Болезни Военный билет Призыв

Графиком функции принадлежности нечеткого множества является. Методы построения функции принадлежности. Обзор основных методов

1

Нечеткая логика – одно из интереснейших и активно развивающихся направлений теории искусственного интеллекта. Отличие теории нечетких множеств от классической теории четких множеств состоит в том, что если для четких множеств результатом вычисления функции принадлежности могут быть только два значения – ноль или единица, то для нечетких множеств это количество бесконечно, но ограничено диапазоном от нуля до единицы.В статье рассматриваются способы и примеры определения значений функции принадлежности, а именно частотный анализ, экспертный метод нормирования и метод попарных сравнений, L-R – функции. Рассмотренные методы просты в применении.Материалы данной статьи представляют методическую и практическую ценность для преподавателей и студентов, интересующихся вопросами нечеткого моделированияи анализа данных.

Ключевыеслова: нечеткая логика

функция принадлежности

1. Курзаева Л.В., Новикова Т.Б., Лактионова Ю.С., Петеляк В.Е. Применение метода попарных сравнений для определения функции принадлежности нечеткой переменной в задачах управления социально-экономическими системами // Научно-практический журнал «Заметки ученого». - 2015 - №5. - С.87-90

2. Курзаева Л.В. Нечеткая логика и нейронные сети. – Магнитогорск: Изд-во Магнитогорск, гос.тех. ун-та им. Г.И.Носова, 2016.

4. Курзаева Л.В. Введение в теорию систем и системный анализ: учеб. пособие/Л.В. Курзаева. -Магнитогорск: МаГУ, 2015. -211 с.

5. Курзаева Л.В. Введение в методы и средства получения и обработки информации для задач управления социальными и экономическими системами: учеб. пособие / Л.В. Курзаева, И.Г. Овчинникова, Г.Н. Чусавитина. -Магнитогорск: Магнитогорск. гос. техн. ун-та им. Г.И. Носова, 2016. -118 с.

Все методы определения значений функций принадлежности условно можно разделить на следующие группы: прямые методы, косвенные методы, L-R & dash; функции.

К первой группе методов можно отнести частотный анализ по результатам опросов экспертов.

Пример. По результатам опросов респондентов по прогнозам цены литра молока в 2016 г. получены следующие результаты (табл.1).

Ко второй группе методов можно отнести экспертные методы (например, анкетный метод нормирования, а также метод попарных сравнений).

Метод нормирования, заключается в следующем. Эксперту предлагается оценить степень принадлежности к множеству А каждого элемента из Ux1 & dash; х, соотнеся свое мнение со значениями по некоторой, заранее выбранной шкале (например, от 0 до 100%, или относительных величинах от 0 до 1, или любой другой).

Результаты опроса нескольких экспертов сводятся в матрицу опроса (табл. 2).

Затем производятся следующая последовательность действий:

Таблица 1

Данные по опросу экспертов о прогнозируемой цене на молоко в 2016 г

Матрица опроса нескольких экспертов

Пример. В табл. 3 приведены результаты опроса четырех экспертов о степени принадлежности трех элементов & dash; автомобилей «Chevrolet iva», «JeepGra dCherokee», «CheryTiggo F» множеству «Внедорожники», оцененные по 100 бальной шкале.

Таблица 3

Матрица опроса

Рассчитывается сумма весов, даваемых i-м экспертом всем элементам:

Таблица 4

Рассчитывается относительный вес j-го элемента на основании оценки i-го эксперта:

Таблица 5

Матрица опроса с элементами расчетов

Рассчитывается результирующий вес j-го элемента:

Таблица 6

Итак, согласно собранным данным и методу расчета множестово«Внедорожники» ={0,43/ «JeepGra dCherokee»; 0,29/ «Chevrolet iva»; 0,28/ «CheryTiggo F»}

Метод попарных сравнений, заключается в том, что только один эксперт на основе своего субъективного мнения оценивает принадлежность элемента данному множеству относительно другого элемента. Для проведения субъективных парных сравнений Т. Саати была разработана шкала относительной важности, ее модификация приведена в табл. 7:

Таблица 7

Матрица опроса с элементами расчетов и результатами

Результаты попарного сравнения элементов заносятся в матрицу сравнения размерности n×n, где n число сравниваемых элементов. Элемент указанной матрицы выражает результат сравнения элементов i и j. Если при сравнении элементов i и j получено a(i,j)=b, то результатом сравнения элементов jи iдолжно быть a(j,i)=1/b. Очевидно, что диагональные элементы матрицы равны 1.

Т. Саати предложил упрощенную процедуру вычисления вектора w. Пусть v& dash; вектор геометрических средних строк некоторой матрицы сравнения:

Тогда вектор wбудет определяться следующим образом:

Пример. По результатам оценки эксперта степени принадлежности трех элементов & dash; значений температур в градусах Цельсия определить множество «Холодно».

Соответствующие матрицам сравнения векторы локальных приоритетов находятся следующим образом:

Рис. 1. Примеры L-R -функций

Итак, по данным расчетов «Холодно»={0,747/ -25; 0,134/ -10; 0,119/-5}.

Третью группу составляют способы на основе использования так называемые L-R & dash; функций (типовых форм кривых рис. 1) для задания функций принадлежности с уточнением их параметров путем приближения к реальным данным.

Пример. Если мы оцениваем параметр качественно, например, говоря: «Это значение параметра является средним», необходимо ввести уточняющее высказывание типа « Среднее значение — это примерно от a до b», которое есть предмет экспертной оценки (нечеткой классификации), и тогда можно использовать для моделирования трапециевидную функцию.

Если мы хотим выразить «приблизительно равно α», то можно использовать треугольные функции.

Библиографическая ссылка

Курзаева Л.В. МЕТОДЫ ОПРЕДЕЛЕНИЯ ЗНАЧЕНИЙ ФУНКЦИЙ ПРИНАДЛЕЖНОСТИ НЕЧЕТКОГО МНОЖЕСТВА // Международный журнал прикладных и фундаментальных исследований. – 2016. – № 12-6. – С. 1047-1051;
URL: https://applied-research.ru/ru/article/view?id=10983 (дата обращения: 06.04.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Определение

Для пространства рассуждения и данной функции принадлежности нечёткое множество определяется как

Функция принадлежности количественно градуирует принадлежность элементов фундаментального множества пространства рассуждения нечёткому множеству . Значение означает, что элемент не включен в нечёткое множество, описывает полностью включенный элемент. Значения между и характеризуют нечётко включенные элементы.


Нечёткое множество и классическое, четкое (crisp ) множество

Классификация функций принадлежности нормальных нечетких множеств

Нечеткое множество называется нормальным, если для его функции принадлежности справедливо утверждение, что существует такой , при котором .

s

Функция принадлежности класса s определяется как:

Функция принадлежности класса π

Функция принадлежности класса π определяется через функцию класса s :

Функция принадлежности класса γ

Функция принадлежности класса γ определяется как:

Функция принадлежности класса t

Функция принадлежности класса t определяется как:

Функция принадлежности класса L

Функция принадлежности класса L определяется как:

См. также

  • Грубое множество
  • Эвентология

Внешние ссылки

Литература

  • Д. Рутковская, М. Пилиньский, Л. Рутковский. Нейронные сети, генетические алгоритмы и нечеткие системы: Пер. с польского И. Д. Рудинского. - М .:Горячая линия - Телеком, 2004. - 452 с - ISBN 5-93517-103-1

Wikimedia Foundation . 2010 .

  • Теория нечёткой меры
  • Капель

Смотреть что такое "Функция принадлежности" в других словарях:

    функция принадлежности - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN membership function … Справочник технического переводчика

    Функция и поле речи и языка в психоанализе - «ФУНКЦИЯ И ПОЛЕ РЕЧИ И ЯЗЫКА В ПСИХОАНАЛИЗЕ» («Fonction et champ de la parole et du langage en psychanalyse») программа переосмысления психоанализа, выдвинутая в 1953 франц. психиатром и психоаналитиком Жаком Лаканом. Этот текст был… … Энциклопедия эпистемологии и философии науки

    Характеристическая функция (нечёткая логика) - Функция принадлежности нечёткого множества это обобщение индикаторной (или характеристической) функции классического множества. В нечёткой логике она представляет степень принадлежности каждого члена пространства рассуждения к данному нечёткому… … Википедия

    Индикаторная функция

    Характеристическая функция множества - Индикатор, или характеристическая функция, или индикаторная функция подмножества это функция, определенная на множестве X, которая указывает на принадлежность элемента подмножеству A. Термин характеристическая функция уже занят в теории… … Википедия

    ВЫПУКЛАЯ ФУНКЦИЯ - комплексного переменногог регулярная однолистная функция в единичном круге, отображающая единичный круг на нек рую выпуклую область. Регулярная однолистная функция является В. ф. тогда и только тогда, когда при обходе любой окружности… … Математическая энциклопедия

    Нечёткое множество - Эту страницу предлагается объединить с Теория нечётких множеств … Википедия

    Нечеткие множества

    Нечеткое множество - Нечёткое (или размытое, расплывчатое, туманное, пушистое) множество понятие, введённое Лотфи Заде в 1965 г. в статье «Fuzzy Sets» (нечёткие множества) в журнале Information and Control . Л. Заде расширил классическое канторовское понятие… … Википедия

    Нечёткие множества - Нечёткое (или размытое, расплывчатое, туманное, пушистое) множество понятие, введённое Лотфи Заде в 1965 г. в статье «Fuzzy Sets» (нечёткие множества) в журнале Information and Control . Л. Заде расширил классическое канторовское понятие… … Википедия


Нечеткое множество (fuzzyset) представляет собой совокупность элементов произвольной природы, относительно которых нельзя точно утверждать – обладают ли эти элементы некоторым характеристическим свойством, которое используется для задания нечеткого множества.

Пусть X – универсальное (базовое) множество, x – элемент X , а R – некоторое свойство. Обычное (четкое) подмножество A универсального множества X , элементы которого удовлетворяют свойству R , определяется как множество упорядоченных пар
A = μ A x / x , где μ A x – характеристическая функция, принимающая значение 1 , если x удовлетворяет свойству R , и 0 – в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов x из X нет однозначного ответа «да-нет» относительно свойства R . В связи с этим, нечеткое подмножество A универсального множества X определяется как множество упорядоченных пар A = μ A x / x , где μ A x – характеристическая функция принадлежности (или просто функция принадлежности ), принимающая значения в некотором вполне упорядоченном множестве M = 0 ; 1 . Функция принадлежности указывает степень (или уровень) принадлежности элемента x подмножеству A . Множество M называют множеством принадлежностей. Если M = 0 ; 1 , то нечеткое подмножество A может рассматриваться как обычное или четкое множество. Степень принадлежности μ A x является субъективной мерой того, насколько элемент x ∈ X , соответствует понятию, смысл которого формализуется нечетким множеством A .

Носителем нечеткого множества A является четкое подмножество S A универсального множества X со свойством μ A x > 0 , т.е. S A = x ∣ x ∈ X ∧ μ A x > 0 . Иными словами, носителем нечеткого множества A является подмножество S A универсального множества X , для элементов которого функция принадлежности μ A x > 0 больше нуля. Иногда носитель нечеткого множества обозначают support A .

Если носителем нечеткого множества A является дискретное подмножество S A , то нечеткое подмножество A универсального множества X , состоящего из n элементов, можно представить в виде объединения конечного числа одноточечных множеств μ A x / x при помощи символа ∑ : A = ∑ i = 1 n μ A x i / x i . При этом подразумевается, что элементы x i упорядочены по возрастанию в соответствии со своими индексами, т.е. x 1 < x 2 < x 3 < … < x n .

Если носителем нечеткого множества A является непрерывное подмножество S A , то нечеткое подмножество A универсального множества X , рассматривая символ ∫ как непрерывный аналог введенного выше символа объединения для дискретных нечетких множеств ∑ , можно представить в виде объединения бесконечного числа одноточечных множеств μ A x / x:

A = ∫ X μ A x / x .

Пример. Пусть универсальное множество X соответствует множеству возможных значений толщин изделия от 10 мм до 40 мм с дискретным шагом 1 мм. Нечеткое множество A , соответствующее нечеткому понятию «малая толщина изделия», может быть представлено в следующем виде:

A = 1 / 10 ; 0,9 / 11 ; 0,8 / 12 ; 0,7 / 13 ; 0,5 / 14 ; 0,3 / 15 ; 0,1 / 16 ; 0 / 17 ; … ; 0 / 40 ,

A = 1 / 10 + 0,9 / 11 + 0,8 / 12 + 0,7 / 13 + 0,5 / 14 + 0,3 / 15 + 0,1 / 16 + 0 / 17 + … + 0 / 40 ,

где знак суммирования обозначает не операцию арифметического сложения, а объединения элементов в одно множество. Носителем нечеткого множества A будет конечное подмножество (дискретный носитель):

S A = 10 ; 11 ; 12 ; 13 ; 14 ; 15 ; 16 .

Если же универсальное множество X является множеством действительных чисел от 10 до 40 , т.е. толщина изделия может принимать все возможные значения в этих пределах, то носителем нечеткого множества A является отрезок S A = 10 ; 16 .

Нечеткое множество с дискретным носителем может быть представлено в виде отдельных точек на плоскости, нечеткое множество с непрерывным носителем может быть представлено в виде кривой, что соответствует дискретной и непрерывной функциям принадлежности μ A x , заданным на универсальном множестве X (рис.2.1).

Рис.2.1. Функции принадлежности нечетких множеств с (а)-дискретным и (б)-непрерывным носителями

Пример. Пусть X = 0 ; 1 ; 2 ; … – множество целых неотрицательных чисел. Нечеткое множество ital малый можно определить как μ ital малый x = x 1 + 0,1 x 2 − 1 .

Рис.2.2. Графическое представление нечеткого множества малый

Нечеткое множество A называется конечным , если его носитель S A является конечным четким множеством. При этом, по аналогии с обычными множествами, можно говорить, что такое нечеткое множество имеет конечную мощность card A = card S A . Нечеткое множество A называется бесконечным , если его носитель S A не является конечным четким множеством. При этом счетным нечетким множеством будет называться нечеткое множество с счетным носителем, имеющим счетную мощность в обычном смысле в терминах теории четких множеств, т.е. если S A содержит бесконечное число элементов, которые однако можно пронумеровать натуральными числами 1,2 ,3 . . . , причем достичь последнего элемента при нумерации принципиально невозможно. Несчетным нечетким множеством будет называться нечеткое множество со несчетным носителем, имеющим несчетную мощность континуума , т.е. если S A содержит бесконечное число элементов, которые невозможно пронумеровать натуральными числами 1,2 ,3 . . .

Пример. Нечеткое понятие «очень маленькое количество деталей» может быть представлено в виде конечного нечеткого множества A = 1 / 0 + 0,9 / 1 + 0,8 / 2 + 0,7 / 3 + 0,5 / 4 + 0,1 / 5 + 0 / 6 + … с мощностью card (A) = 6 и носителем S A = 0 ; 1 ; 2 ; 3 ; 4 ; 5 , который является конечным четким множеством. Нечеткое понятие «очень большое количество деталей» может быть представлено в виде A = 0 / 0 + … + 0,1 / 1 0 + 0,4 / 11 + 0,7 / 12 + 0,9 / 13 + 1 / 14 + 1 / 15 + … + 1 / n + … , n ∈ N – нечеткого множества с бесконечным счетным носителем S A ≡ N (множество натуральных чисел), который имеет счетную мощность в обычном смысле.

Пример. Несчетное нечеткое множество A , соответствующее нечеткому понятию «очень горячо», задано на универсальном множестве значений температур (в Кельвинах) температурой x ∈ [ 0 ; ∞) и функцией принадлежности μ A = 1 − e − x , с носителем S A ≡ R + (множество неотрицательных действительных чисел), который имеет несчетную мощность континуума.

Величина sup x ∈ X μ A x называется высотой нечеткого множества.

Нечеткое множество A нормально , если его высота равна 1 , т.е. верхняя граница его функции принадлежности sup x ∈ X μ A x = 1 . При sup x ∈ X μ A x < 1 субнормальным.

Нечеткое множество называется пустым , если ∀ x ∈ X μ A x = 0 .

Непустое субнормальное множество всегда можно нормализовать, разделив все значения функции принадлежности на ее максимальное значение μ A x sup x ∈ X μ A x .

Нечеткое множество называется унимодальным , если μ A x = 1 только для одной точки x (моды ) универсального множества X .

Нечеткое множество называется точечным , если μ A x > 0 только для одной точки x универсального множества X .

Множеством α -уровня нечеткого множества A , определенного на универсальном множества X , называется четкое подмножество A α универсального множества X , определяемое в виде:

A α = x ∈ X ∣ μ A x ≥ α , где α ∈ 0 ; 1 .

Пример. A = 0,8 / 1 + 0,6 / 2 + 0,2 / 3 + 1 / 4 , A 0,5 = 1 ; 2 ; 4 , где A 0,5 – четкое множество, включающее те элементы x упорядоченных пар μ A x / x , составляющих нечеткое множество A , для которых значение функции принадлежности которых удовлетворяет условию μ A x ≥ α .

Для множеств α -уровня выполняется следующее свойство: если α 1 ≥ α 2 , то мощность подмножества A α 1 не больше мощности подмножества A α 2 .

Элементы x ∈ X , для которых μ A x = 0,5 называются точками перехода нечеткого множества A .

Ядром нечеткого множества A , определенного на универсальном множестве X , называется четкое множество core A , элементы которого удовлетворяют условию core A = x ∈ X ∣ μ A x = 1 .

Границей нечеткого множества A , определенного на универсальном множестве X , называется четкое множество front A , элементы которого удовлетворяют условию front A = x ∈ X ∣ 0 < μ A x < 1 .

Пример. Пусть X = 0 ; 1 ; 2 ; … ; 10 , M = 0 ; 1 . Нечеткое множество несколько можно определить на универсальном множестве натуральных чисел следующим образом: несколько = 0,5 / 3 + 0,8 / 4 + 1 / 5 + 1 / 6 + 0,8 / 7 + 0,5 / 8 ; его характеристики: высота = 1 , носитель = 3 ; 4 ; 5 ; 6 ; 7 ; 8 , точки перехода = 3 ; 8 , ядро = 5 ; 6 , граница = 3 ; 4 ; 7 ; 8 .

Нечеткое множество A , определенное на универсальном множестве X , называется выпуклым , если μ A x ≥ min μ A a ; μ A b ; a < x < b ; x , a , b ∈ X (рис.2.3).

Рис.2.3. Функции принадлежности выпуклого и невыпуклого нечетких множеств

Fuzzy Logic Toolbox включает 11 встроенных функций принадлежностей, которые используют следующие основные функции:

  • кусочно-линейную;
  • гауссовское распределение;
  • сигмоидную кривую;
  • квадратическую и кубические кривые.

Для удобства имена всех встроенных функций принадлежности оканчиваютя на mf. Вызов функции принадлежности осуществляется следующим образом:

namemf(x, params),

где namemf – наименование функции принадлежности;
x – вектор, для координат которого необходимо рассчитать значения функции принадлежности;
params – вектор параметров функции принадлежности.

Простейшие функции принадлежности треугольная (trimf ) и трапециевидная (trapmf ) формируется с использованием кусочно-линейной аппроксимации. Трапециевидная функция принадлежности является обобщение треугольной, она позволяет задавать ядро нечеткого множества в виде интервала. В случае трапециевидной функции принадлежности возможна следующая удобная интерпретация: ядро нечеткого множества – оптимистическая оценка; носитель нечеткого множества – пессимистическая оценка.

Две функции принадлежности – симметричная гауссовская (gaussmf ) и двухстороняя гауссовская (gaussmf ) формируется с использованием гауссовского распределения. Функция gaussmf позволяет задавать ассиметричные функция принадлежности. Обобщенная колоколообразная функция принадлежности (gbellmf ) по своей форме похожа на гауссовские. Эти функции принадлежности часто используются в нечетких системах, так как на всей области определения они является гладкими и принимают ненулевые значения.

Функции принадлежности sigmf , dsigmf , psigmf основаны на использовании сигмоидной кривой. Эти функции позволяют формировать функции принадлежности, значения которых начиная с некоторого значения аргумента и до + (-) равны 1. Такие функции удобны для задания лингвистических термов типа “высокий” или “низкий”.

Полиномиальная аппроксимация применяется при формировании функций zmf, pimf и smf , графические изображения которых похожи на функции sigmf , dsigmf , psigmf , соответственно.

Основная информация о встроенных функциях принадлежности сведена в табл. 6.1. На рис. 6.1 приведены графические изображения функций принадлежности, полученные с помощью демонстрационной сценария mfdemo . Как видно из рисунка, встроенные функции принадлежности позволяют задавать разнообразные нечеткие множества.

В Fuzzy Logic Toolbox предусмотрена возможность для пользователя создания собственной функции принадлежности. Для этого необходимо создать m -функцию, содержащую два входных аргумента – вектор, для координат которого необходимо рассчитать значения функции принадлежности и вектор параметров функции принадлежности. Выходным аргументом функции должен быть вектор степеней принадлежности. Ниже приведена m -функция, реализующая колоколообразную функцию принадлежности :

function mu=bellmf(x, params)
%bellmf – bell membership function;
%x – input vector;
%params(1) – concentration coefficient (>0);
%params(2) – coordinate of maximuma.
a=params(1);
b=params(2);
mu=1./(1+ ((x-b)/a).^2);

Рисунок 6.1. Встроенные функции принадлежности

Таблица 6.1. Функции принадлежности

Наименование функции

Описание

Аналитическая формула

Порядок параметров

dsigmf функция принадлежности в виде разности между двумя сигмоидными функциями

gauss2mf двухсторонняя гауссовская функция принадлежности

если c1;

если c1>c2, то
.

gaussmf симметричная гауссовская функция принадлежности
gbellmf обобщенная колокообразная функция принадлежности

pimf пи-подобная функция принадлежности

произведение smf и zmf функций

– носитель нечеткого множества;

В обыденной жизни мы часто сталкиваемся со случаями, когда не существует элементарных измеримых свойств и признаков, которые определяют интересующие нас понятия, например, красоту, интеллектуальность. Бывает трудно проранжировать степень проявления свойства у рассматриваемых элементов. Так как степени принадлежности рассматриваются на данном реальном множестве, а не в абсолютном смысле, то интенсивность принадлежности можно определять, исходя из попарных сравнений рассматриваемых элементов.

Среди косвенных методов определения функции принадлежности наибольшее распространение получил метод парных сравнений Саати . Сложность использования этого метода заключается в необходимости нахождения собственного вектора матрицы парных сравнений, которая задается с помощью специально предложенной шкалы. Причем эти сложности увеличиваются с ростом размерности универсального множества , на которой задается лингвистический терм .

Мы рассмотрим метод, также использующий матрицу парных сравнений элементов универсального множества . Но, в отличие от метода Саати, он не требует нахождения собственного вектора матрицы, т.е. освобождает исследователя от трудоемких процедур решения характеристических уравнений .

Пусть - некоторое свойство, которое рассматривается как лингвистический терм . Нечеткое множество , с помощью которого формализуется терм , представляет собой совокупность пар:

Где - универсальное множество , на котором задается нечеткое множество . Задача состоит в том, чтобы определить значения для всех . Совокупность этих значений и будет составлять неизвестную функцию принадлежности.

Метод, который предлагается для решения поставленной проблемы, базируется на идее распределения степеней принадлежности элементов универсального множества согласно с их рангами. Эта идея раньше использовалась в теории структурного анализа систем, где рассмотрены различные способы определения рангов элементов.

В нашем случае под рангом элемента будем понимать число , которое характеризует значимость этого элемента в формировании свойства, описываемого нечетким термом. Допускаем, что выполняется правило: чем больший ранг элемента, тем больше степень принадлежности .

Для последующих построений введем такие обозначения: , . Тогда правило распределения степеней принадлежности можно задать в виде системы соотношений:

Используя данные соотношения, легко определить степени принадлежности всех элементов универсального множества через степень принадлежности опорного элемента.

Если опорным является элемент с принадлежностью , то

Учитывая условие нормирования, находим:

Полученные формулы дают возможность вычислять степени принадлежности элементов к нечеткому терму двумя независимыми путями:

Эта матрица обладает следующими свойствами:

а) она диагональная, т.е.

б) ее элементы, которые симметричны относительно главной диагонали, связаны зависимостью

в) она транзитивна, т.е. .

Наличие этих свойств приводит к тому, что при известных элементах одной строки матрицы легко определить элементы всех других строк. Если известна -я строка, т.е. элементы , , то произвольный элемент находится так:

Поскольку матрица может быть интерпретирована как матрица парных сравнений рангов, то для экспертных оценок элементов этой матрицы можно использовать 9 балльную шкалу Саати. В нашем случае шкала формируется так:

Числовая оценка Качественная оценка (сравнение и )
1 отсутствие преимущества над
3 слабое преимущество над
5 существенное преимущество над
7 явное преимущество над
9 абсолютное преимущество над
2, 4, 6, 8 промежуточные