную жёсткость называют также постоянной жёсткостью. Карбонатная и некарбонатная жёсткость в сумме даёт общую жёсткость.

Для полного устранения жёсткости воду иногда перегоняют. Для устранения карбонатной жёсткости воду кипятят. Общую жёсткость устраняют или добавлением химических веществ, или при помощи так называемых катионитов. При использовании химического метода растворимые соли кальция и магния переводят в нерастворимые карбонаты, например добавляют известковое молоко и соду:

Са + 2НСО3 + Са + 2ОН = 2Н2О + 2СаСО3v

Са + SO4 + 2Na + CO3 = 2Na + SO4 + CaCO3v

Устранение жёсткости при помощи катионитов - процесс более совершенный. Катиониты - сложные вещества (природные соединения кремния и алюминия, высокомалекулярные органические соединения), состав которых можно выразить формулой Na2R, где R - сложный кислотный остаток. При фильтровании воды через слой катионита происходит обмен ионов (катионов) Na на ионы Са и Mg:

Са + Na2R = 2Na + CaR

Следовательно, ионы Са из раствора переходят в катионит, а ионы Na переходят из катионита в раствор. Для восстановления использованного катионита его промывают раствором поваренной соли. При этом происходит обратный процесс: ионы Са в катионите заменяются на ионы Na:

2Na + 2Cl + CaR = Na2R + Ca + 2Cl

Регенерированный катионит можно снова применять для очистки воды.

В виде чистого металла Са применяют как восстановитель U, Th, Cr, V, Zr, Cs, Rb и некоторых редкоземельных металлов и их соединений. Его используют также для раскисления сталей, бронз и других сплавов, для удаления серы из нефтепродуктов, для обезвоживания органических жидкостей, для очистки аргона от примесей азота и в качества поглотителя газов в электровакуумных приборах. Большое применение в технике получили антификционные материалы системы Pb - Na - Ca, а также сплавы Pb - Ca, служащие для изготовления оболочки электрических кабелей. Сплав Ca - Si - Ca (силикокальций) применяется как раскислитель и дегазатор в производстве качественных сталей.

Кальций - один из биогенных элементов, необходимых для нормального протекания жизненных процессов. Он присутствует во всех тканях и жидкостях животных и растений. Лишь редкие организмы могут развиваться в среде, лишённой Са. У некоторых организмов содержание Са достигает 38% : у человека - 1,4 - 2 %. Клетки растительных и животных организмов нуждаются в строго определённых соотношениях ионов Са, Na и К во внеклеточных средах. Растения получают Са из почвы. По их отношению к Са растения делят на кальцефилов и кальцефобов. Животные получают Са с пищей и водой. Са необходим для образования ряда клеточных структур, поддержания нормальной проницаемости наружных клеточных мембран, для оплодотворения яйцеклеток рыб и других животных, активизации ряда ферментов. Ионы Са передают возбуждение на мышечное волокно, вызывая его сокращение, увеличивают силу сердечных сокращений, повышают фагоцитарную функцию лейкоцитов, активируют систему защитных белков крови, участвуют в её свёртывании. В клетках почти весь Са находится в виде соединений с белками, нуклеиновыми кислотами, фосфолипидами, в комплексах с неорганическими фосфатами и органическими кислотами. В плазме крови человека и высших животных только 20 - 40 % Са может быть связано с белками. У животных, обладающих скелетом, до 97 - 99 % всего Са используется в качестве строительного материала: у беспозвоночных в основном в виде СаСО3 (раковина моллюсков, кораллы), у позвоночных - в виде фосфатов. Многие беспозвоночные запасают Са перед линькой для построения нового скелета или для обеспечения жизненных функций в неблагоприятных условиях. Содержание Са в крови человека и высших животных регулируется гормонами паращитовидных и щитовидной желёз. Важнейшую роль в этих процессах играет витамин D. Всасывание Са происходит в переднем отделе тонкого кишечника. Усвоение Са ухудшается при снижении кислотности в кишечнике и зависит от соотношения Са, фосфора и жира в пище. Оптимальные соотношения Са/Р в коровьем молоке около 1,3 (в картофеле 0,15, в бобах 0,13, в мясе 0,016). При избытке в пище Р и щавелевой кислоты всасывание Са ухудшается. Желчные кислоты ускоряют его всасывание. Оптимальные соотношения Са/жир в пище человека 0,04 - 0,08 г. Са на 1г. жира. Выделение Са происходит главным образом через кишечник. Млекопитающие в период лактации теряют много Са с молоком. При нарушениях фосфорно-кальциевого обмена у молодых животных и детей развивается рахит, у взрослых животных - изменение состава и строения скелета (остеомаляция).

В медицине препаратов Са устраняет нарушения, связанные с недостатком ионов Са в организме (при тетании, спазмофилии, рахите). Препараты Са снижают повышенную чувствительность к аллергенам и используются для лечения аллергических заболеваний (сывороточная болезнь, сонная лихорадка и др.). Препараты Са уменьшают повышенную проницаемость сосудов и оказывают противовоспалительное действие. Их применяют при геморрагическом васкулите, лучевой болезни, воспалительных процессах (пневмания, плеврит и др.) и некоторых кожных заболеваниях. Назначают каккровоостанавливающее средство, для улучшения деятельности сердечной мышцы и усиления действия препаратов наперстянки, как противоядия при отравлении солями магния. Вместе с другими средствами препараты Са применяют для стимулирования родовой деятельности. Хлористый Са вводят через рот и внутривенно. Оссокальцинол (15 % -ная стерильная суспензия особым образом приготовленного костного порошка в персиковом масле) предложен для тканевой терапии.

К препаратам Са относятся также гипс (СаSО4), применяемый в хирургии для гипсовых повязок, и мел (СаСО3), назначаемый внутрь при повышенной кислотности желудочного сока и для приготовления зубного порошка.


Введение

Свойства и применение кальция

1 Физические свойства

2 Химические свойства

3 Применение

Получение кальция

1 Электролитическое получение кальция и его сплавов

2 Термическое получение

3 Вакуум-термический способ получения кальция

3.1 Алюминотермический способ восстановления кальция

3.2 Силикотермический способ восстановления кальция

Практическая часть

Список используемой литературы


Введение

Химический элемент II группы периодической системы Менделеева, атомный номер 20, атомная масса 40,08; серебряно-белый легкий металл. Природный элемент представляет смесь шести стабильных изотопов: 40Ca, 42Ca, 43Ca, 44Ca, 46Ca и 48Ca, из которых наиболее распространен 40Ca (96, 97%).

Соединения Ca - известняк, мрамор, гипс (а также известь - продукт обжига известняка) уже в глубокой древности применялись в строительном деле. Вплоть до конца 18 века химики считали известь простым телом. В 1789 году А. Лавуазье предположил, что известь, магнезия, барит, глинозем и кремнезем - вещества сложные. В 1808 году Г. Дэви, подвергая электролизу с ртутным катодом смесь влажной гашеной извести с оксидом ртути, приготовил амальгаму Ca, а отогнав из нее ртуть, получил металл, названный "Кальций" (от лат. calx, род. падеж calcis - известь).

Способность кальция связывать кислород и азот позволила применить его для очистки инертных газов и как геттер (Геттер - вещество, служащее для поглощения газов и создания глубокого вакуума в электронных приборах.) в вакуумной радиоаппаратуре.

Кальций используют и в металлургии меди, никеля, специальных сталей и бронз; им связывают вредные примеси серы, фосфора, избыточного углерода. В тех же целях применяют сплавы кальция с кремнием, литием, натрием, бором, алюминием.

В промышленности кальций получают двумя способами:

) Нагреванием брикетированной смеси СаО и порошка Аl при 1200 °С в вакууме 0,01 - 0,02 мм. рт. ст.; выделяющиеся по реакции:


СаО + 2Аl = 3CaO · Al2O3 + 3Ca


Пары кальция кондонсируются на холодной поверхности.

) Электролизом расплава СаСl2 и КСl с жидким медно-кальциевым катодом приготовляют сплав Сu - Ca (65% Ca), из которого кальций отгоняют при температуре 950 - 1000 °С в вакууме 0,1 - 0,001 мм.рт.ст.

) Разработан также способ получения кальция термической диссоциацией карбида кальция СаС2.

Кальций весьма распространен в природе в форме различных соединений. В земной коре он занимает пятое место, составляя 3,25 %, и чаще всего встречается в виде известняка CaCO3, доломита CaCO3· Mg CO3, гипса CaSO4· 2H2O, фосфорита Ca3(PO4)2 и плавикового шпата CaF2, не считая значительной доли кальция в составе силикатных пород. В морской воде содержится в среднем 0,04% (вес.) кальция.

В данной курсовой работе изучены свойства и применение кальция, а так же подробно рассмотрена теория и технологии вакуум-термических способов его получения.


. Свойства и применение кальция


.1 Физические свойства


Кальций - серебристо-белый металл, но на воздухе тускнеет из-за образования оксида на его поверхности. Это пластичный металл тверже свинца. Кристаллическая решетка ?-формы Ca (устойчивой при обычной температуре) гранецентрированная кубическая, а = 5,56Å. Атомный радиус 1,97Å, ионный радиус Ca2+, 1,04Å. Плотность 1,54 г/см3(20 °C). Выше 464 °C устойчива гексагональная ?-форма. tпл 851 °C, tкип 1482 °C; температурный коэффициент линейного расширения 22·10-6 (0-300 °C); теплопроводность при 20 °C 125,6 Вт/(м·К) или 0,3 кал/(см·сек·°C); удельная теплоемкость (0-100 °C) 623,9 дж/(кг·К) или 0,149 кал/(г·°C); удельное электросопротивление при 20 °C 4,6·10-8 ом·м или 4,6·10-6 ом·см; температурный коэффициент электросопротивления 4,57·10-3 (20 °C). Модуль упругости 26 Гн/м2 (2600 кгс/мм2); предел прочности при растяжении 60 Мн/м2 (6 кгс/мм2); предел упругости 4 Мн/м2 (0,4 кгс/мм2), предел текучести 38 Мн/м2 (3,8 кгс/мм2); относительное удлинение 50%; твердость по Бринеллю 200-300 Мн/м2 (20-30 кгс/мм2). Кальций достаточно высокой чистоты пластичен, хорошо прессуется, прокатывается и поддается обработке резанием .


1.2 Химические свойства


Кальций - активный металл. Так при обычных условиях он легко взаимодействует с кислородом воздуха и галогенами:


Са + О2 = 2 СаО (оксид кальция) (1)

Са + Вr2 = СаВr2 (бромид кальция). (2)


С водородом, азотом, серой, фосфором, углеродом и другими неметаллами кальций реагирует при нагревании:


Са + Н2 = СаН2 (гидрид кальция) (3)

Са + N2 = Са3N2 (нитрид кальция) (4)

Са + S = СаS (сульфид кальция) (5)

Са + 2 Р = Са3Р2 (фосфид кальция) (6)

Са + 2 С = СаС2 (карбид кальция) (7)


С холодной водой кальций взаимодействует медленно, а с горячей - очень энергично, давая сильное основание Са(ОН)2:


Са + 2 Н2О = Са(ОН)2 + Н2 (8)


Будучи энергичным восстановителем, кальций может отнимать кислород или галогены от оксидов и галогенидов менее активных металлов, т. е. обладает восстановительными свойствами:


Са + Nb2О5 = СаО + 2 Nb; (9)

Са + 2 NbСl5 = 5 СаСl2 + 2 Nb (10)


Кальций энергично взаимодействует с кислотами с выделением водорода, реагирует с галогенами, с сухим водородом с образованием гидрида СаН2. При нагревании Кальций с графитом образуется карбид СаС2. Кальций получают электролизом расплавленного CaCl2 или алюминотермическим восстановлением в вакууме:


6СаО + 2Al = 3Ca + 3CaO·Al2О3 (11)


Чистый металл используют для восстановления соединений Cs, Rb, Cr, V, Zr, Th, U до металлов, для раскисления сталей .


1.3 Применение


Кальций находит все возрастающее.применение в различных отраслях производства. В последнее время он приобрел большое значение как восстановитель при получении ряда металлов.

Чистый металлический. уран получается восстановлением металлическим кальцием фтористого урана. Кальцием или его гидридами можно восстанавливать окислы титана, а также окислы циркония, тория, тантала, ниобия, других редких металлов.

Кальций является хорошим раскислителем и дегазатором при получении меди, никеля, хромоникелевых сплавов, специальных сталей, никелевых и оловянистых бронз; он удаляет из металлов и сплавов серу, фосфор, углерод.

Кальций образует с висмутом тугоплавкие соединения, поэтому его применяют для очистки свинца от висмута.

Кальций добавляют в различные легкие сплавы. Он способствует улучшению поверхности слитков, мелкозернистости и понижению окисляемости.

Большое распространение имеют содержащие кальций подшипниковые сплавы. Свинцовые сплавы (0,04 % Са) могут применяться для изготовления оболочек кабеля .

В технике применяются антифрикционные сплавы Кальция со свинцом. Широко применяются минералы Кальция. Так, известняк используют в производстве извести, цемента, силикатного кирпича и непосредственно как строительный материал, в металлургии (флюс), в химической промышленности для производства карбида кальция, соды, едкого натра, хлорной извести, удобрений, в производстве сахара, стекла.

Практическое значение имеют мел, мрамор, исландский шпат, гипс, флуорит и др. . Благодаря способности связывать кислород и азот кальций или сплавы кальция с натрием и другими металлами применяют для очистки благородных газов и как геттер в вакуумной радиоаппаратуре. Кальций так же применяется для получения гидрида, который является источником водорода в полевых условиях .


2. Получение кальция


Существует несколько способов получения кальция, это электролитическое, термическое, вакуум-термическое.


.1 Электролитическое получение кальция и его сплавов


Сущность метода заключается в том, что катод первоначально касается расплавленного электролита. В месте соприкосновения образуется хорошо смачивающая катод жидкая капля металла, которая при медленном и равномерном поднятии катода выводится вместе с ним из расплава и застывает. При этом застывающая капля покрывается твердой пленкой электролита, защищающий металл от окисления и азотирования. Путем непрерывного и осторожного подъема катода кальций вытягивается в стержни.


2.2 Термическое получение

кальций химический электролитический термический

·Хлоридный процесс: технология состоит из расплавления и обезвоживания хлористого кальция, расплавления свинца, получения двойного сплава свинец - натрий, получение тройного сплава свинец - натрий - кальций и разбавления тройного сплава свинцом после удаления солей. Реакция с хлористым кальцием протекает согласно уравнению


CaCl2 + Na2Pb5=2NaCl + PbCa + 2Pb (12)


·Карбидный процесс: в основе получения свинцово-кальциевого сплава лежит реакция между карбидом кальция и расплавленным свинцом согласно уравнению


CaC2 + 3Pb = Pb3Ca + 2C . (13)


2.3 Вакуум-термический способ получения кальция


Сырье для вакуум-термического способа

Сырьем для термического восстановления окиси кальция является известь, получаемая обжигом известняка. Основные требования к сырью заключаются в следующем: известь должна быть как можно чище и содержать минимум примесей, способных восстанавливаться и переходить в металл наряду с кальцием, особенно щелочных металлов и магния. Обжиг известняка должен производиться до полного разложения карбоната, однако не до его спекания, так как восстановимость спеченного материала ниже. Обожженный продукт необходимо предохранять от поглощения им влаги и углекислоты, выделение которых при восстановлении снижает показатели процесса. Технология обжига известняка и переработки обожженного продукта аналогична обработке доломита для силикотермического способа получения магния.


.3.1 Алюминотермический способ восстановления кальция

На диаграмме температурной зависимости изменения свободной энергии окисления ряда металлов (рис. 1) видно, что окись кальция является одним из наиболее прочных и трудно восстанавливаемых окислов. Она не может быть восстановлена другими металлами обычным путем - при относительно невысокой температуре и атмосферном давлении. Напротив, кальций сам является отличным восстановителем других трудно восстанавливаемых соединений и раскислителем для многих металлов и сплавов. Восстановление окиси кальция углеродом вообще невозможно вследствие образования карбидов кальция. Однако благодаря тому, что кальций обладает относительно высокой упругостью пара, его окись может быть восстановлена в вакууме алюминием, кремнием или их сплавами согласно реакции


CaO + Me ? Ca + MeO (14).

Практическое применение пока нашел только алюминотермический способ получения кальция, поскольку восстановить СаО алюминием значительно легче, чем кремнием. По вопросу химизма восстановления окиси кальция алюминием имеются разные взгляды. Л. Пиджен и И. Эткинсон полагают, что реакция протекает с образованием моноалюмината кальция:


СаО + 2Аl = СаО·Al2O3+ 3Са. (15)


В. А. Пазухин и А. Я. Фишер указывают, что процесс идет с образованием трехкальциевого алюмината:


СаО + 2Аl = 3СаО·Al2O3 + 3Са. (16)


По А. И. Войницкому , преобладающим в реакции является образование пятикальциевого трехалюмината:


СаО + 6Аl = 5СаО ·3Al2O3+ 9Са. (17)


Новейшими исследованиями, А. Ю. Тайца и А. И. Войницкого установлено, что алюминотермическое восстановление кальция протекает ступенчато. Вначале выделение кальция сопровождается образованием ЗСаО·AI2O3, который затем реагирует с окисью кальция и алюминием с образованием ЗСаО·3AI2O3. Реакция протекает по следующей схеме:


СаО + 6Аl = 2 (3СаО·Al2O3)+ 2СаО + 2Аl + 6Са

(3СаО·Al2O3) + 2СаО + 2Аl = 5СаО·3Al2O3+ 3Са

CaO+ 6А1 = 5СаО·3Al2O3+ 9Са


Так как восстановление окиси происходит с выделением парообразного кальция, а остальные продукты реакции находятся в конденсированном состоянии, удается легко отделить и сконденсировать его в охлаждаемых участках печи. Основными условиями, необходимыми для вакуум-термического восстановления окиси кальция, являются высокая температура и низкое остаточное давление в системе. Ниже приводится зависимость между температурой и равновесной упругостью паров кальция. Свободная энергия реакции (17), вычисленная для температур 1124-1728° К выражается

FT = 184820 + 6,95Т-12,1 T lg Т.

Отсюда логарифмическая зависимость равновесной упругости пара кальция (мм рт. ст.)

Lg p = 3,59 - 4430\Т.

Л. Пиджен и И. Эткинсон определили экспериментально равновесную упругость пара кальция. Обстоятельный термодинамический анализ реакции восстановления окиси кальция алюминием выполнен И. И. Матвеенко, который дал следующие температурные зависимости равновесного давления паров кальция:

Lg p Ca(1)=8,64 - 12930\T мм рт.ст.

Lg p Ca(2)=8,62 - 11780\Т мм рт.ст.

Lg p Ca(3)=8,75 - 12500\Т мм рт.ст.

Вычисленные и экспериментальные данные сопоставлены в табл. 1.


Таблица 1- Влияние температуры на изменение равновесной упругости паров кальция в системах (1), (2), (3), (3), мм рт.ст.

Температура °СОпытные данныеВычисленные в системах(1)(2)(3)(3)1401 1451 1500 1600 17000,791 1016 - - -0,37 0,55 1,2 3,9 11,01,7 3,2 5,6 18,2 492,7 3,5 4,4 6,6 9,50,66 1,4 2,5 8,5 25,7

Из приведенных данных видно, что в наиболее благоприятных условиях находятся взаимодействия в системах (2) и (3) или (3"). Это отвечает наблюдениям, так как в остатках шихты после восстановления окиси кальция алюминием преобладают пятикальциевый трехалюминат и трехкальциевый алюминат.

Данные о равновесной упругости показывают, что восстановление окиси кальция алюминием возможно при температуре 1100-1150° С. Для достижения практически приемлемой скорости реакции остаточное давление в системе Рост должно быть ниже равновесного Рравн, т. е. должно соблюдаться неравенство Рравност, и процесс должен проводиться при температурах порядка 1200°. Исследованиями установлено, что при температуре 1200-1250° достигается высокое использование (до 70-75%) и низкий удельный расход алюминия (около 0,6-0,65 кг на кг кальция).

Согласно приведенной выше трактовке химизма процесса, оптимальной по составу является шихта, рассчитанная на образование в остатке 5СаО·3Al2O3. Для повышения степени использования алюминия полезно давать некоторый избыток окиси кальция, однако не слишком большой (10-20%), иначе это отрицательно скажется на других показателях процесса. С увеличением степени измельчения алюминия от частиц 0,8-0,2 мм до минус 0,07 мм (по данным В. А. Пазухина и А. Я. Фишера) использование алюминия в реакции возрастает от 63,7 до 78%.

На использование алюминия влияет также режим брикетирования шихты. Смесь извести и порошкового алюминия следует брикетировать без связующих (чтобы избежать выделения газов в вакууме) при давлении 150 кг/см2. При меньших давлениях использование алюминия уменьшается вследствие ликвации расплавленного алюминия в излишне пористых брикетах, а при больших давлениях - из-за плохой газопроницаемости. Полнота и скорость восстановления также зависят от плотности укладки брикетов в реторте. При укладке их без зазоров, когда газопроницаемость всей садки мала, использование алюминия значительно снижается.


Рисунок 2 - Схема получения кальция вакуум-термическим способом.


Технология алюмино-термического способа

Технологическая схема производства кальция алюминотермическим способом изображена на рис. 2. В качестве исходного сырья применяется известняк, в качестве восстановителя - алюминиевый порошок, приготовленный из первичного (лучше) или вторичного алюминия. Применяемый в качестве восстановителя алюминий, так же как и сырье, не должен содержать примесей легко летучих металлов: магния, цинка, щелочей и др., способных испаряться и переходить в конденсат. Это необходимо учитывать при выборе марок вторичного алюминия.

По описанию С. Лумиса и П. Штауба, в США на заводе фирмы Нью Ингленд Лайм Ко в Ханаане (штат Коннектикут), получают кальций алюминотермическим способом. Применяется известь следующего типичного состава, %: 97,5 СаО, 0,65 MgO, 0,7SiO2, 0,6 Fe2Оз + АlОз, 0,09 Na2О + K2О, 0,5 остальное. Обожженный продукт размалывается на мельнице Раймонда с центробежным сепаратором, тонкость помола составляет (60%) минус 200 меш. В качестве восстановителя применяют алюминиевую пыль, являющуюся отходом при производстве алюминиевого порошка. Обожженная известь из закрытых бункеров и алюминий из барабанов поступают на дозировочные весы и затем в смеситель. После смешения шихта брикетируется сухим способом. На упомянутом заводе восстанавливают кальций в ретортных печах, ранее применявшихся для получения магния силикотермическим способом (рис. 3). Печи обогревают генераторным газом. Каждая печь имеет 20 горизонтальных реторт из жароупорной стали, содержащей 28% Сг и 15% Ni.


Рисунок 3- Ретортная печь для получения кальция


Длина реторты 3 м, диаметр 254 мм, толщина стенки 28 мм. Восстановление происходит в обогреваемой части реторты, а конденсация в охлаждаемом конце, выступающем из речи. Брикеты вводятся в реторту в бумажных мешках, затем вставляются конденсаторы и реторту закрывают. Откачка воздуха производится механическими вакуум-насосами вначале цикла. Затем подключают диффузионные насосы и остаточное давление снижается до 20 мк.

Реторты нагревают до 1200°. Через 12 час. после загрузки реторты открывают и разгружают. Полученный кальций имеет форму пустотелого цилиндра из плотной массы больших кристаллов, осажденных на поверхности стальной гильзы. Основной примесью в кальции является магний, который восстанавливается в первую очередь и в основном концентрируется в прилегающем к гильзе слое. В среднем содержание примесей составляет; 0,5- 1% Mg, около 0,2% Аl, 0,005-0,02% Мn, до 0,02% N, остальные примеси - Си, РЬ, Zn, Ni, Si, Fe - встречаются в пределах 0,005-0,04%. А. Ю. Тайц и А. И. Войницкий для получения кальция алюминотермическим способом применяли полузаводcкую электрическую вакуумную печь с угольными нагревателями и достигали степени использования алюминия 60%, удельного расхода алюминия 0,78 кг, удельного расхода шихты соответственно 4,35 кг и удельного расхода электроэнергии 14 квт\ч на 1 кг металла.

Полученный металл, за исключением примеси магния, отличался относительно высокой чистотой. В среднем содержание примесей в нем составляло: 0,003-0,004% Fe, 0,005-0,008% Si, 0,04-0,15% Mn, 0,0025-0,004% Сu, 0,006-0,009% N, 0,25% Al.


2.3.2 Силикотермический способ восстановления кальция

Весьма заманчивым является силикотермический способ; восстановитель - ферросилиций, реагент значительно более дешевый, чем алюминий. Однако силикотермический процесс труднее осуществить, чем алюминотермический. Восстановление окиси кальция кремнием протекает согласно уравнению


СаО + Si = 2СаО ·SiO2 + 2Са. (18)


Равновесная упругость пара кальция, вычисленная по величинам свободной энергии, составляет:


°С1300140015001600Р, мм рт. ст0,080,150,752,05

Следовательно, в вакууме порядка 0,01 мм рт. ст. восстановление окиси кальция термодинамически возможно при температуре 1300°. Практически для обеспечения приемлемой скорости процесс должен проводиться при температуре 1400-1500°.

Несколько легче идет реакция восстановления окиси кальция силикоалюминием, в которой восстановителями служат и алюминий и кремний сплава. Опытами установлено, что вначале преобладает восстановление алюминием; причем реакция протекает с конечным образованием бСаО·3Al2Оз по схеме, изложенной выше (рис. 1). Восстановление кремнием становится значительным при более высокой температуре, когда большая часть алюминия прореагировала; реакция протекает с образованием 2CaO·SiO2. В суммарном виде реакция восстановления окиси кальция силикоалюминием выражается следующим уравнением:


mSi + п Аl + (4m +2 ?) СаО = m(2СаО ·SiO2) + ?n(5СаО·Al2O3) + (2m +1, 5n) Са.


Исследованиями A. Ю. Тайца и A. И. Войницкого установлено, что окись кальция восстанавливается 75%-ным ферросилицием с выходом металла 50-75% при температуре 1400-1450° в вакууме 0,01-0,03 мм рт. ст.; силикоалюминий, содержащий 60-30% Si и 32-58% Аl (остальное железо, титан и пр.), восстанавливает окись кальция с выходом металла примерно 70% при температурах 1350-1400° в вакууме 0,01-0,05 мм рт. ст. Опытами в полузаводском масштабе доказана принципиальная возможность получения кальция на извести ферросилицием и силикоалюминием. Основной аппаратурной трудностью является подбор стойкой в условиях этого процесса футеровки.

При решении этой задачи способ может быть реализован в промышленности. Разложение карбида кальция Получение металлического кальция разложением карбида кальция


СаС2 = Са + 2С


следует отнести к перспективным способам. При этом в качестве второго продукта получают графит. В. Маудерли, Е. Мозер, И В. Тредвелл вычислив свободную энергию образования карбида кальция из термохимических данных, получили следующее выражение для упругости пара кальция над чистым карбидом кальция:

ca= 1,35 - 4505\Т (1124- 1712° К),

lgpca = 6,62 - 13523\Т(1712-2000° К).


По-видимому, технический карбид кальция разлагается при значительно более высоких температурах, чем это следует из данных выражений. Те же авторы сообщают о термическом разложении карбида кальция в компактных кусках при 1600-1800° в вакууме 1 мм рт. ст. Выход графита составил 94%, кальций получался в виде плотного налета на холодильнике. А. С. Микулинский, Ф. С. Мории, Р. Ш. Шкляр для определения свойств графита, полученного разложением карбида кальция, нагревали последний в вакууме 0,3-1 мм рт. ст. при температуре 1630-1750°. Полученный графит отличается от ачесоновского более крупными зернами, большей электропроводностью и меньшим объемным весом .


3. Практическая часть


Суточная выливка магния из электролизера на силу тока 100 кА составила 960 кг при питании ванны хлористым магнием. Напряжение на шутне электролизера 0,6 В. Определить:

)Выход по току на катоде;

)Количество хлора, полученного за сутки, при условии, что выход по току на аноде равен выходу по току на ктоде;

)Суточную заливку MgCl2 в электролизер при условии, что потери MgCl2 происходят в основном со шламом и возгоном. Количество шлама 0,1 на 1т Mg, содержащего MgCl2 в возгоне 50%. Количество возгона 0,05 т на 1т Mg. Состав заливаемого хлорида магния, %: 92 MgCl2 и 8 NaCl.

.Определить выход по току на катоде:


mпр=I·?·kMg·?

?=mпр\I·?· kMg=960000\100000·0,454·24=0,881 или 88,1%


.Определить количество Cl, полученного за сутки:

x=960000г \ 24 г\моль=40000 моль

Переводим в объем:

х=126785,7 м3

3.а) Находим чистый MgCl2, для производства 960 кг Mg.

x=95·960\24,3=3753 кг=37,53 т.

б) потери со шламом. Из состава магниевых электролизеров, %: 20-35 MgO, 2-5 Mg, 2-6 Fe, 2-4 SiO2, 0,8-2 TiO2, 0,4-1,0 C, 35 MgCl2 .

кг - 1000 кг

mшл=960 кг - масса шлама за сутки.

За сутки 96 кг шлама: 96·0,35 (MgCl2 со шламом).

в) потери с возгонами:

кг - 1000 кг

кг возгонов: 48·0,5=24 кг MgCl2 с возгонами.

Всего надо залить Mg:

33,6+24=3810,6 кг MgCl2 в сут.


Список используемой литературы


Основы металлургии III

<#"justify"> металлургия Al и Mg. Ветюков М.М., Цыплоков А.М.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.