Болезни Военный билет Призыв

Голографические схемы. Голографии. Голографическая запись информации. Применение акустооптического эффекта в дефлекторах и для других преобразований излучения

Которых с очень высокой степенью точности совпадают, возникает стоячая электромагнитная волна. Когда записывают голограмму, в определённой области пространства складывают две волны: одна из них идёт непосредственно от источника (опорная волна), а другая отражается от объекта записи (объектная волна). В области стоячей электромагнитной волны размещают (или иной регистрирующий материал), в результате на этой пластинке возникает сложная картина полос потемнения, которые соответствуют распределению электромагнитной энергии (картине ) в этой области пространства. Если теперь эту пластинку осветить волной, близкой к опорной, то она преобразует эту волну в волну, близкую к объектной. Таким образом мы будем видеть (с той или иной степенью точности) такой же свет, какой отражался бы от объекта записи.

Источники света

При записи голограммы крайне важно, чтобы длины (частоты) объектной и опорной волн с максимальной точностью совпадали друг с другом и не менялись в течение всего времени записи (иначе на пластинке не запишется чёткой картины ). Этого можно добиться только при выполнении двух условий:

  1. обе волны изначально испущены одним источником
  2. этот источник испускает волну с очень стабильной длиной ( излучение)

Единственным источником света, хорошо удовлетворяющим второму условию, является . До изобретения лазеров голография практически не развивалась. На сегодняшний день голография предъявляет одни из самых жестких требований к когерентности лазеров.

Чаще всего когерентность принято характеризовать длиной когерентности - той разности оптических путей двух волн, при которой чёткость картины интерференции падает в два раза по сравнению с картиной интерференции, которую дают волны, прошедшие от источника одинаковое расстояние. Для различных лазеров длина когерентности может составлять от нескольких миллиметров (мощные лазеры, предназначенные для сварки, резки и других применений, не требовательных к этому параметру) до десятков метров (специальные, так называемые одночастотные, лазеры для требовательных к когерентности применений).

История голографии

Первая голограмма была получена в году (задолго до изобретения лазеров) в ходе экспериментов по повышению разрешающей способности . Он же придумал само слово "голография", которым он подчеркнул полную запись оптических свойств объекта. К сожалению, его голограммы отличались низким качеством. Получить качественную голограмму без когерентного источника света невозможно.

Схема записи Лейта-Упатниекса

В этой схеме записи луч лазера делится специальным устройством, делителем (в простейшем случае в роли делителя может выступать любой кусок стекла), на два. После этого лучи с помощью линз расширяются и с помощью зеркал направляются на объект и пластинку. Обе волны (объектная и опорная) падают на пластинку с одной стороны. При такой схеме записи формируется пропускающая голограмма, требующая для своего восстановления источника, испускающего свет в очень малом диапазоне длин волн (монохромного излучения), в идеале - .

Схема записи Денисюка

В этой схеме луч лазера расширяется и направляется на . Часть луча, прошедшая через неё, освещает объект. Отраженный от объекта свет формирует объектную волну. Как видно, объектная и опорная волны падают на пластинку с разных сторон. В этой схеме записывается отражающая голограмма, которая самостоятельно вырезает из сплошного спектра узкий участок (участки) и отражает только его. Благодаря этому изображение голограммы видно в обычном белом свете или лампы (см. картинку в начале статьи). Изначально голограмма вырезает ту длину волны, которой её записывали (однако в процессе обработки и при хранении голограммы может менять свою толщину, при этом меняется и длина волны), что позволяет записать на одну пластинку три голограммы одного объекта , и лазерами, получив в итоге одну цветную голограмму, которую практически невозможно отличить от самого объекта.

Эта схема отличается предельной простотой и в случае применения (имеющего крайне малые размеры и дающего расходящийся пучок без применения ) сводится к одному лишь лазеру и некоторой основы, на которой закрепляется лазер, пластинка и объект. Именно такие схемы применяются при записи любительских голограмм.

Фотоматериалы

Голография крайне требовательна к разрешающей способности фотоматериалов. Расстояние между двумя максимумами картины того же порядка, что и длина волны лазера, последняя чаще всего составляет 633 (гелий-неоновый) или 532 ( лазер на второй гармонике) нанометра. Таким образом, это величина порядка 0.0005 мм. Чтобы получить чёткое изображение картины интерференции, потребовались фотопластинки с от 3000 (Лейт-Упатниекс) до 5000 (Денисюк) линий на миллиметр.

Основным фотоматериалом для записи голограмм являются специальные фотопластинки на основе традиционного бромида серебра. За счёт специальных присадок и специального механизма проявления удалось достичь разрешающей способности более 5000 линий на миллиметр, однако за это приходится платить крайне низкой чувствительностью пластинки и узким спектральным диапазоном (точно подобранным под излучение лазера). Чувствительность пластинок настолько низкая, что их можно выставить на несколько секунд под прямой солнечный свет без риска засветки.

Кроме того, иногда применяются фотопластинки на основе бихромированного желатина, которые обладают ещё большей разрешающей способностью, позволяют записывать очень яркие голограммы (до 90% падающего света преобразуется в изображение), однако они ещё менее чувствительны, причём они чувствительны только в области коротких волн (синий и, в меньшей степени, зелёный участки спектра).

На данный момент в мире существует только одно промышленное (кроме некоторого количества мелких) производство фотопластинок для голографии - российская «Компания Славич».

Некоторые схемы записи позволяют писать и на пластинках с меньшей разрешающей способностью, даже на обычных фотоплёнках с разрешением порядка 100 линий на миллиметр, однако эти схемы имеют массу ограничений и не обеспечивают высокого качества изображения.

Любительская голография

Как уже было написано выше, схема Денисюка, при применении лазерного диода в качестве источника когерентного света, оказывается предельно простой, что позволило записывать такие голограммы в домашних условиях без использования специального оборудования.

Для записи голограммы достаточно создать некий каркас, на котором будут неподвижно установлены лазер, фотопластинка (как правило, ПФГ-03М) и объект записи. Единственное серьёзное требование, накладываемое на конструкцию, - минимальные вибрации. Установку следует установить на виброгасящие опоры, за несколько минут до и во время экспозиции нельзя прикасаться к установке (обычно экспозицию отмеряют открывая и закрывая луч лазера экраном, механически не связанным с установкой, в простейшем случае его можно просто держать в руке).

В любительской голографии используются дешевые и доступные полупроводниковые лазеры:

  1. лазерные указки
  2. лазерные модули
  3. отдельные лазерные диоды

Лазерные указки являются самым простым в использовании и доступным источником когерентного света. Их можно, за небольшие деньги, купить практически везде. После откручивания или отпиливания линзы, фокусирующей луч, указка начинает светить подобно фонарику (за исключением того, что её пятно вытянуто в одном из направлений), позволяя осветить фотопластинку и сцену, расположенную за ней. Необходимо только зафиксировать каким-либо образом (например, бельевой прищепкой) кнопку во включённом состоянии. К недостаткам указок стоит отнести их непредсказуемое качество и необходимость постоянно покупать новые батарейки.

Более совершенным источником является лазерный модуль, у которого опять таки нужно выкрутить или отпилить фокусирующую линзу. В отличии от указки, модуль питается не от батареек внутри него, а от внешнего источника, которым может служить стабилизированный блок питания на 3В. Такой блок питания, как и сам лазерный модуль, как правило, продаётся в магазинах радиодеталей за относительно небольшие деньги. Отсутствие садящихся батареек способствует стабильности работы. Как правило, лазерные модули сделаны качественнее указок, но их когерентность так же не предсказуема.

Наконец, лазерные отдельные диоды являются самыми сложными в эксплуатации источниками света. В отличие от модулей и указок, они не имеют встроенного блока питания, по этому вам придётся его собрать или купить (последнее очень дорого). Дело в том, что лазерные диоды, как правило, используют совсем не стандартное напряжение питания, например 1.8В, 2.7В и т.п. Кроме того, для них важнее не напряжение питания, а ток. Простейший блок питания состоит из миллиамперметра, переменного резистора и стандартного стабилизированного блока питания на 3-5В. Кроме того, лазерный диод не способен самостоятельно себя охлаждать, его необходимо установить на радиатор. Тепловая мощность диодов, применяемых для любительской голографии, не превышает сотен милливатт, по этому ему достаточно минимального по размерам радиатора, однако чем больше радиатор, тем стабильнее температура, а от стабильности температуры напрямую зависит когерентность.

Как уже писалось выше, когерентность указок и модулей совершенно непредсказуема, т.к. этот параметр для их обычного применения не важен. Вполне возможно, что вам придётся купить несколько модулей/указок, прежде чем вы натолкнётесь на экземпляр с высокой когерентностью. Понять, что когерентность недостаточна можно по записанной голограмме: если на ней есть характерные полосы, которые двигаются при её вращении, значит лазер генерирует несколько длин волн и его когерентность низка.

В случае лазерных диодов ситуация заметно лучше. Во-первых, если диод показал плохой спектр излучения (т.е. низкую когерентность) в своём нормальном режиме работы, то, несколько понизив или повысив ток через него, можно попытаться получить хороший спектр. Во-вторых, некоторые диоды выпускаются производителем с учётом требований высокой когерентности. Это лазеры с одной продольной модой (Single longitudinal mode) или одночастотные лазеры. Их длинна когерентности значительно превышает метр, что многократно превосходит потребности любительской голографии. При этом цена таких лазеров начинается от нескольких десятков долларов, что вполне по силам большинству любителей. В частности, такие лазерные диоды выпускаются фирмой Opnext совместно с Hitachi.

Самое большое распространение в самых различных применениях получили красные полупроводниковые лазеры с длинной волны 650нм. Эти же лазеры получили наибольшее распространение в любительской голографии. Они отличаются низкой ценой, достаточно высокой мощностью и чувствительность глаза (и фотопластинок ПФГ-03М, применяемых для записи голограмм Денисюка) к этой длине волны достаточно высока. Меньшее распространение в голографии поручили лазеры с длинами волн 655-665нм. Чувствительность фотопластинки (и глаза) к этому диапазону заметно (примерно в 2 раза) меньше, чем к 650нм, но такие лазеры имеют многократно бо́льшую мощность при близкой цене. Ещё меньшее распространение получили лазеры 635нм. Их спектр предельно близок к спектру красного He-Ne лазера (633нм), под который заточены фотопластинки, что обеспечивает максимальную чувствительность (чувствительность глаза так же значительно, в два раза, выше, чем к 650нм). Однако эти лазеры имеют высокую цену, низкий КПД и редко обладают высокой мощностью. Кроме того, поляризация этих лазеров перпендикулярна поляризации лазеров с бо́льшей длинной волны, однако это нельзя отнести ни к преимуществам, ни к недостаткам, это нужно просто принять к сведению при установке лазера, чтобы обеспечить минимальное отражение света от стекла фотопластинки.

Ссылки

Среди большого многообразия схем, применяемых в голографии, мы рассмотрим только некоторые, имеющие характерные особенности. Наиболее подробно исследованы схемы получения голограмм диффузно рассеивающих объектов. Одна из таких схем представлена на рис. 13. Здесь на светочувствительный слой вместе с опорной волной падает отраженное от объекта излучение.

В качестве делителя лазерного луча удобно использовать многослойное диэлектрическое зеркало, коэффициент отражения которого легко менять в широких пределах, изменяя угол падения лазерного луча. Это позволяет устанавливать необходимое соотношение между энергиями опорного и сигнального лучей простым поворотом светоделителя и избежать тех потерь, которые имеют место в случае использования ослабителей.

Поворотное зеркало 1 позволяет легко устанавливать оптимальное направление освещения объекта, а зеркало 2 служит для уравнивания путей, проходимых опорной и сигнальной волнами от светоделителя до голограммы. Мы уже говорили о том, что разность хода между этими волнами должна быть меньше длины когерентности лазерного излучения.

Случай, когда опорная волна имеет плоский фронт, а расстояние до объекта достаточно мало соответствует голографии Френеля. Каждая точка объекта в этом случае отображается на голограмме в виде сигнала с переменной пространственной частотой, которая определяется углом между опорной и сигнальной волнами.

Как уже указывалось, пространственная частота, которая фиксируется на голограмме, ограничивается разрешающей способностью фотослоя. Стремление смягчить требования к разрешению фотослоя реализуется в голографии Фурье, где опорная волна имеет сферический фронт и создается точечным источником, который располагается перед светочувствительным слоем на таком же расстоянии, что и объект (рис. 14). Здесь уже каждая точка объекта отображается на голограмме в виде сигнала с постоянной пространственной частотой, которая тем ниже, чем меньше ее расстояние до источника опорной волны. Иными словами, в этом случае промежуток между интерференционными полосами для каждой точки объекта не меняется в плоскости голограммы. Это легко понять, если перед голограммой расположить линзу, которая преобразует сферические волны в плоские.

Указанная особенность голографии Фурье позволяет получить голограммы с фотоэмульсиями, имеющими сравнительно невысокую разрешающую способность. Особенно удобен этот метод для съемки небольших предметов, так как по мере увеличения расстояния между объектом и источником опорной волны увеличивается пространственная частота, а яркость изображения падает. Восстановленное изображение имеет одну интересную особенность: оба изображения, мнимое и действительное, располагаются в одной плоскости и наблюдаются вместе с опорным лучом, который находится между ними. Эти изображения одинаковы, но перевернуты друг относительно друга на 180°.

Если радиус кривизны сферического фронта опорной волны постепенно увеличивать, то есть приближать к случаю плоской опорной волны, то одно из восстановленных изображений постепенно становится менее четким (вследствие расфокусировки), что соответствует переходу от голографии Фурье к голографии Френеля. На рис. 15 приведена фотография восстановленного изображения для одного из промежуточных случаев, иллюстрирующая переход к голографии Френеля. Здесь видно одно из восстановленных изображений вмести с ярким пятном, создаваемым опорным лучом. Голограмма снималась на фотопленку с помощью импульсного лазера на рубине.

Помимо съемок объектов в отраженном свете, значительный интерес представляет получение голограмм прозрачных и полупрозрачных объектов, в частности для записи информации с транспарантов. Луч лазера разделяется на два луча, как показано на рис. 16, и на пути одного из лучей устанавливается транспарант. Следует отметить, что свет, проходящий сквозь транспарант, распространяется по законам геометрической оптики и формирует на голограмме изображение, близкое к теневому. В этом случае не используется способность любой точки голограммы содержать информацию обо всем объекте съемки, и при наблюдении восстановленного изображения необходимо смотреть строго вдоль луча, освещающего транспарант при съемке голограммы, так как в противном случае яркость изображения резко падает. Чтобы устранить этот недостаток, транспарант освещают сквозь мозговое стекло, при чем расстояние от матового стекла до транспаранта не должно быть слишком большим, так как после матового стекла пучок света становится расходящимся и с увеличением расстояния до транспаранта освещенность последнего падает.

Мы уже отмечали, что глубина объема предметов при съемке голограмм определяется временной когерентностью оптических генераторов. Существующие в настоящее время гелий-неоновые лазеры, наиболее подходящие для получения голограмм, имеют длину когерентности порядка нескольких десятков сантиметров, и поэтому глубина объема предметов не должна превышать эту величину. Однако если мы хотим получить голограмму сразу нескольких объектов, расположенных друг за другом на большой глубине (значительно превышающей длину когерентности), то это оказывается возможным при использовании специальных полупрозрачных. В качестве примера рассмотрим схему для трех объектов, представленную на рис. 17.

Сигнальный луч делится с помощью системы полупрозрачных зеркал, и каждый из полученных лучей используется для освещения своей группы объектов, имеющих глубину объема меньше, чем длина когерентности лазера. Расположение зеркал выбирается таким образом, чтобы каждая группа предметов освещалась лучом света, длина пути которого до фотопластинки равнялась бы длине пути опорного луча. Прозрачность зеркал должна быть выбрана так, чтобы освещенность всех объектов была одинаковой.

Рассмотренная схема позволяет получить голограмму сцены с большой глубиной объема за одну экспозицию. В этом случае энергия сигнального луча лазера освещает все объекты одновременно. Можно сократить время выдержки, если в той же схеме освещать группы предметов поочередно, то есть снимать на одну и ту же фотопластинку последовательно голограммы каждого объекта. Для этого вместо полупрозрачных зеркал надо использовать одно полностью отражающее зеркало, располагая его каждый раз таким образом, чтобы освещалась только одна группа объектов.

В качестве иллюстрации на рис. 18 показаны фотографии мнимых изображений голограммы, полученной указанным выше способом. Эти фотографии соответствуют фокусировке фотоаппарата на различную глубину. На голограмму снимались кубики с буквами, расположенные на глубине порядка метра. Экспозиция при съемке каждого предмета составляла несколько секунд. Съемка голограммы производилась с помощью гелий-неонового лазера мощностью 10 мвт (с одним по-перечным и многими продольными типами колебаний) на фотопластинку "Микрат 900".

Следует отметить, что существует ряд других схем, позволяющих получить голограммы с большой глубиной объема.

В заключение надо сказать несколько слов о самом процессе съемки голограмм. Поскольку время экспозиции при использовании лазеров непрерывного излучения меняется от долей секунды до нескольких минут (в зависимости от мощности лазера, чувствительности пленки и размера объекта), существенную роль играют вибрации различных элементов схемы. Если амплитуда вибраций сравнима с длиной волны, то это приводит к "размазыванию" интерференционной картины и ухудшению качества голограммы. Вот почему съемка голограмм обычно производится на достаточно массивном основании, а элементы схемы закрепляются достаточно жестко. Это не относится к самому лазеру, вибрации которого не оказывают существенного влияния на качество голограмм.

Естественно, что при очень малом времени съемки голограммы, влияние вибраций уменьшается. Оно полностью, исключается в случае импульсной голографии, когда время экспозиции определяется длительностью импульса излучения лазера, которая обычно лежит в пределах 10 -3 -10 -9 сек .

Голография – метод записи и последующего восстановления пространственной структуры световых волн, основанный на явлениях интерференции и дифракции когерентных пучков света.

Фото-пластика, на которой записана эта информация, называется голограммой .

На голограмме регистрируется не оптическое изображение объекта, а интерференционная картина, возникающая при наложении световой волны, рассеянной объектом (предметной волны), и когерентной с ней опорной (или референтной) волны.

Основные области применения голографии:

Запись и хранение информации в т.ч. и визуальной (оптическая голографическая память);

Оптическая обработка информации и система распознавания объектов;

Голографическая интерферометрия.

Построить схему, рассмотреть процесс записи голограммы.

В этом процессе на фотоматериале (например, фотопленке) записывается и фиксируется сложная интерференционная картина, которая создается наложением (взаимодействием) двух световых волн - базовой (опорной) монохроматической волны и вторичной волны, отраженной или рассеянной объектом. Запись голограммы происходит по схеме, представленной на рис.1.

Монохроматический когерентный лазерный луч расширяется коллиматором и далее делится расщепителем на два луча. Один (опорный) луч отражается от зеркала и направляется непосредственно на фотопленку. Другой (объектный) луч направляется соответствующим зеркалом на объект, отражается от него и воспринимается (регистрируется) фотопленкой. Именно этот (отраженный, рассеянный) луч несет разнообразную изобразительную информацию об объемных (трехмерных) параметрах и характеристиках (размерах, поверхности, контуре, неровностях, прозрачности) объекта. Такой луч по существу создает объемный образ объекта, который человек может видеть и наблюдать непосредственно (естественным зрением).

Световые волны опорного и рассеянного объектного лучей создают на поверхности фотопленки интерференционную картину, состоящую из множества пятен, форма и интенсивность которых зависят от амплитуды и фазы падающих и взаимодействующих световых волн. Фотопленка экспонируется и затем проявляется по стандартным рецептам. Полученная (проявленная) пленка является голограммой, сохраняющей интерференционную картину регистрируемого объекта. Голограмма имеет вид туманного негатива, на котором детали объекта явно не просматриваются.

Построить схему, рассмотреть процесс восстановления (воспроизведения) голограммы.

Восстановление объемного изображения объекта по его голограмме (проявленной фотопленке) осуществляется по схеме, представленной на рис.2.

Голограмма освещается одним опорным лучом, причем сохраняются исходные условия, прежняя относительная ориентация опорного луча и фотопленки. При соблюдении указанных условий лазерного освещения голограммы из-за дифракции света возникают два изображения. Следует учитывать, что ранее, в процессе начального образования голограммы объекта, возникла определенная дифракционная картина с тесно расположенными интерференционными полосами, точный вид которых определяется трехмерной структурой объекта. При повторном освещении этой дифракционной картины по схеме (рис.2) дифрагированный свет будет иметь параметры и характеристики, заданные исходным объектом голографической съемки.

Одно из двух изображений, полученных при воспроизведении голограммы, является мнимым (рис.2), поскольку для его наблюдения требуется линза. Однако для этого достаточна естественная линза человеческого глаза и наблюдатель может видеть мнимое (но неискаженное и трехмерное) изображение объекта, рассматривая его непосредственно через голограмму.

Второе (действительное, реальное) изображение формируется в другом направлении лазерного луча, проходящего через голограмму. Это изображение можно проецировать на экран и наблюдать без промежуточной линзы. Часть воспроизводящего луча проходит через голограмму без дифракции, не изменяя направления. Заметной практической ценности этот недифрагированный луч не представляет.

Рассмотренные схемы записи (рис.1) и воспроизведения (рис.2) голограммы, предложенные Э.Лейтом и Дж.Упатниексом, относятся к разряду оптимальных (технически совершенных). В этих схемах используется внеосевая геометрия, в которой опорный и объектный лучи падают на фотопленку под углом друг к другу. Поэтому при воспроизведении голограммы реальное и мнимое изображения оказываются по разные стороны опорного луча, что существенно облегчает раздельное наблюдение изображений.

Голограмма - продукт голографии, объемное изображение, создаваемое с помощью лазера, воспроизводящего изображение трехмерного объекта. Голографии прочат будущее визуальных развлечений, поскольку до сегодняшнего дня этот способ был самым многообещающим способом визуализации трехмерных сцен. За изобретение метода голографии в 1947 году Дэннис Габор получил Нобелевскую премию по физике в 1971 году. Все просто: вы буквально видите реальный объект, который на самом деле является объемной картинкой. Его можно обойти, рассмотреть со всех сторон, можно придать мощную глубину, которой не может похвастать никакая другая технология 3D-отображения.

В рамках двух новых исследований ученые из Калифорнийского университета в Лос-Анджелесе (UCLA) использовали нейронные сети для реконструкции голограмм. Обе работы не только демонстрируют уровень развития голографических технологий, но еще и обещают открыть этим технологиям дверь в медицину, где они смогут произвести настоящую революцию.

Некоторые физики на самом деле считают, что вселенная, в которой мы живем, может быть гигантской голограммой. Такое научное исповедание становится все более популярным. И самое интересное, что эта идея не совсем напоминает моделирование вроде «Матрицы», а скорее приводит к тому, что хотя нам кажется, что мы живем в трехмерной вселенной, у нее может быть всего два измерения. Это называется голографическим принципом.

От многих аналитиков можно слышать еще не совсем уверенный, но постоянно упоминаемый прогноз о возможной тотальной экспансии энергонезависимой NAND флеш-памяти в области хранения данных, причем как в сфере мобильных устройств, так и в стационарных компьютерах. Успехи Blu ray показывают, что оптические диски напрочь списывать не стоит. А, как выяснилось, вовсе не они являются вершиной технологии в данной сфере. Несколько известных компаний ведут активные разработки в области создания новых, в несколько раз более вместительных и быстро читаемых носителей, которые станут выгодной альтернативой имеющимся на сегодняшний день устройствам хранения данных.

История

Первая голограмма была получена задолго до изобретения лазеров. В 1947 г. венгерским физиком Деннисом Габором (Dennis Gabor) был получен патент на изобретение голографической записи, которая была им разработана случайно: в ходе экспериментов по повышению разрешающей способности электронного микроскопа, проводившихся в Британской Томсон-Хьюстоновской компании в английском городе Рэгби (British Thomson-Houston Company, Rugby, England). Его работа была награждена Нобелевской премией в 1971 г.


Он же стал автором слова «голография», которым подчеркнул полную запись оптических свойств объекта. К сожалению, его голограммы отличались низким качеством. Это достижение стало осуществимым во многом благодаря смежным работам таких физиков, как Мечеслав Вольфке (Mieczysław Wolfke).

Исследования в данной области не были продуктивны до 1960 г., когда были изобретены красный рубиновый (длина волны 694 нм, работает в импульсном режиме) и гелий-неоновый (длина волны 633 нм, работает непрерывно) лазеры, так как получить качественную голограмму без когерентного источника света невозможно. Ну а после создания лазера голография начала интенсивно развиваться.


Первая 3D-голограмма была записана Юрием Денисюком (Yuri Denisyuk) в Советском Союзе в 1962 г., а позднее в том же году - Эмметом Лейтом (Emmett Leith) и Юрисом Упатниксом (Juris Upatnieks) в Мичиганском университете в США (University of Michigan, USA).


Усовершенствования в области фотохимии, позволившие создавать высококачественные голограммы, разработаны Николасом Джей Филипсом (Nicholas J. Phillips).


В 1967 году рубиновым лазером был записан первый голографический портрет.

В результате длительной работы в 1968 году Юрий Денисюк (Yuri Denisyuk) получил высококачественные голограммы, которые восстанавливали изображение отражая белый свет. Для этого им была разработана своя собственная схема записи, получившая название схемы Денисюка, а полученные с её помощью голограммы называются голограммами Денисюка.

Наиболее многообещающее изобретение в короткой истории рассматриваемой технологии - массовое производство дешевых твердотельных лазеров, широко применяемых в миллионах DVD-рекордеров, оказавшихся полезными и в области голографии. Эти компактные, дешевые лазеры вполне могут сменить дорогие, большие, газовые лазеры, ранее использовавшиеся для создания голограмм. Потому теперь есть возможность для широкого применения данной разработки в научных исследованиях, для хранения различного рода данных.


Принцип голографической записи

Когда в некоторой области пространства складываются несколько электромагнитных волн, частоты которых с очень высокой степенью точности совпадают, возникает стоячая электромагнитная волна. Когда записывают голограмму, в определённой области пространства складывают две волны: одна из них идёт непосредственно от источника (опорная волна), а другая отражается от объекта записи (объектная волна). В области стоячей электромагнитной волны размещают фотопластинку или иной регистрирующий материал, в результате чего на нем возникает сложная картина полос потемнения, которые соответствуют распределению электромагнитной энергии (картине интерференции) в этой области пространства. Если теперь эту пластинку осветить волной, близкой к опорной, то она преобразует ее в волну, близкую к объектной. Таким образом, зрителю с различной степенью точности будет виден тот же свет, какой отражался бы от объекта записи.

Схемы записи голограмм


Схема записи Ю. Денисюка

В 1962 г. русский физик Юрий Денисюк предложил перспективный метод голографии с записью в трехмерной среде. В этой схеме луч лазера расширяется линзой и направляется зеркалом на фотопластинку. Часть луча, прошедшая через неё, освещает объект. Отраженный от объекта свет формирует объектную волну. Объектная и опорная волны падают на пластинку с разных сторон, так называемая схема на встречных пучках. В этой схеме записывается отражающая голограмма, которая самостоятельно вырезает из сплошного спектра узкие участки и отражает только их, т.е. выполняет роль светофильтра. Благодаря этому изображение голограммы видно в обычном белом свете солнца или лампы. Изначально голограмма вырезает ту длину волны, на которой её записывали (однако в процессе обработки и при хранении голограммы эмульсия может менять свою толщину, при этом меняется и длина волны), что позволяет записать на одну пластинку три голограммы одного объекта красным, зелёным и синим лазерами, получив тем самым одну цветную голограмму, которую практически невозможно отличить от самого объекта.

Эта схема отличается предельной простотой и в случае применения полупроводникового лазера, имеющего крайне малые размеры и дающего расходящийся пучок без применения линз, число необходимых для записи голограмм предметов сводится к одному лишь лазеру и некоторой основе, на которую закрепляется лазер, пластинка и объект. Потому именно такие схемы применяются при записи любительских голограмм.

Схема записи Лейта-Упатниекса (1962)

В этой схеме записи луч лазера делится специальным устройством — делителем — на два. После этого лучи с помощью линз расширяются и с помощью зеркал направляются на объект и регистрирующую среду. Обе волны (объектная и опорная) падают на пластинку с одной стороны. При такой схеме записи формируется пропускающая голограмма, требующая для своего восстановления источника света с той же длиной волны, на которой производилась запись, в идеале — лазера.

В 1977 году Ллойд Кросс создал так называемую мультиплексную голограмму. Она принципиально отличается от всех остальных голограмм тем, что состоит из множества (от десятков до сотен) отдельных плоских ракурсов, видимых под разными углами. Такая голограмма, естественно, не содержит полную информацию об объекте, кроме того, она, как правило, не имеет вертикального параллакса (т.е. нельзя посмотреть на объект сверху и снизу), но зато размеры записываемого объекта не ограничены длиной когерентности лазера, которая редко превышает несколько метров, а чаще всего составляет всего несколько десятков сантиметров, и размерами фотопластинки. Мало того, можно создать мультиплексную голограмму объекта, которого вовсе не существует! Например, нарисовав выдуманный объект с множества различных ракурсов. Мультиплексная голография превосходит по качеству все остальные способы создания объёмных изображений на основе отдельных ракурсов, однако она всё равно далека от традиционных методов голографии по реалистичности.

Технология записи голографических дисков

Современные методы записи на носители основаны на последовательных принципах, когда в каждый определенный момент времени на их поверхность может быть записан только один бит информации. В случае с голографией все обстоит иначе: здесь процесс основывается на параллельном методе — единственная вспышка лазера формирует пространственную запись миллионов битов информации в пространстве, ограниченном структурой носителя. Процесс записи данных на поверхности и в глубине носителя называется мультиплексированием.

В общих чертах принцип голографической записи выглядит достаточно просто. Световой поток разделяется на два луча: опорный (reference beam) и объектный (signal beam). Последний обеспечивает запись данных, а опорный остается неизменным. Цифровые данные формируют «образ» объектного луча при помощи пространственного светового модулятора Spatial Light Modulator (SLM), преобразующего последовательность нулей и единиц в массив черных и белых точек — создается подобие решетки (interference pattern), в которой просветы соответствуют очередной порции цифровых данных, а сквозь эту решетку просвечивает объектный луч, имеющий на выходе точную копию текущего состояния решетки пространственного светового модулятора. Чем больше разрешающая способность SLM, тем большую порцию данных может запечатлеть объектный луч в текущий момент времени и на сегодняшний день эта цифра составляет миллионы битов.

После преобразования в SLM уже несущий определенный набор данных объектный луч проецируется на физический носитель (storage medium). В точку проекции направляется и опорный луч, пересекаясь в ней с объектным. В этот момент происходит химическая реакция, которая и лежит в основе записи информации на носитель, причем там, где в SLM была непрозрачная точка. Если изменять длину волны опорного луча, угол его наклона или пространственное положение носителя, в один момент времени можно записать множество разных голограмм.

Есть несколько способов выполнения мультиплексирования, например, при помощи варьирования угла наклона опорного луча. К сожалению, неизвестно, какова степень мультиплексирования и как, например, «толщина» одной записанной голограммы соотносится с толщиной носителя, ведь, если предположить, что один молекулярный или атомарный слой соответствует одной голограмме, это могло бы стать настоящей революцией на рынке хранения данных.

Считывание записанных голограмм обеспечивается одним опорным лучом (reference beam), который создает отражение записанной голограммы и проецирует его на чувствительный элемент (detector array). Этот же элемент преобразует попадающую на него решетку данных в последовательность битов, а чтение голограмм на различной глубине носителя обеспечивается тем же путем, который применяется и при записи, — изменением угла наклона опорного луча, положения носителя.

Для осуществления голографической записи потребовалось разработать особый тип носителя, сочетающий большую светочувствительность, прочность, дешевизну и стабильность. Немаловажным требованием были и приемлемые линейные размеры носителя. Всем этим критериям, по мнению разработчиков, соответствуют фотополимерные диски. Диаметр их ненамного превышает диаметр современных дисков и составляет 130 мм. Они помещены в картриджи наподобие первых моделей DVD-носителей, так как попадание света на поверхность фотополимера вызовет химическую реакцию, которая необратимо разрушит записанные данные.


На сегодня имеются лишь устройства одноразовой записи, но InPhase Technologies уверяет, что в 2008 г. появятся и перезаписываемые носители.

Безопасность данных

Компании-разработчики уделили огромное внимание безопасности информации, что закрепило security-качества, которыми обладают голографические диски уже в силу особенностей технологии записи.

1) При голографическом «чтении» невозможно получить прямой доступ к носителю, в отличие от других оптических и жестких дисков: данные находятся в толще носителя, что уже намного затрудняет несанкционированный доступ.

2) Каждый голографический накопитель снабжен особой микросхемой, в которую занесена информация о размещении данных на диске. При чтении привод прежде всего обращается к этой информации, а если она зашифрована, считывание данных без необходимых сведений будет неосуществимо.

3) Нанесение особых меток, считывание и распознавание которых необходимо. Они расположены глубже, с определенными координатами. Чтобы преодолеть данный тип защиты, требуется лазер с иной длиной волны, которым не оснащаются приводы для массового потребителя.

4) В диапазоне от 403 до 407 нм варьирует длина волны используемого для записи в голографических приводах лазера. На этом может основываться еще один эффективный способ защиты данных: дисковод, использующий лазер с неверной длиной волны не сможет прочитать диск.

5) В качестве еще одного метода защиты от несанкционированного доступа может служить привязка диска к микропрограмме каждого определенного привода и использование встроенных средств защиты.


Преимущества перед Blu ray :

1) больший объем: 1,6 Тб против 50 Гб;

2) большая скорость записи/считывания информации: 120 МБ/cек против 26 МБ/сек;

3) длительный срок службы (до 50 лет).

Сегодняшние наработки


Голографическая система записи Tapestry, на разработку которой потрачено более 8 лет, была представлена на выставке NAB Show 2008 в Лас-Вегасе в апреле, а в мае 2008 г. InPhase Technologies объявили о начале ее продаж.

Система состоит из покрытых специальным материалом пластиковых дисков диаметром 120 мм, размещенных в картриджах. Голографические изображения наносятся на поверхность дисков с помощью голубого лазера с длиной волны 405 нм — аналогичным используемому в Blu ray. Как утверждает InPhase Technologies, такие диски могут служить до 50 лет. В данный момент они могут хранить 300 Гб, 800 Гб и 1,6 Тб данных, чего удалось достичь следующим образом. Можно хранить больше голограмм на том же количестве материала, совмещая не только страницы, но и книги данных. Страница данных — это около 1 млн. бит, записанных при одной экспозиции лазера. Каждая страница данных располагается по своему адресу, а на одном и том же месте материала может быть записано несколько сотен таких страниц (до 252), что составляет книгу. Последние достижения позволяют записывать «внахлест» не только страницы, но и книги — до 15 штук.

Скорость записи и считывания данных с носителей системой Tapestry составляет от 20 до 120 МБ/сек (прямопропорционально объему носителя). Её цена на данный момент составляет $18 000. В линейке приводов InPhase представлено три модели:

WORM Gen 1 tapestry 300r 300 Гб, 20MБ/сек;

WORM Gen 2 tapestry 800r 800 Гб, 80MБ/сек;

WORM Gen 3 tapestry 1600r 1,6 Tб, 120MБ/сек.

По принципу работы данная система во многом схожа с системой UDO от Plasmon, которая использует голубо-фиолетовый лазер для записи и считывания данных. Главные недостатки UDO — меньший объём диска (120 и 240 Гб), более низкая скорость записи/считывания данных, которая составляет всего 12 МБ/с. Правда, прогнозируемый срок службы у неё тот же - 50 лет. На рынке эта система пока не представлена.

Схожие наработки имеет компания Maxell. Ее сотрудники наряду с InPhase Technologies планировали, что уже в 2007 г. появятся их новые оптические носители — голографические диски объемом 300 Гб. Этого пока не произошло. В 2008 г. у них в планах создать второе поколение новых носителей емкостью 800 Гб, а к 2010 г. ими будут представлены и 1,6 Тб диски. В настоящее время Maxell работает сразу в нескольких направлениях: разрабатываются диски различных размеров, начиная от совсем маленьких и заканчивая классическими 12 см носителями. Для потребительского рынка появятся диски объемом 75 или 100 Гб. Что касается скорости передачи данных новых дисков, то для 300 Гб носителя скорость составляет 20 МБ/с. Как и следовало ожидать стоимость оптических накопителей и дисков к ним столь же велика как и у пионера InPase: на первых порах за голографический привод придется заплатить $15 000, а за диск $120-180.

Наряду с упомянутым, Hitachi Maxell создали голографический носитель HROM и на выставке CEATEC представили работающий на нем прототип системы воспроизведения аудио. Их носители имеют небольшие на сегодня объем 4 Гб и скорость передачи данных - 16 МБ/с. Однако стоит принять во внимание чрезвычайно компактные размеры носителя - немногим больше обычной почтовой марки. Касательно стоимости устройств разработчики отмечают, что цена во многом будет зависеть от объемов налаживаемого производства, но не должна превышать нескольких долларов за один носитель.

Разработки в сфере голографии оказались продуктивны и для Sony.Существующая у них технология позволяет записывать информацию с плотностью 180 Гбит на квадратный дюйм. А в ноябре 2007 г. им удалось довести плотность голографической записи до 270 Гбит на квадратный дюйм. Таким образом, появилась возможность создавать голографические носители информации в 1,5 раза большей емкости. Но когда новая технология Sony будет поставлена на коммерческие рельсы, пока не сообщается.


В апреле 2006 г. представитель компании Daewoo заявил о создании устройства HDDS — Holographic Digital Data Storage (голографический накопитель). Состоит оно из двух подсистем, которые включают электро-оптическую систему контроля, основанную на комплектующих National Instruments (NI), в числе которых контроллер CompactRIO FPGA и видеодекодирующая плата Xilinx FPGA. Голографический накопитель Daewoo работает по тому же принципу, что и устройство компании InPhase Technologies. В качестве носителя информации им используется голографический диск традиционного CD-размера. Несмотря на относительную давность сообщений, до сих пор ни слова о коммерческом внедрении новой технологии пока нет.

Трудности в создании, пути их решения

1)Главной проблемой, с которой сталкивались разработчики систем - необходимость размещения двух оптических систем по разные стороны от носителя информации (первая отвечает за формирование первоначального луча, а вторая — за прием прошедшего через диск измененного сигнала, т.е. считывание информации), а значит и отсутствовали возможности для создания компактных приводов. Но инженерам удалось обе системы расположить с одной стороны от голографического носителя и вторичный сигнал направить к приемнику благодаря наличию отражающего слоя на обратной стороне самого носителя информации.

2)Половина пространства в голографических носителях недоступна для записи данных, так как она используется программным обеспечением для коррекции ошибок. Новая технология компании Sony позволила уменьшить количество ошибок до коррекции. Теперь этот показатель не превышает 10%. А потому со временем придумают способ более экономного расходования дискового пространства.

3)Подверженность световому воздействию: электромагнитное излучение с длиной волны, близкой к световой, вызывает реакцию в регистрирующей среде, что вызывает искажение и повреждение записанных данных — размещение дисков в непрозрачных картриджах позволило снизить вероятность потери информации.

3аключение

Голографическая технология выглядит весьма впечатляюще с учетом большой емкости, скорости записи/чтения информации, наличия убедительных средств защиты от несанкционированного доступа, а потому могла бы стать желанным приобретением для многих пользователей, но чрезвычайно высокая стоимость подтверждает заявления разработчиков, указывающие на применение голографических дисков преимущественно на корпоративном рынке. Не забывая о том, что некоторые компании планируют создание бюджетных решений, вполне стоит рассчитывать на появление подобных устройств для массового потребителя.