Болезни Военный билет Призыв

Из чего состоит множество. Способы задания множеств. Обобщение информации о множестве

Что такое множество в математике? Математическое множество - это несколько отдельных элементов, рассматриваемых, как единое целое. Если обозначить такой элемент буквой a, а само множество - буквой А, то запись будет выглядеть следующим образом:

проговаривается эта запись так: a принадлежит А, или А содержит а, или а - элемент А.

Для перечисления элементов множества используются фигурные скобки - {}. То есть, например, множество, в котором а ∈ А, b ∈ A и c ∈ A, будет записываться в таком виде:

Виды множеств.

Пустые множества.

Пустое множество – это то множество, которое вообще не содержит никаких элементов. Обозначается оно цифрой 0 или специальным значком ∅.

Примером пустого множества может служить любое нелогичное понятие , противоречащее самому себе - «множество птиц, живущих на дне океана», или «множество деревьев на Луне». Поскольку оба множества лишены смысла и не отвечают реальности, то, следовательно, они являются пустыми. Скажем, количество деревьев на Луне – 0, поэтому «множество деревьев на Луне» будет пустым (не будет содержать ни одного элемента).

Равные множества.

Равные множества – это два или более множеств, состоящих из равных наборов элементов. Приведём пример. Скажем, все члены Вашей семьи находятся на кухне. Таким образом, Множество «Члены семьи на кухне» будет равно множеству «Члены семьи в квартире».

Если два множества - А и B - состоят из одинакового набора элементов, то они будут равны, то есть А = B. Элементы множеств могут перечисляться в любой последовательности, на результат это никак не влияет. Множество {a, b, c} можно с тем же успехом записать, как {a, c, b}, или {с, b, a}, или {b, c, a}.

Подмножества и надмножества.

Если множества А и B состоят из одинаковых элементов {a, b, c}, то А будет считаться подмножеством B, а B - надмножеством А. Записывается это следующим образом:

A ⊆ B, B ⊇ A.

Бывает так, что множество В содержит в себе каждый из элементов множества А, но в то же время в нем присутствуют и другие элементы, множеству А не принадлежащие. В этом случае множество В становится собственным надмножеством А, в то время как множество А становится собственным подмножеством В.

Иначе говоря, если А ⊆ В, но при этом А ≠ В, то А ⊂ В, В ⊃ А.

Элемент множества

Мно́жество - один из ключевых объектов математики , в частности, теории множеств . «Под множеством мы понимаем объединение в одно целое определенных, вполне различимых объектов нашей интуиции или нашей мысли» (Г. Кантор). Это не является в полном смысле логическим определением понятия множество, а всего лишь пояснением (ибо определить понятие - значит найти такое родовое понятие, в которое данное понятие входит в качестве вида, но множество - это, пожалуй, самое широкое понятие математики и логики).

Теории

Существует два основных подхода к понятию множества - наивная и аксиоматическая теория множеств.

Аксиоматическая теория множеств

На сегодняшний день множество определяется как модель, удовлетворяющая аксиомам ZFC (аксиомы Цермело - Френкеля с аксиомой выбора). При таком подходе в некоторых математических теориях возникают совокупности объектов, которые не являются множествами. Такие совокупности называются классами (различных порядков).

Элемент множества

Объекты, из которых состоит множество, называют элементами множества или точками множества. Множества чаще всего обозначают большими буквами латинского алфавита , его элементы - маленькими. Если а - элемент множества А, то записывают а ∈ А (а принадлежит А). Если а не является элементом множества А, то записывают а∉А(а не принадлежит А).

Некоторые виды множеств

  • Упорядоченное множество -- множество, на котором задано отношение порядка .
  • Набор (в частности, упорядоченная пара). В отличие от просто множества записывается внутри круглых скобок: (x 1 , x 2 , x 3 , … ), а элементы могут повторяться.

По иерархии:

Множество множеств Подмножество Надмножество

По ограничению:

Операции над множествами

Литература

  • Столл Р. Р. Множества. Логика. Аксиоматические теории. - М .: Просвещение, 1968. - 232 с.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Элемент множества" в других словарях:

    элемент множества - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] элемент множества Объект любой природы, который в совокупности с другими аналогичными объектами составляет множество. Часто вместо термина элемент в… …

    Элемент множества - объект любой природы, который в совокупности с другими аналогичными объектами составляет множество. Часто вместо термина элемент в этом смысле употребляют «точка множества», «член множества» и др.… …

    МНОЖЕСТВА, в математике совокупность определенных объектов. Эти объекты называются элементами множества. Число элементов может быть бесконечным или конечным, или даже равняться нулю (число элементов в пустом множестве обозначается 0). Каждый… … Научно-технический энциклопедический словарь

    элемент - Обобщенный термин, под которым в зависимости от соответствующих условий может пониматься поверхность, линия, точка. Примечания 1. Элемент может быть поверхностью (частью поверхности, плоскостью симметрии нескольких поверхностей), линией (профилем … Справочник технического переводчика

    Часть чего нибудь. Одна из возможных этимологий этого слова по названию ряда согласных латинских букв L, M, N (el em en). Элемент (философия) Элемент обязательная принадлежность флага, знамени и штандарта. Элемент множества Элементарные… … Википедия

    Элемент - первичная (для данного исследования, модели) составная часть сложного целого. См. Элемент множества, Элемент системы … Экономико-математический словарь

    Множество один из ключевых объектов математики, в частности, теории множеств. «Под множеством мы понимаем объединение в одно целое определенных, вполне различимых объектов нашей интуиции или нашей мысли» (Г. Кантор). Это не является в полном… … Википедия

    элемент - 02.01.14 элемент (знак символа или символ) : Отдельный штрих или пробел в символе штрихового кода либо одиночная многоугольная или круглая ячейка в матричном символе, формирующие знак символа в… … Словарь-справочник терминов нормативно-технической документации

    А; м. [от лат. elementum стихия, первоначальное вещество] 1. Составная часть чего л.; компонент. Разложить целое на элементы. Из каких элементов состоит культура? Природа э. производства. Составные элементы чего л. // Характерное движение, одна… … Энциклопедический словарь

    У этого термина существуют и другие значения, см. Элемент. Элемент (лат. elementum стихия) самостоятельная часть, являющаяся основой чего либо, например системы или множества. Этимология Латинское слово elementum использовали ещё … Википедия

Множество – одно из основных понятий современной математики, используемое почти во всех ее разделах.

Во многих вопросах приходится рассматривать некоторую совокупность элементов как единое целое. Так, биолог, изучая животный и растительный мир данной области, классифицирует все особи по видам, виды по родам и т.д. Каждый вид является некоторой совокупностью живых существ, рассматриваемой как единое целое.

Для математического описания таких совокупностей и было введено понятие множества. По словам одного из создателей теории множеств – немецкого математика Георга Кантора (1845-1918), «множество есть многое, мыслимое нами как единое». Разумеется, эти слова не могут рассматриваться как математически строгое определение множества, такого определения не существует, поскольку понятие множества является исходным, на основе которого строятся остальные понятия математики. Но из этих слов ясно, что можно говорить о множестве натуральных чисел, множестве треугольников на плоскости.

Множества, состоящие из конечного числа элементов, называются конечными, а остальные множества – бесконечными. Например, множество китов в океане конечно, а множество рациональных чисел бесконечно. Конечные множества могут быть заданы перечислением их элементов (например, множество учеников в данном классе задается их списком в классном журнале). Если множество состоит из элементов , то пишут: . Бесконечные множества нельзя задать перечнем их элементов. Их задают обычно, указывая свойство, которым обладают все элементы данного множества, но не обладают никакие элементы, не принадлежащие этому множеству. Такое свойство называют характеристическим для рассматриваемого множества. Если - сокращенное обозначение предложения «элемент обладает свойством », то множество всех элементов, имеющих свойство , обозначают так: . Например, запись означает множество корней уравнения , т.е. множество . Может случиться, что не существует ни одного элемента, обладающего свойством (например, нет ни одного нечетного числа, которое делилось бы на 2). В этом случае во множестве нет ни одного элемента. Множество, не содержащее ни одного элемента, называется пустым. Его обозначают знаком .

Если элемент принадлежит множеству , то пишут: , в противном случае пишут: или . Множества, состоящие из одних и тех же элементов, называют равными (совпадающими). Например, равны множество равносторонних треугольников и множество равноугольных треугольников, так как это одни и те же треугольники: если в треугольнике все стороны равны, то равны и все его углы; обратно, из равенства всех трех углов треугольника вытекает равенство всех трех его сторон. Очевидно, что равны два конечных множества, отличающиеся друг от друга лишь порядком их элементов, например .

Всякий квадрат является прямоугольником. Говорят, что множество квадратов является частью множества прямоугольников, или, как говорят в математике, является подмножеством множества прямоугольников. Если множество является подмножеством множества , то пишут: или . Для любого множества верны включения и .

Из данных множеств и можно построить новые множества, применяя операции пересечения, объединения и вычитания. Пересечением множеств и называют их общую часть, т.е. множество элементов, принадлежащих как , так и . Это множество обозначают: . Например, пересечением двух геометрических фигур является их общая часть, пересечением множества ромбов с множеством прямоугольников – множество квадратов и т.д.

Объединением множеств и называют множество, составленное из элементов, принадлежащих хотя бы одному из этих множеств. В различных вопросах классификации используется представление множеств в виде объединения попарно непересекающихся подмножеств. Например, множество многоугольников является объединением множества треугольников, четырехугольников, ..., -угольников.

Если применять операции объединения и пересечения к подмножествам некоторого множества , то снова получатся подмножества того же множества . Эти операции обладают многими свойствами, похожими на свойства операций сложения и умножения чисел. Например, пересечение и объединение множеств обладают свойствами коммутативности и ассоциативности, пересечение дистрибутивно относительно объединения, т.е. для любых множеств и верно соотношение и т.д. Но в то же время у операций над множествами есть ряд свойств, не имеющих аналогов в операциях над числами. Например, для любого множества верны равенства и , верен второй закон дистрибутивности и т.д.

С помощью свойств операций над множествами можно преобразовывать выражения, содержащие множества, подобно тому как с помощью свойств операций над числами преобразовывают выражения в обычной алгебре. Возникающая таким путем алгебра называется булевой алгеброй, по имени английского математика и логика Дж. Буля (1815-1864), который занимался ею в связи с проблемами математической логики. Булевы алгебры находят многочисленные применения, в частности в теории электрических сетей.

Основной характеристикой конечного множества является число его элементов (например, множество вершин квадрата содержит 4 элемента). Если в множествах и поровну элементов, например если , , то из элементов этих множеств можно составить пары , причем каждый элемент из , равно как и каждый элемент из , входит в одну, и только одну, пару. Говорят, что в этом случае между элементами множеств и установлено взаимно-однозначное соответствие. И наоборот, если между двумя конечными множествами и можно установить взаимно-однозначное соответствие, то в них поровну элементов.

Г. Кантор предложил аналогичным образом сравнивать между собой бесконечные множества. Говорят, что множества и имеют одинаковую мощность, если между ними можно установить взаимно-однозначное соответствие. Сравнивая таким путем множества, составленные из чисел, Кантор показал, что существует взаимно-однозначное соответствие между множеством натуральных чисел и множеством рациональных чисел, хотя множество натуральных чисел является лишь частью множества рациональных чисел. Таким образом, в теории бесконечных множеств теряет силу утверждение, что «часть меньше целого».

Множества, имеющие ту же мощность, что и множество натуральных чисел, называют счетными. Таким образом, множество рациональных чисел счетно. Важнейший пример несчетного множества – множество всех действительных чисел (или, что то же самое, множество точек на прямой линии). Так как прямая линия непрерывна, то такую несчетную мощность называют мощностью континуума (от латинского continuum - «непрерывный»). Мощность континуума имеют множества точек квадрата, куба, плоскости и всего пространства.

В течение долгих лет математики решали проблему: существует ли множество, мощность которого является промежуточной между счетной и мощностью континуума. В 60-х гг. нашего века американский математик П. Коэн и чешский математик П. Вопенка почти одновременно независимо друг от друга доказали, что как существование такого множества, так и отсутствие его не противоречат остальным аксиомам теории множеств (подобно тому, как принятие аксиомы о параллельных или отрицание этой аксиомы не противоречат остальным аксиомам геометрии).

Множество a и содержащим его множеством A обозначается так (a есть элемент множества A ; или a принадлежит A , или A содержит a ). Если a A , то пишут (a не входит в A , A не содержит a a , b , c

Операции над множествами .

Универсальное множество

Универса́льное мно́жество

Диаграммы Венна. Тождества алгебры множеств и их доказательство.

Диаграмма Венна - схематичное изображение всех возможных пересечений нескольких множеств, показывают математические, теоретико-множественные или логические отношения между множествами.

Тождества и их доказательства.

Для произвольных множеств А, В, и С справедливы следующие соотношения:

1. Коммутативность:

2. Ассоциативность

3. Дистрибутивность объединения относительно пересечения

3’. Дистрибутивность пересечения относительно объединения

4. Законы действия с пустым и универсальным множествами

5. Закон идемпотентности

6. Закон де Моргана

7. Закон поглощения

,

8. Закон склеивания

,

9. Закон Порецкого

,

10. Закон двойного дополнения

Доказать следующее тождество .

Докажем это тождество аналитическим способом (используя равносильности алгебры множеств)

Понятие формального языка

Формальный язык - язык, характеризующийся точными правилами построения выражений и их понимания. Он строится в соответствии с четкими правилами, обеспечивая непротиворечивое, точное и компактное отображение свойств и отношений изучаемой предметной области (моделируемых объектов).

Формальный язык – основа создания программного обеспечения.

ФЯ образуется с помощью исходного набора букв а1, а2, …., а100, с помощью букв образуются слава. Слово в формальном языке – упорядоченный набор букв (Ящерица – 30 букв)

Для операции * слов справедлив ассоциативный закон.

Теория полугрупп и полуколец – основа теории ФЯ

Тавтологии

Тавтология – тождественно-истинное высказывание, которое всегда истинно.

Простейшая тавтология - выражение (A или не A ), представляющее закон исключённого третьего, где вместо A может быть подставлено любое выражение,могущее быть ложным или истинным, например свет включен или не включен , дважды два равно или не равно пяти . Тавтологией являются и законы математической логики выраженные через оператор эквивалентности: и т. п.

Понятие высказывательной формы или предиката от одной переменной. Примеры предикатов.

Предикат – высказывание зависящее от какой-то меняющейся переменной величины.

Одноместный предикат – отображение, по которому каждому значению переменой указывается единственное значение 0 или 1 .примеры:

Конъюнкцией двух предикатов А(х) и В(х) называется новый предикат , который принимает значение «истина» при тех и только тех значениях х Т, при которых каждый из предикатов принимает значение «истина», и принимает значение «ложь» во всех остальных случаях. Множеством истинности Т предиката А(х) В(х), х Х является пересечение множеств истинности предикатов А(х) – Т1 и В(х) – Т2, т.е. Т= Т1 ∩Т2. Например: А(х): «х – четное число», В(х): « х кратно 3». А(х) В(х) – «х – четное число и х кратно 3». Т.е. предикат «х делится на 6».

Отрицанием предиката А(х) называется новый предикат, который принимает значение «истина» при всех значениях х Т, при которых предикат А(х) принимает значение «ложь», и принимает значение «ложь», если А(х) принимает значение «истина». Множеством истинности предиката, х Х является дополнение Т" к множеству Т в множестве Х.

Возьмём высказывания: `` Сократ - человек "", `` Платон - человек "". Оба эти высказывания выражают свойство ``быть человеком"". Таким образом, мы можем рассматривать предикат `` быть человеком "" и говорить, что он выполняется для Сократа и Платона.

25 область определения и область истинности предиката

Множество М, на котором определен предикат P(х) , называется областью определения предиката.

Множество всех элементов х Î М, при которых преди­кат принимает значение «истина», называется множеством истинности предиката Р(х), то есть множество истиннос­ти предиката Р(х) - это множество 1р = {х| х Î М, Р(х) = 1}.

Р(х): «х 2 + 1> 0, xÎ R»; область определения предиката М = R и область истинности – тоже R, т.к. неравенство верно для всех действительных чисел. Таким образом, для данного предиката М = I p . Такие предикаты называются тождественно истинными.

В(х): «х 2 + 1< 0, xÎ R»; область истинности I p =Æ, т.к. не существует действительных чисел, для которых выполняется неравенство. Такие предикаты называются тождественно ложными.

Кванторы. Двухместные предикаты. Определения уравнения, тождества и неравенства.

Ква́нтор - общее название для логических операций, ограничивающих область истинности какого-либо предиката и создающих выcказывание. Чаще всего упоминают:

· Квантор всеобщности (обозначение: , читается: «для всех…», «для каждого…» или «каждый…», «любой…», «для любого…»).

· Квантор существования (обозначение: , читается: «существует…» или «найдётся…»).

Обозначим предикат «x делится на 5». Используя квантор общности, можно формально записать следующие высказывания (конечно, ложные):

1. любое натуральное число кратно 5;

2. каждое натуральное число кратно 5;

3. все натуральные числа кратны 5;

следующим образом:

.

Следующие (уже истинные) высказывания используют квантор существования:

1. существуют натуральные числа, кратные 5;

2. найдётся натуральное число, кратное 5;

3. хотя бы одно натуральное число кратно 5.

Их формальная запись:

.

· Высказывание означает, что область значений переменной включена в область истинности предиката .

(«При всех значениях (x) утверждение верно»).

· Высказывание означает, что область истинности предиката непуста.

(«Существует (x) при котором утверждение верно»).

Операции над кванторами

Правило отрицания кванторов - применяется для построения отрицаний высказываний, содержащих кванторы, и имеет вид:

Двухместный предикат – отображение, по которому каждой паре переменных указывается единственное значение 0 или 1.

Предикат является двухместным предикатом, предметной областью которого могут служить любые множества действительных чисел. Высказывание истинно, а высказывание ложно. Если вместо одной из переменных подставить число, то получится одноместный предикат.

Пересечение графов

Пусть G1(V1,E1) и G’2(V2’,E2’) – произвольные графы. Пересечением G1∩G’2 графов G1 и G’2 называется граф с множеством вершин V1∩V’2 с множеством ребер E = E1∩E’2

Свойства

· Пересечение множеств является бинарной операцией на произвольном булеане 2 X ;

коммутативна :

· Операция пересечения множеств транзитивна (ассоциативность) :

· Универсальное множество X является нейтральным элементом операции пересечения множеств:

· Таким образом булеан вместе с операцией пересечения множеств является абелевой группой;

· Операция пересечения множеств идемпотентна:

· Если - пустое множество, то

Остов и коостов графов.

Остов графа - такой его подграф, который является деревом.

Коостов – дополнение остова до графа.

Понятие множества. Операции над множествами. Универсальное множество.

Множество (N- натуральные,Z-целые,Q-рационал, R-действительные) – неопределяемое понятие, это совокупность объектов, рассматриваемая как одно целое. Понятие множества принимается за основное, т. е. не сводимое к другим понятиям. Объекты, составляющие данное множество, называются его элементами. Простое множество не имеет ни одного элемента. Основное отношение между элементом a и содержащим его множеством A обозначается так (a есть элемент множества A ; или a принадлежит A , или A содержит a ). Если a не является элементом множества A , то пишут (a не входит в A , A не содержит a ). Множество можно задать указанием всех его элементов, причем в этом случае употребляются фигурные скобки. Так {a , b , c } обозначает множество трех элементов. Аналогичная запись употребляется и в случае бесконечных множеств, причем невыписанные элементы заменяются многоточием. Так, множество натуральных чисел обозначается {1, 2, 3, ...}, а множество четных чисел {2, 4, 6, ...}, причем под многоточием в первом случае подразумеваются все натуральные числа, а во втором - только четные.

«пустое множество» - множество, не содержащее ни одного элемента, его обозначают

Способы задания: табличный, перечислением элементов, графический, рекуррентный, формулой.

Операции над множествами .

Пересечение множеств – множество, состоящее из элементов, которые принадлежат обоим множествам.

Для пересечения множеств справедливы:

· X∩Y=Y∩X - коммутативный закон

· (X∩Y)∩Z = X∩(Y∩Z) = X∩Y∩Z - ассоциативный закон

Объединение множеств – множество, состоящее из элементов, принадлежащих хотя бы одному из множеств.

Для объединенных множеств справедливы:

· XUY = YUX - коммутативный закон

· (XUY) UZ = XU (YUZ) = XUYUZ - ассоциативный закон,

Универсальное множество

Универса́льное мно́жество - множество, содержащее все мыслимые объекты. Универсальное множество единственно.

Универсальное множество – множество, которое содержит все элементы, из которых может состоять другое множество, т.е. полностью содержать все элементы универсального множества. .

Если при некотором рассмотрении участвуют только подмножества некоторого фиксированного множества, то это самое большое множество будем считать универсальным.

Универсальное множество обладает интересным свойством, которое не имеет аналогии в обычной алгебре, а именно, для любого множества X справедливо соотношение XU(объединение)I = I.

Универсальное множество обычно обозначают графически в виде множества точек прямоугольника, а отдельные множества в виде отдельных областей внутри этого прямоугольника. Изображение множеств в виде областей в прямоугольнике, представляющем универсальное множество, называется диаграммой Эйлера-Венна.

В математике понятие множества является одним из основных, фундаментальным, однако единого определения множества не существует. Одним из наиболее устоявшихся определений множества является следующее: под множеством понимают любое собрание определённых и отличных друг от друга объектов, мыслимых как единое целое. Создатель теории множеств немецкий математик Георг Кантор (1845-1918) говорил так: "Множество есть многое, мыслимое нами как целое".

Множества как тип данных оказались очень удобными для программирования сложных жизненных ситуаций, так как с их помощью можно точно моделировать объекты реального мира и компактно отображать сложные логические взаимоотношения. Множества применяются в языке программирования Паскаль и один из примеров решения мы ниже разберём. Кроме того, на основе теории множества создана концепция реляционных баз данных, а на основе операций над множествами - реляционная алгебра и её операции - используемые в языках запросов к базам данных, в частности, SQL.

Пример 0 (Паскаль). Существует набор продуктов, продаваемых в нескольких магазинах города. Определить: какие продукты есть во всех магазинах города; полный набор продуктов в городе.

Решение. Определяем базовый тип данных Food (продукты), он может принимать значения, соответствующие названиями продуктов (например, hleb). Объявляем тип множества, он определяет все подмножества, составленные из комбинаций значений базового типа, то есть Food (продукты). И формируем подмножества: магазины "Солнышко", "Ветерок", "Огонёк", а также производные подмножества: MinFood (продукты, которые есть во всех магазинах), MaxFood (полный набор продуктов в городе). Далее прописываем операции для получения производных подмножеств. Подмножество MinFood получается в результате пересечения подмножеств Solnyshko, Veterok и Ogonyok и включает те и только те элементы этих подмножеств, которые включены в каждое их этих подмножеств (в Паскале операция пересечения множеств обозначается звёздочкой: A * B * C, математическое обозначение пересечения множеств дано далее). Подмножество MaxFood получается в результате объединения тех же подмножеств и включает элементы, которые включены во все подмножества (в Паскале операция объединения множеств обозначается знаком "плюс": A + B + C, математическое обозначение объединения множеств дано далее).

Код PASCAL

Program Shops; type Food=(hleb, moloko, myaso, syr, sol, sahar, maslo, ryba); Shop = set of Food; var Solnyshko, Veterok, Ogonyok, MinFood, MaxFood: Shop; Begin Solnyshko:=; Veterok:=; Ogonyok:=; ... MinFood:=Solnyshko * Veterok * Ogonyok; MaxFood:=Solnyshko + Veterok + Ogonyok; End.

Какие бывают множества

Объекты, составляющие множества - объекты нашей интуиции или интеллекта - могут быть самой различной природы. В примере в первом параграфе мы разобрали множества, включающие набор продуктов. Множества могут состоять, например, и из всех букв русского алфавита. В математике изучаются множества чисел, например, состоящие из всех:

Натуральных чисел 0, 1, 2, 3, 4, ...

Простых чисел

Чётных целых чисел

и т.п. (основные числовые множества рассмотрены в этого материала).

Объекты, составляющие множество, называются его элементами. Можно сказать, что множество - это "мешок с элементами". Очень важно: в множестве не бывает одинаковых элементов.

Множества бывают конечными и бесконечными. Конечное множество - это множество, для которого существует натуральное число, являющееся числом его элементов. Например, множество первых пяти неотрицательных целых нечётных чисел является конечным множеством. Множество, не являющееся конечным, называется бесконечным. Например, множество всех натуральных чисел является бесконечным множеством.

Если M - множество, а a - его элемент, то пишут: a M , что означает "a принадлежит множеству M ".

Из первого (нулевого) примера на Паскале с продуктами, которые есть в тех или иных магазинах:

hleb VETEROK ,

что означает: элемент "hleb" принадлежит множеству продуктов, которые есть в магазине "VETEROK".

Существуют два основных способа задания множеств: перечисление и описание.

Множество можно задать, перечислив все его элементы, например:

VETEROK = {hleb , syr , maslo } ,

A = {7 , 14 , 28 } .

Перечислением можно задать только конечное множество. Хотя можно сделать это и описанием. Но бесконечные множества можно задать только описанием.

Для описания множеств используется следующий способ. Пусть p (x ) - некоторое высказывание, которое описывает свойства переменной x , областью значений которых является множество M . Тогда через M = {x | p (x )} обозначаентся множество, состоящее из всех тех и только тех элементов, для которых высказывание p (x ) истинно. Это выражение читается так: "Множество M , состоящее из всех таких x , что p (x ) ".

Например, запись

M = {x | x ² - 3x + 2 = 0}

Пример 6. Согласно опросу 100 покупателей рынка, купивших цитрусовые, апельсины купили 29 покупателей, лимоны - 30 покупателей, мандарины - 9, только мандарины - 1, апельсины и лимоны - 10, лимоны и мандарины - 4, все три вида фруктов - 3 покупателя. Сколько покупателей не купили ни одного вида перечисленных здесь цитрусовых? Сколько покупателей купили только лимоны?

Операция декартова произведения множеств

Для определения ещё одной важной операции над множествами - декартова произведения множеств введём понятие упорядоченного набора длины n .

Длиной набора называется число n его компонент. Набор, составленный из элементов , взятых именно в этом порядке, обозначается . При этом i я () компонента набора есть .

Сейчас последует строгое определение, которое, возможно, не сразу понятно, но после этого определения будет картинка, по которой станет понятно, как получить декартово произведение множеств.

Декартовым (прямым) произведением множеств называется множество, обозначаемое и состоящее из всех тех и только тех наборов длины n , i -я компонента которых принадлежит .

Например, если , , ,