Болезни Военный билет Призыв

Исследовать функцию на монотонность значит нужно найти. Исследование функций на монотонность и экстремумы

Возрастание, убывание и экстремумы функции

Нахождение интервалов возрастания, убывания и экстремумов функции является как самостоятельной задачей, так и важнейшей частью других заданий, в частности, полного исследования функции . Начальные сведения о возрастании, убывании и экстремумах функции даны в теоретической главе о производной , которую я настоятельно рекомендую к предварительному изучению (либо повторению) – ещё и по той причине, что нижеследующий материал базируется на самой сути производной, являясь гармоничным продолжением указанной статьи. Хотя, если времени в обрез, то возможна и чисто формальная отработка примеров сегодняшнего урока.

А сегодня в воздухе витает дух редкого единодушия, и я прямо чувствую, что все присутствующие горят желанием научиться исследовать функцию с помощью производной . Поэтому на экранах ваших мониторов незамедлительно появляется разумная добрая вечная терминология.

Зачем? Одна из причин самая что ни на есть практическая: чтобы было понятно, что от вас вообще требуется в той или иной задаче !

Монотонность функции. Точки экстремума и экстремумы функции

Рассмотрим некоторую функцию . Упрощённо полагаем, что она непрерывна на всей числовой прямой:

На всякий случай сразу избавимся от возможных иллюзий, особенно это касается тех читателей, кто недавно ознакомился с интервалами знакопостоянства функции . Сейчас нас НЕ ИНТЕРЕСУЕТ , как расположен график функции относительно оси (выше, ниже, где пересекает ось). Для убедительности мысленно сотрите оси и оставьте один график. Потому что интерес именно в нём.

Функция возрастает на интервале, если для любых двух точек этого интервала, связанных отношением , справедливо неравенство . То есть, бОльшему значению аргумента соответствует бОльшее значение функции, и её график идёт «снизу вверх». Демонстрационная функция растёт на интервале .

Аналогично, функция убывает на интервале, если для любых двух точек данного интервала, таких, что , справедливо неравенство . То есть, бОльшему значению аргумента соответствует мЕньшее значение функции, и её график идёт «сверху вниз». Наша функция убывает на интервалах .

Если функция возрастает или убывает на интервале, то её называют строго монотонной на данном интервале. Что такое монотонность? Понимайте в буквальном смысле – однообразие.

Также можно определить неубывающую функцию (смягчённое условие в первом определении) и невозрастающую функцию (смягчённое условие во 2-м определении). Неубывающую или невозрастающую функцию на интервале называют монотонной функцией на данном интервале (строгая монотонность – частный случай «просто» монотонности) .

Теория рассматривает и другие подходы к определению возрастания/убывания функции, в том числе на полуинтервалах, отрезках, но чтобы не выливать на вашу голову масло-масло-масляное, договоримся оперировать открытыми интервалами с категоричными определениями – это чётче, и для решения многих практических задач вполне достаточно.

Таким образом, в моих статьях за формулировкой «монотонность функции» почти всегда будут скрываться интервалы строгой монотонности (строгого возрастания или строгого убывания функции).

Окрестность точки. Слова, после которых студенты разбегаются, кто куда может, и в ужасе прячутся по углам. …Хотя после поста Пределы по Коши уже, наверное, не прячутся, а лишь слегка вздрагивают =) Не беспокойтесь, сейчас не будет доказательств теорем математического анализа – окрестности мне потребовались, чтобы строже сформулировать определения точек экстремума . Вспоминаем:

Окрестностью точки называют интервал, который содержит данную точку, при этом для удобства интервал часто полагают симметричным. Например, точка и её стандартная - окрестность:

Собственно, определения:

Точка называется точкой строгого максимума , если существует её -окрестность, для всех значений которой за исключением самой точки выполнено неравенство . В нашем конкретном примере это точка .

Точка называется точкой строгого минимума , если существует её -окрестность, для всех значений которой за исключением самой точки выполнено неравенство . На чертеже – точка «а».

Примечание : требование симметричности окрестности вовсе не обязательно. Кроме того, важен сам факт существования окрестности (хоть малюсенькой, хоть микроскопической), удовлетворяющей указанным условиям

Точки называют точками строго экстремума или просто точками экстремума функции. То есть это обобщенный термин точек максимума и точек минимума.

Как понимать слово «экстремум»? Да так же непосредственно, как и монотонность. Экстремальные точки американских горок.

Как и в случае с монотонностью, в теории имеют место и даже больше распространены нестрогие постулаты (под которые, естественно, подпадают рассмотренные строгие случаи!) :

Точка называется точкой максимума , если существует её окрестность, такая, что для всех
Точка называется точкой минимума , если существует её окрестность, такая, что для всех значений данной окрестности выполнено неравенство .

Заметьте, что согласно последним двум определениям, любая точка функции-константы (либо «ровного участка» какой-нибудь функции) считается как точкой максимума, так и точкой минимума! Функция , к слову, одновременно является и невозрастающей и неубывающей, то есть монотонной. Однако оставим сии рассуждения теоретикам, поскольку на практике мы почти всегда созерцаем традиционные «холмы» и «впадины» (см. чертёж) с уникальным «царём горы» или «принцессой болота» . Как разновидность, встречается остриё , направленное вверх либо вниз, например, минимум функции в точке .

Да, кстати, о королевских особах:
– значение называют максимумом функции;
– значение называют минимумом функции.

Общее название – экстремумы функции.

Пожалуйста, будьте аккуратны в словах!

Точки экстремума – это «иксовые» значения.
Экстремумы – «игрековые» значения.

! Примечание : иногда перечисленными терминами называют точки «икс-игрек», лежащие непосредственно на САМОМ ГРАФИКЕ функции.

Сколько может быть экстремумов у функции?

Ни одного, 1, 2, 3, … и т.д. до бесконечности. Например, у синуса бесконечно много минимумов и максимумов.

ВАЖНО! Термин «максимум функции» не тождественен термину «максимальное значение функции». Легко заметить, что значение максимально лишь в локальной окрестности, а слева вверху есть и «покруче товарищи». Аналогично, «минимум функции» – не то же самое, что «минимальное значение функции», и на чертеже мы видим, что значение минимально только на определённом участке. В этой связи точки экстремума также называют точками локального экстремума , а экстремумы – локальными экстремумами . Ходят-бродят неподалёку и глобальные собратья. Так, любая парабола имеет в своей вершине глобальный минимум или глобальный максимум . Далее я не буду различать типы экстремумов, и пояснение озвучено больше в общеобразовательных целях – добавочные прилагательные «локальный»/«глобальный» не должны заставать врасплох.

Подытожим наш небольшой экскурс в теорию контрольным выстрелом: что подразумевает задание «найдите промежутки монотонности и точки экстремума функции»?

Формулировка побуждает найти:

– интервалы возрастания/убывания функции (намного реже фигурирует неубывание, невозрастание);

– точки максимума и/или точки минимума (если таковые существуют). Ну и от незачёта подальше лучше найти сами минимумы/максимумы;-)

Как всё это определить? С помощью производной функции!

Как найти интервалы возрастания, убывания,
точки экстремума и экстремумы функции?

Многие правила, по сути, уже известны и понятны из урока о смысле производной .

Производная тангенса несёт бодрую весть о том, что функция возрастает на всей области определения .

С котангенсом и его производной ситуация ровно противоположная.

Арксинус на интервале растёт – производная здесь положительна: .
При функция определена, но не дифференцируема. Однако в критической точке существует правосторонняя производная и правостороння касательная, а на другом краю – их левосторонние визави.

Думаю, вам не составит особого труда провести похожие рассуждения для арккосинуса и его производной.

Все перечисленные случаи, многие из которых представляют собой табличные производные , напоминаю, следуют непосредственно из определения производной .

Зачем исследовать функцию с помощью производной?

Чтобы лучше узнать, как выглядит график этой функции : где он идёт «снизу вверх», где «сверху вниз», где достигает минимумов максимумов (если вообще достигает). Не все функции такие простые – в большинстве случаев у нас вообще нет ни малейшего представления о графике той или иной функции.

Настала пора перейти к более содержательным примерам и рассмотреть алгоритм нахождения интервалов монотонности и экстремумов функции :

Пример 1

Найти интервалы возрастания/убывания и экстремумы функции

Решение :

1) На первом шаге нужно найти область определения функции , а также взять на заметку точки разрыва (если они существуют). В данном случае функция непрерывна на всей числовой прямой, и данное действие в известной степени формально. Но в ряде случаев здесь разгораются нешуточные страсти, поэтому отнесёмся к абзацу без пренебрежения.

2) Второй пункт алгоритма обусловлен

необходимым условием экстремума:

Если в точке есть экстремум, то либо значения не существует .

Смущает концовка? Экстремум функции «модуль икс».

Условие необходимо, но не достаточно , и обратное утверждение справедливо далеко не всегда. Так, из равенства ещё не следует, что функция достигает максимума или минимума в точке . Классический пример уже засветился выше – это кубическая парабола и её критическая точка .

Но как бы там ни было, необходимое условие экстремума диктует надобность в отыскании подозрительных точек. Для этого следует найти производную и решить уравнение :

В начале первой статьи о графиках функции я рассказывал, как быстро построить параболу на примере : «…берём первую производную и приравниваем ее к нулю: …Итак, решение нашего уравнения: – именно в этой точке и находится вершина параболы…». Теперь, думаю, всем понятно, почему вершина параболы находится именно в этой точке =) Вообще, следовало бы начать с похожего примера и здесь, но он уж слишком прост (даже для чайника). К тому же, аналог есть в самом конце урока о производной функции . Поэтому повысим степень:

Пример 2

Найти промежутки монотонности и экстремумы функции

Это пример для самостоятельного решения. Полное решение и примерный чистовой образец оформления задачи в конце урока.

Наступил долгожданный момент встречи с дробно-рациональными функциями:

Пример 3

Исследовать функцию с помощью первой производной

Обратите внимание, как вариативно можно переформулировать фактически одно и то же задание.

Решение :

1) Функция терпит бесконечные разрывы в точках .

2) Детектируем критические точки. Найдём первую производную и приравняем её к нулю:

Решим уравнение . Дробь равна нулю, когда её числитель равен нулю:

Таким образом, получаем три критические точки:

3) Откладываем на числовой прямой ВСЕ обнаруженные точки и методом интервалов определяем знаки ПРОИЗВОДНОЙ:

Напоминаю, что необходимо взять какую-нибудь точку интервала, вычислить в ней значение производной и определить её знак. Выгоднее даже не считать, а «прикинуть» устно. Возьмём, например, точку , принадлежащую интервалу , и выполним подстановку: .

Два «плюса» и один «минус» дают «минус», поэтому , а значит, производная отрицательна и на всём интервале .

Действие, как вы понимаете, нужно провести для каждого из шести интервалов. Кстати, обратите внимание, что множитель числителя и знаменатель строго положительны для любой точки любого интервала, что существенно облегчает задачу.

Итак, производная сообщила нам, что САМА ФУНКЦИЯ возрастает на и убывает на . Однотипные интервалы удобно скреплять значком объединения .

В точке функция достигает максимума:
В точке функция достигает минимума:

Подумайте, почему можно заново не пересчитывать второе значение;-)

При переходе через точку производная не меняет знак, поэтому у функции там НЕТ ЭКСТРЕМУМА – она как убывала, так и осталась убывающей.

! Повторим важный момент : точки не считаются критическими – в них функция не определена . Соответственно, здесь экстремумов не может быть в принципе (даже если производная меняет знак).

Ответ : функция возрастает на и убывает на В точке достигается максимум функции: , а в точке – минимум: .

Знание интервалов монотонности и экстремумов вкупе с установленными асимптотами даёт уже очень хорошее представление о внешнем виде графика функции. Человек среднего уровня подготовки способен устно определить, что у графика функции есть две вертикальные асимптоты и наклонная асимптота . Вот наш герой:

Постарайтесь ещё раз соотнести результаты исследования с графиком данной функции.
В критической точке экстремума нет, но существует перегиб графика (что, как правило, и бывает в похожих случаях).

Пример 4

Найти экстремумы функции

Пример 5

Найти интервалы монотонности, максимумы и минимумы функции

…прямо какой-то Праздник «икса в кубе» сегодня получается....
Тааак, кто там на галёрке предложил за это выпить? =)

В каждой задаче есть свои содержательные нюансы и технические тонкости, которые закомментированы в конце урока.


Общая схема исследования функции

  • Найти область определения функции. Выяснить характер поведения функции в граничных точках области определения.
  • Выяснить обладает ли функция особенностями: четность, нечетность, периодичность.
  • Найти точки пересечения графика функции с осями координат.
  • Выяснить, имеет ли кривая вертикальные и наклонные асимптоты.
  • Найти интервалы возрастания и убывания функции. Исследовать функцию на экстремум.
  • Найти промежутки выпуклости и вогнутости функции. Найти точки перегиба.
  • Построить график.


№ 44.63. Исследуйте функцию на монотонность и экстремумы и постройте график

Функция общего вида



№ 44.65. Исследуйте функцию на монотонность и экстремумы и постройте график

Функция общего вида

3) Найдем точки пресечения графика функции с осями координат:



№ 44.67. Исследуйте функцию на монотонность и экстремумы и постройте график

Четная функция

3) Найдем точки пресечения графика функции с осями координат:




Определите промежутки монотонности и экстремумы функции

 критических точек нет







№ 44.49. Найдите точки экстремума заданной функции и определите их характер

 критических точек нет

Найдем стационарные точки, решив уравнение



№ 44.51. Найдите точки экстремума заданной функции и определите их характер

Найдем стационарные точки, решив уравнение





 критических точек нет

Найдем стационарные точки, решив уравнение


№ 44.54. Найдите точки экстремума заданной функции и определите их характер

Найдем стационарные точки, решив уравнение


Найдем стационарные точки, решив уравнение


№ 44.61. Найдите точки экстремума заданной функции и определите их характер

Найдем стационарные точки, решив уравнение

Формирование понятия производной в средней школе.

Введению понятия производной функции предшествует рассмотрение 2-х задач: 1)физической – задача о мгновенной скорости движения; 2)геометрической – о касательной к линии. Т.е. понятие производной функции должно формироваться на основе задач, приводящих к этому понятию. Заметим, что чем задачи разнороднее, тем лучше, так как именно разнородность приложения подчеркивается общность понятия производной. Отметим также, что рассмотрение задачи о мгновенной скорости позволяет выяснить механический смысл производной, а задачи о касательной к линии – ее геометрический смысл.

Внимание учащихся обращается на то, что решение каждой рассмотренной выше конкретной задачи по существу сводится к следующему.

А) Рассматривается функция f(x), определенная на некотором интервале (a,b). Берется некоторая точка х – фиксированная точка интервала (a,b) и точка х+- произвольная точка интервала (a,b) (
- приращение аргумента, которое может быть как положительным, так и отрицательным), т.е. а

Б) Рассматривается приращение функции, соответствующее приращению аргумента
:
=f(x+
) –f(x), и затем отношение приращения функции
к вызвавшему его приращению аргумента
:

Данное отношение есть функция переменной
, определенная для всех значений
из интервала (a-x,b-x), кроме
=0.

В) Ищется придел функции F(
) при
→0, и, если он существует, то его называют производной функцииf(x) в данной точке х.

Таким образом, естественно возникает следующее определение: производной функции f(x) в точке х называется придел отношения приращения данной функции в точке х к вызвавшему его приращению аргумента при стремлении приращения аргумента к нулю, если этот предел существует.

Применение производной для исследования функции на монотонность и экстремумы

1. Исследование функций на монотонность

Н

рис 1

Рисунок 2

а рис.1 представлен график некоторой возрастающей дифференцируемой функции

х =х 1 их = х 2 . Что общего у построенных прямых? Общее то, что обе они со­ставляют с осьюх острый угол, а значит, у обеих прямых положитель­ный угловой коэффициент. Но угло­вой коэффициент касательной ра­вен значению производной в абсцис­се точки касания. Таким образом,
и
. А в точкех = касательная параллельна осих, в этой точке выполняется равен­ство
. Вообще в любой точ­кех из области определениявозрастающей дифференцируемой функции выполняется неравенство
.

На рис.2 представлен график некоторой убывающей дифференци­руемой функции
. Проведем касательные к графику в точкахх =х 1 их = х 2 . Что общего у по­строенных прямых? Общее то, что обе они составляют с осьюх тупой угол, а значит, у обеих прямых отрицательный угловой коэффи­циент. Но угловой коэффициент касательной равен значению производной в абсциссе точки касания. Таким образом,
и
. А в точке х = касательная параллель­на осих , в этой точке выполняется равенство
. Вообще в любой точкех из области определенияубывающей дифферен­цируемой функции выполняется неравенство
.

Эти рассуждения показывают, что между характером моно­тонности функции и знаком ее производной есть определенная связь: если функция возрастает на промежутке и имеет на нем производную, то производная неотрицательна; если функ­ция убывает на промежутке и имеет на нем производную, то производная неположительна.

Для практики гораздо важнее то, что верны и обратные те­оремы, показывающие, как по знаку производной можно уста­новить характер монотонности функции на промежутке. При этом, во избежание недоразумений, берут только открытые про­межутки, т. е. интервалы или открытые лучи. Дело в том, что для функции, определенной на отрезке
, не очень коррект­но ставить вопрос о существовании и о значении производной в концевой точке (в точкех = а или в точкех = b ), поскольку в точкех =а приращение аргумента может быть только положи­тельным, а в точкех =b - только отрицательным. В определе­нии производной такие ограничения не предусмотрены.

Теорема 1. Х выполняется неравенство
(причем равенство

возрастает на промежутке
X.

Теорема 2. Если во всех точках открытого промежутка Х выполняется неравенство
(причем равенство
выполняется лишь в отдельных точках и не выполняется ни на каком сплошном промежутке), то функция
убывает на промежутке
X.

Доказательства этих теорем проводят обычно в курсе высшей математики. Мы ограничимся проведенными выше рассуждени­ями «на пальцах» и для вящей убедительности дадим еще физи­ческое истолкование сформулированных теорем.

Пусть по прямой движется материальная точка,
- закон движения. Если скорость все время положительна, то точка постоянно удаляется от начала отсчета, т. е. функция
возрастает. Еслиже скорость все время отрицательна,то точкапостоянно приближается к началу отсчета, т. е. функция
убывает. Если скорость движения была положительна, затем в какой-то отдельный момент времени обратилась в нуль, а потом снова стала положительной, то движущееся тело в указанный момент времени как бы притормаживает, а потом продолжает удаляться от начальной точки. Так что и в этом случае функция
возрастает. А что такое скорость? Это производная пути по времени. Значит, от знака производной (скорости) зависит характер монотонности функции - в данном случае функции
. Об этом как раз и говорят обе сформулированные теоремы.

Завершая рассуждения об исследовании функций на монотонность, обратим внима­ние на одно обстоятельство. Мы видели, что если на промежутке Х выполняется не­равенство
, то функция
возрастает на промежуткеX ; если же на промежуткеХ выполняется неравенство
, то функция убывает на этом про­межутке. А что будет, если на всем промежутке выполняется тождество
? Видимо, функция не должна ни возрастать, ни убывать. Что же это за функция? Ответ очевиден - это по­стоянная функция
(букваС - первая буква словаconstanta , что означает «постоянная»). Справедлива следующая теорема, формальное доказательство которой мы не приводим, ограничи­ваясь приведенными выше правдоподобными рассуждениями.

Теорема 3. Если во всех точках открытого промежутка Х выполняется равенство
, то функция
постоянна на промежутке
X.

Урок и презентация по алгебре в 10 классе на тему: "Исследование функции на монотонность. Алгоритм исследования"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Алгебраические задачи с параметрами, 9–11 классы
Программная среда "1С: Математический конструктор 6.1"

Что будем изучать:
1. Убывающие и возрастающие функции.
2. Связь производной и монотонности функции.
3. Две важные теоремы о монотонности.
4. Примеры.

Ребята, ранее мы с вами рассмотрели множество различных функций и строили их графики. Теперь давайте введем новые правила, которое работают для всех функций, которые мы рассматривали и еще будем рассматривать.

Убывающие и возрастающие функции

Давайте рассмотрим понятие возрастающей и убывающей функции. Ребята, а что такое функция?

Функцией называется соответствие y= f(x), в котором каждому значению x ставится в соответствие единственное значение y.

Посмотрим на график некоторой функции:


На нашем графике видно: чем больше x, тем меньше y. Итак, давайте дадим определение убывающей функции. Функция называется убывающей, если большему значению аргумента соответствует меньшее значение функции.

Если x2 > x1, то f(x2) Теперь давайте рассмотрим график такой функции:
На этом графике видно: чем больше x, тем больше y. Итак, давайте дадим определение возрастающей функции. Функция называется возрастающей, если большему значению аргумента соответствует большее значения функции.
Если x2 > x1, то f(x2 > f(x1) или: чем больше x, тем больше y.

Если функция возрастает или убывает на некотором промежутке, то говорят, что она монотонна на данном промежутке .

Связь производной и монотонности функции

Ребята, а теперь давайте подумаем, как можно применять понятие производной при исследовании графиков функций. Нарисуем график возрастающей дифференцируемой функции и проведем пару касательных к нашему графику.

Если посмотреть на наши касательные или зрительно провести любую другую касательную, то можно заметить, что угол между касательной и положительным направлением оси абсцисс будет острым. Значит, касательная имеет положительный угловой коэффициент. Угловой коэффициент касательной равен значению производной в абсциссе точки касания. Таким образом, значение производной положительно во всех точках нашего графика. Для возрастающей функции выполняет следующее неравенство: f"(x) ≥ 0, для любой точки x.

Ребята, теперь давайте посмотрим на график некоторой убывающей функции и построим касательные к графику функции.

Посмотрим на касательные и зрительно проведем любую другую касательную. Мы заметим, что угол между касательной и положительным направлением оси абсцисс - тупой, а значит касательная имеет отрицательный угловой коэффициент. Таким образом, значение производной отрицательно во всех точках нашего графика. Для убывающей функции выполняет следующее неравенство: f"(x) ≤ 0, для любой точки x.


Итак, монотонность функции зависит от знака производной:

Если функция возрастает на промежутке и имеет производную на этом промежутке, то эта производная будет не отрицательна.

Если функция убывает на промежутке и имеет производную на этом промежутке, то эта производная будет не положительна.

Важно , чтобы промежутки, на которых мы рассматриваем функцию были открытыми!

Две важные теоремы о монотонности

Теорема 1. Если во всех точках открытого промежутка Х выполняется неравенство f’(x) ≥ 0 (причем равенство производной нулю либо не выполняется, либо выполняется, но лишь в конечном множестве точек), то функция y= f(x) возрастает на промежутке Х.

Теорема 2. Если во всех точках открытого промежутка Х выполняется неравенство f’(x) ≤ 0 (причем равенство производной нулю либо не выполняется, либо выполняется, но лишь в конечном множестве точек), то функция y= f(x) убывает на промежутке Х.

Теорема 3. Если во всех точках открытого промежутка Х выполняется равенство
f’(x)= 0, то функция y= f(x) постоянна на этом промежутке.

Примеры исследования функции на монотонность

1) Доказать, что функция y= x 7 + 3x 5 + 2x - 1 возрастает на всей числовой прямой.

Решение: Найдем производную нашей функции: y"= 7 6 + 15x 4 + 2. Т.к. степень при x четная, то степенная функция принимает только положительные значения. Тогда y" > 0 для любого x, а значит по теореме 1, наша функция возрастает на всей числовой прямой.

2) Доказать, что функция убывает: y= sin(2x) - 3x.

Найдем производную нашей функции: y"= 2cos(2x) - 3.
Решим неравенство:
2cos(2x) - 3 ≤ 0,
2cos(2x) ≤ 3,
cos(2x) ≤ 3/2.
Т.к. -1 ≤ cos(x) ≤ 1, значит наше неравенство выполняется для любых x, тогда по теореме 2 функция y= sin(2x) - 3x убывает.

3) Исследовать на монотонность функцию: y= x 2 + 3x - 1.

Решение: Найдем производную нашей функции: y"= 2x + 3.
Решим неравенство:
2x + 3 ≥ 0,
x ≥ -3/2.
Тогда наша функция возрастает при x ≥ -3/2, а убывает при x ≤ -3/2.
Ответ: При x ≥ -3/2 - функция возрастает, при x ≤ -3/2 - функция убывает.

4) Исследовать на монотонность функцию: y= $\sqrt{3x - 1}$.

Решение: Найдем производную нашей функции: y"= $\frac{3}{2\sqrt{3x - 1}}$.
Решим неравенство: $\frac{3}{2\sqrt{3x - 1}}$ ≥ 0.

Наше неравенство больше либо равно нуля:
$\sqrt{3x - 1}$ ≥ 0,
3x - 1 ≥ 0,
x ≥ 1/3.
Решим неравенство:
$\frac{3}{2\sqrt{3x-1}}$ ≤ 0,

$\sqrt{3x-1}$ ≤ 0,
3x - 1 ≤ 0.
Но это невозможно, т.к. квадратный корень определен только для положительных выражений, значит промежутков убывания у нашей функции нет.
Ответ: при x ≥ 1/3 функция возрастает.

Задачи для самостоятельного решения

а) Доказать, что функция y= x 9 + 4x 3 + 1x - 10 возрастает на всей числовой прямой.
б) Доказать, что функция убывает: y= cos(5x) - 7x.
в) Исследовать на монотонность функцию: y= 2x 3 + 3x 2 - x + 5.
г) Исследовать на монотонность функцию: y = $\frac{3x-1}{3x+1}$.

возрастающей на промежутке \(X\) , если для любых \(x_1, x_2\in X\) , таких что \(x_1

Функция называется неубывающей

\(\blacktriangleright\) Функция \(f(x)\) называется убывающей на промежутке \(X\) , если для любых \(x_1, x_2\in X\) , таких что \(x_1f(x_2)\) .

Функция называется невозрастающей на промежутке \(X\) , если для любых \(x_1, x_2\in X\) , таких что \(x_1

\(\blacktriangleright\) Возрастающие и убывающие функции называют строго монотонными , а невозрастающие и неубывающие - просто монотонными .

\(\blacktriangleright\) Основные свойства:

I. Если функция \(f(x)\) - строго монотонна на \(X\) , то из равенства \(x_1=x_2\) (\(x_1,x_2\in X\) ) следует \(f(x_1)=f(x_2)\) , и наоборот.

Пример: функция \(f(x)=\sqrt x\) является строго возрастающей при всех \(x\in \) , поэтому уравнение \(x^2=9\) имеет на этом промежутке не более одного решения, а точнее одно: \(x=-3\) .

функция \(f(x)=-\dfrac 1{x+1}\) является строго возрастающей при всех \(x\in (-1;+\infty)\) , поэтому уравнение \(-\dfrac 1{x+1}=0\) имеет на этом промежутке не более одного решения, а точнее ни одного, т.к. числитель левой части никогда не может быть равен нулю.

III. Если функция \(f(x)\) - неубывает (невозрастает) и непрерывна на отрезке \(\) , причем на концах отрезка она принимает значения \(f(a)=A, f(b)=B\) , то при \(C\in \) (\(C\in \) ) уравнение \(f(x)=C\) всегда имеет хотя бы одно решение.

Пример: функция \(f(x)=x^3\) является строго возрастающей (то есть строго монотонной) и непрерывной при всех \(x\in\mathbb{R}\) , поэтому при любом \(C\in (-\infty;+\infty)\) уравнение \(x^3=C\) имеет ровно одно решение: \(x=\sqrt{C}\) .

Задание 1 #3153

Уровень задания: Легче ЕГЭ

имеет ровно два корня.

Перепишем уравнение в виде: \[(3x^2)^3+3x^2=(x-a)^3+(x-a)\] Рассмотрим функцию \(f(t)=t^3+t\) . Тогда уравнение перепишется в виде: \ Исследуем функцию \(f(t)\) . \ Следовательно, функция \(f(t)\) возрастает при всех \(t\) . Значит, каждому значению функции \(f(t)\) соответствует ровно одно значение аргумента \(t\) . Следовательно, для того, чтобы уравнение имело корни, нужно: \ Чтобы полученное уравнение имело два корня, нужно, чтобы его дискриминант был положительным: \

Ответ:

\(\left(-\infty;\dfrac1{12}\right)\)

Задание 2 #2653

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при которых уравнение \

имеет два корня.

(Задача от подписчиков.)

Сделаем замену: \(ax^2-2x=t\) , \(x^2-1=u\) . Тогда уравнение примет вид: \ Рассмотрим функцию \(f(w)=7^w+\sqrtw\) . Тогда наше уравнение примет вид: \

Найдем производную \ Заметим, что при всех \(w\ne 0\) производная \(f"(w)>0\) , т.к. \(7^w>0\) , \(w^6>0\) . Заметим также, что сама функция \(f(w)\) определена при всех \(w\) . Т.к. к тому же \(f(w)\) непрерывна, то мы можем сделать вывод, что \(f(w)\) возрастает на всем \(\mathbb{R}\) .
Значит, равенство \(f(t)=f(u)\) возможно тогда и только тогда, когда \(t=u\) . Вернемся к изначальным переменным и решим полученное уравнение:

\ Для того, чтобы данное уравнение имело два корня, оно должно быть квадратным и его дискриминант должен быть положительным:

\[\begin{cases} a-1\ne 0\\ 4-4(a-1)>0\end{cases} \quad\Leftrightarrow\quad \begin{cases}a\ne1\\a<2\end{cases}\]

Ответ:

\((-\infty;1)\cup(1;2)\)

Задание 3 #3921

Уровень задания: Равен ЕГЭ

Найдите все положительные значения параметра \(a\) , при которых уравнение

имеет как минимум \(2\) решения.

Перенесем все слагаемые, содержащие \(ax\) , влево, а содержащие \(x^2\) – вправо, и рассмотрим функцию
\

Тогда исходное уравнение примет вид:
\

Найдем производную:
\

Т.к. \((t-2)^2 \geqslant 0, \ e^t>0, \ 1+\cos{2t} \geqslant 0\) , то \(f"(t)\geqslant 0\) при любых \(t\in \mathbb{R}\) .

Причем \(f"(t)=0\) , если \((t-2)^2=0\) и \(1+\cos{2t}=0\) одновременно, что не выполняется ни при каких \(t\) . Следовательно, \(f"(t)> 0\) при любых \(t\in \mathbb{R}\) .

Таким образом, функция \(f(t)\) строго возрастает при всех \(t\in \mathbb{R}\) .

Значит, уравнение \(f(ax)=f(x^2)\) равносильно уравнению \(ax=x^2\) .

Уравнение \(x^2-ax=0\) при \(a=0\) имеет один корень \(x=0\) , а при \(a\ne 0\) имеет два различных корня \(x_1=0\) и \(x_2=a\) .
Нам нужно найти значения \(a\) , при которых уравнение будет иметь не менее двух корней, учитывая также то, что \(a>0\) .
Следовательно, ответ: \(a\in (0;+\infty)\) .

Ответ:

\((0;+\infty)\) .

Задание 4 #1232

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \

имеет единственное решение.

Домножим правую и левую части уравнения на \(2^{\sqrt{x+1}}\) (т.к. \(2^{\sqrt{x+1}}>0\) ) и перепишем уравнение в виде: \

Рассмотрим функцию \(y=2^t\cdot \log_{\frac{1}{9}}{(t+2)}\) при \(t\geqslant 0\) (т.к. \(\sqrt{x+1}\geqslant 0\) ).

Производная \(y"=\left(-2^t\cdot \log_9{(t+2)}\right)"=-\dfrac{2^t}{\ln9}\cdot \left(\ln 2\cdot \ln{(t+2)}+\dfrac{1}{t+2}\right)\) .

Т.к. \(2^t>0, \ \dfrac{1}{t+2}>0, \ \ln{(t+2)}>0\) при всех \(t\geqslant 0\) , то \(y"<0\) при всех \(t\geqslant 0\) .

Следовательно, при \(t\geqslant 0\) функция \(y\) монотонно убывает.

Уравнение можно рассматривать в виде \(y(t)=y(z)\) , где \(z=ax, t=\sqrt{x+1}\) . Из монотонности функции следует, что равенство возможно только в том случае, если \(t=z\) .

Значит, уравнение равносильно уравнению: \(ax=\sqrt{x+1}\) , которое в свою очередь равносильно системе: \[\begin{cases} a^2x^2-x-1=0\\ ax \geqslant 0 \end{cases}\]

При \(a=0\) система имеет одно решение \(x=-1\) , которое удовлетворяет условию \(ax\geqslant 0\) .

Рассмотрим случай \(a\ne 0\) . Дискриминант первого уравнения системы \(D=1+4a^2>0\) при всех \(a\) . Следовательно, уравнение всегда имеет два корня \(x_1\) и \(x_2\) , причем они разных знаков (т.к. по теореме Виета \(x_1\cdot x_2=-\dfrac{1}{a^2}<0\) ).

Это значит, что при \(a<0\) условию \(ax\geqslant 0\) подходит отрицательный корень, при \(a>0\) условию подходит положительный корень. Следовательно, система всегда имеет единственное решение.

Значит, \(a\in \mathbb{R}\) .

Ответ:

\(a\in \mathbb{R}\) .

Задание 5 #1234

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \

имеет хотя бы один корень из отрезка \([-1;0]\) .

Рассмотрим функцию \(f(x)=2x^3-3x(ax+x-a^2-1)-3a-a^3\) при некотором фиксированном \(a\) . Найдем ее производную: \(f"(x)=6x^2-6ax-6x+3a^2+3=3(x^2-2ax+a^2+x^2-2x+1)=3((x-a)^2+(x-1)^2)\) .

Заметим, что \(f"(x)\geqslant 0\) при всех значениях \(x\) и \(a\) , причем равна \(0\) только при \(x=a=1\) . Но при \(a=1\) :
\(f"(x)=6(x-1)^2 \Rightarrow f(x)=2(x-1)^3 \Rightarrow\) уравнение \(2(x-1)^3=0\) имеет единственный корень \(x=1\) , не удовлетворяющий условию. Следовательно, \(a\) не может быть равно \(1\) .

Значит, при всех \(a\ne 1\) функция \(f(x)\) является строго возрастающей, следовательно, уравнение \(f(x)=0\) может иметь не более одного корня. Учитывая свойства кубической функции, график \(f(x)\) при некотором фиксированном \(a\) будет выглядеть следующим образом:


Значит, для того, чтобы уравнение имело корень из отрезка \([-1;0]\) , необходимо: \[\begin{cases} f(0)\geqslant 0\\ f(-1)\leqslant 0 \end{cases} \Rightarrow \begin{cases} a(a^2+3)\leqslant 0\\ (a+2)(a^2+a+4)\geqslant 0 \end{cases} \Rightarrow \begin{cases} a\leqslant 0\\ a\geqslant -2 \end{cases} \Rightarrow -2\leqslant a\leqslant 0\]

Таким образом, \(a\in [-2;0]\) .

Ответ:

\(a\in [-2;0]\) .

Задание 6 #2949

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \[(\sin^2x-5\sin x-2a(\sin x-3)+6)\cdot (\sqrt2a+8x\sqrt{2x-2x^2})=0\]

имеет корни.

(Задача от подписчиков)

ОДЗ уравнения: \(2x-2x^2\geqslant 0 \quad\Leftrightarrow\quad x\in \) . Следовательно, для того, чтобы уравнение имело корни, нужно, чтобы хотя бы одно из уравнений \[\sin^2x-5\sin x-2a(\sin x-3)+6=0 \quad {\small{\text{или}}}\quad \sqrt2a+8x\sqrt{2x-2x^2}=0\] имело решения на ОДЗ.

1) Рассмотрим первое уравнение \[\sin^2x-5\sin x-2a(\sin x-3)+6=0 \quad\Leftrightarrow\quad \left[\begin{gathered}\begin{aligned} &\sin x=2a+2\\ &\sin x=3\\ \end{aligned} \end{gathered}\right. \quad\Leftrightarrow\quad \sin x=2a+2\] Данное уравнение должно иметь корни на \(\) . Рассмотрим окружность:

Таким образом, мы видим, что для любых \(2a+2\in [\sin 0;\sin 1]\) уравнение будет иметь одно решение, а для всех остальных – не будет иметь решений. Следовательно, при \(a\in \left[-1;-1+\sin 1\right]\) уравнение имеет решения.

2) Рассмотрим второе уравнение \[\sqrt2a+8x\sqrt{2x-2x^2}=0 \quad\Leftrightarrow\quad 8x\sqrt{x-x^2}=-a\]

Рассмотрим функцию \(f(x)=8x\sqrt{x-x^2}\) . Найдем ее производную: \ На ОДЗ производная имеет один ноль: \(x=\frac34\) , который к тому же является точкой максимума функции \(f(x)\) .
Заметим, что \(f(0)=f(1)=0\) . Значит, схематично график \(f(x)\) выглядит так:

Следовательно, для того, чтобы уравнение имело решения, нужно, чтобы график \(f(x)\) пересекался с прямой \(y=-a\) (на рисунке изображен один из подходящих вариантов). То есть нужно, чтобы \ . При этих \(x\) :

Функция \(y_1=\sqrt{x-1}\) является строго возрастающей. Графиком функции \(y_2=5x^2-9x\) является парабола, вершина которой находится в точке \(x=\dfrac{9}{10}\) . Следовательно, при всех \(x\geqslant 1\) функция \(y_2\) также строго возрастает (правая ветвь параболы). Т.к. сумма строго возрастающих функций есть строго возрастающая, то \(f_a(x)\) – строго возрастает (константа \(3a+8\) не влияет на монотонность функции).

Функция \(g_a(x)=\dfrac{a^2}{x}\) при всех \(x\geqslant 1\) представляет собой часть правой ветви гиперболы и является строго убывающей.

Решить уравнение \(f_a(x)=g_a(x)\) - значит найти точки пересечения функций \(f\) и \(g\) . Из их противоположной монотонности следует, что уравнение может иметь не более одного корня.

При \(x\geqslant 1\) \(f_a(x)\geqslant 3a+4, \ \ \ 0. Следовательно, уравнение будет иметь единственное решение в том случае, если:


\\cup

Ответ:

\(a\in (-\infty;-1]\cup}