Болезни Военный билет Призыв

Из соотношения неопределенностей гейзенберга следует что. Соотношение неопределенностей в квантовой механике. Соотношение неопределенностей Гейзенберга (кратко). Выражение конечного доступного количества информации Фишера

Соотношение неопределенности Гейзенберга представляется как одно из основных, фундаментальных положений квантовой механики.
Приводим характеристику, данную этому соотношению Л. Д. Ландау:

“Открытие принципа неопределенности показало, что человек в процессе познания природы может оторваться от своего воображения, он может открыть и осознать даже то, что ему не под силу представить”.

Точка зрения Ландау отражает распространенное мнение о соотношении неопределенности Гейзенберга. Рассмотрим положения, в основном, сформулированные авторами квантовой механики, связанными с изложением и трактовкой этого соотношения, которые могут оправдать приведенную характеристику.

1. “Классическая физика как раз и кончается в том месте, где нельзя уже отказаться от учета влияния наблюдателя на исследуемые процессы” ,“Невозможность отдалить самостоятельное поведение от их взаимодействия с измерительными приборами, предназначенных для изучения условий протекания явления, влечет за собой неоднозначность в приписывании обычных атрибутов атомным явлениям. Это обстоятельство вызывает необходимость пересмотра нашего отношения к проблеме физического объяснения”.

Данный фактор, в действительности, имеет место и в процессе обычных измерений, описываемых с помощью классической механики. Но влияние измерительного прибора и методики измерения либо учитывается и вводится поправка, либо результат измерений фигурирует как условный, т. е. оговаривается методика. Во всяком случае, этот фактор достаточно очевидный и не выглядит парадоксальным.

2. “Специфическая неточность, обусловленная соотношением неопределенности, в классической физике отсутствует”.

“В квантовой механике мы встречаемся с парадоксальной ситуацией - наблюдаемые события повинуются закону случая… Сегодня порядок идей обратный [по сравнению с “предвзятыми идеями о причинности”]: случайность стала первичным понятием”. “С точки зрения квантовой теории нет никакой причины, по которой [например] распались имменно эти ядра, они распались “просто так”, спонтанно. Квантовая теория предсказывает лишь вероятность распада ядер”.

В данном случае отрицается наличие причины происходящих явлений. Это часто используемый в квантовой механике способ “решения научных задач”: проблема “закрывается” путем провозглашения соответствующего “закона” или “принципа”. Для Борна “детерминизм” являлся ярлыком, характеризующим неприятие “современной” науки. Его совершенно не устраивала и “компромиссная” теория “скрытых переменных”.

В основе мистического миропонимания лежит аналогичное восприятие необъяснимого: подразумевается, что феномен, недоступный нашему пониманию, находится вне сферы возможности его объяснения.

Следует отметить, что не все классики квантовой механики придерживались этой теории, в частности, против нее решительно выступал Планк: “eсли подобный шаг оказался бы действительно необходимым, то тем самым цель физического исследования была бы значительно отброшена назад, что нанесло бы значительный ущерб, значение которого нетрудно оценить”. Тем не менее, подобное толкование “принципа неопределенности” вошло в ортодоксальную науку.

3. Соотношение неопределенности ряд авторов рассматривал как отражение волновых свойств частиц - следствие корпускулярно-волнового дуализма. “Соотношения неопределенности Гейзенберга непосредственно вытекают из положения, что элементами новой картины мира являются не материальные частицы, а простейшие периодические волны материи”. “Соотношения неопределенности следуют из способа которым связываются с помощью постоянной h корпускулярная и волновая сторона единых объектов вещества и излучения”.

Однако эта точка зрения не является обоснованной, о чем, в частности, свидетельствует вывод соотношения Гейзенбергом без “непосредственного обращения к волновой картине с помощью математической схемы квантовой теории”.

4. Соотношение неопределенности Гейзенберга показывает, что “между точностью, с которой одновременно может быть установлено положение частицы, и точностью ее импульса существует определенное соотношение” :

qp h , (1)
где - среднеквадратичное отклонение. Нетрадиционное обозначение в формуле вводится для того, чтобы подчеркнуть отличие от единичного отклонения, которое часто обозначается символом D , что в отдельных случаях вызывает неверное толкование формулы.

О неприятии данного соотношения в период становления квантовой теории свидетельствуют дискуссии между Эйнштейном и Бором и, в частности, т. н. “парадокс Эйнштейна – Подольского – Розена”, в котором предполагается “мысленное” одновременное измерение импульса и координаты у двух частиц – “двойников”.

Характерная деталь: анализ приведенного выражения проводится так, как будто это эмпирическая формула, а не соотношение, полученное аналитическим путем. В результате трактовка соотношения оказывается не связанной с предпосылками и условностями, которые подразумевались при его выводе, и это является одной из причин тех парадоксов, которые связываются с данным соотношением. Конкретно, эти противоречия отметим в заключении нашего анализа.

Приводим относительно простой вывод соотношения, делая упор на исходные постулаты и условности.

1. В основе соотношения лежит формула Планка, отражающая положение о квантовании “действия ”:

E = nh
(E -энергия фотона, n - частота электромагнитной волны)

или ее следствия:

(p - импульс, l - длина волны).

Приращение “действия”, соответствующее h ,

DS h = p Dq
(Dq - приращение координаты)

или при одновременном изменении p и q:

DS h = Dp Dq .(2)

2. Отметим, что проявление импульса невозможно без перемещения, а проявление энергии - вне времени . Под “проявлением” подразумевается регистрация путем взаимодействия объекта с наблюдателем, с измерительным прибором. Это условие справедливо и в классической механике.

3. В случае использования соотношения неопределенности, а возможно и в общем случае, измеряется “действие”, а не его компоненты - импульс, координаты, энергию, время .

Знаменательно - в действии объединены три основополагающие понятия: сила, длина, время. Измерительный же прибор “отградуирован”, соответственно, на импульс, координаты, энергию и время.

4. Неопределенность - это принципиальная невозможность определить величину параметра, а не результат влияния помех или ошибки измерения, подчиненных вероятностным законам, если их точное воздействие неизвестно.

Неопределенность, которую нельзя устранить, имеет место и в классической механике, она просто объясняется и легко воспринимается. Это случай, когда ограничена разрешающая способность конкретного измерительного инструмента: слишком велика при измерении “цена деления”, т. е. измерение осуществляется с помощью определенного шаблона, а требуется точность более высокая, чем та, что обеспечивается размерами или другими параметрами шаблона. Ни у кого, например, не вызывает удивления, что величина разрешения, достигаемого микроскопом, ограничена длиной волны в луче освещения. Эта неопределенность не связана с нашим незнанием причины погрешности, тем более, что этой причины не существует - у нас нет методики или инструмента для более точного определения измеряемого параметра.

5. В соотношении неопределенность рассматривается как фактор, вызывающий ошибку. Следовательно, формально предполагается стремление получить большую точность, чем та, которая может обеспечить дискретная величина кванта действия.

Соотношение неопределенностей Гейзенберга

В классической механике каждая частица движется по определенной траектории, то есть в любой момент времени она имеет определенную координату и импульс. Микрочастицы из-за наличия у них волновых свойств существенно отличаются от классических частиц. Одно из основных различий заключается в том, что нельзя говорить о движении частиц по определенной траектории, то есть нельзя одновременно точно определить значение координаты и импульса.

Для того, чтобы рассмотреть эту важнейшую особенность микрочастиц будем исходить из явления их дифракции. Согласно гипотезе де Бройля . Слева стоит длина волны, но она не является функцией координат. Выражение «длина волны в точке равна » - бессмысленно, но так как импульс выражается через длину волны, то он тоже не должен зависеть от координаты. Отсюда следует, что микрочастица с определенным импульсом имеет полностью неопределенную координату. Выражение «импульс частицы в точке равен » в квантовой механике не имеет смысла.

Положение, что микрочастица не имеет одновременно вполне точные значения координаты и импульса выражено в соотношение неопределенностей Гейзенберга:

Из соотношения неопределенностей следует, что если микрочастица находится в состоянии с точным значением координаты (), то в этом состоянии соответствующая проекция ее импульса оказывается совершенно неопределенной (), и наоборот.

Соотношение неопределенностей Гейзенберга можно пояснить на примере дифракции электронов. Пусть поток электронов проходит через узкую щель шириной , расположенную перпендикулярно направлению их движения (рис. 1).

Рис.1.

Так как электроны обладают волновыми свойствами, то при их прохождении через щель, размер которой сравним с длиной волны де Бройля для электрона, наблюдается дифракция. Дифракционная картина, наблюдаемая на экране, характеризуется главным максимумом, расположенным симметрично оси , и побочными максимумами по обе стороны от главного (мы их не рассматриваем, так как основная доля интенсивности приходится на главный максимум).

До прохождения через щель электроны двигались вдоль оси , поэтому составляющая импульса , так что , а координата частицы является совершенно неопределенной. В момент прохождения электронов через щель их положение в направлении оси определяется с точностью до ширины щели, то есть с точностью . В тот же момент вследствие дифракции электроны отклоняются от первоначального направления, и будут двигаться в пределах угла . Появляется неопределенность в значении составляющей импульса вдоль оси , которая равна, как следует из рис.1.:

Условие максимума при дифракции на щели , для первого минимума , . То есть

Из этих формул получим:

Если учесть, что часть электронов попадает за предела главного максимума, то величина , то есть

Само наличие у частицы волновых свойств накладывает определенные ограничения на возможность корпускулярного описания ее поведения. Для классической частицы всегда можно указать ее точное положение и импульс. Для квантового объекта имеем иную ситуацию.

Представим цуг волн пространственной протяженностью - образ локализованного электрона, положение которого известно с точностью . Длину волны де Бройля для электрона можно определить, подсчитав число N пространственных периодов на отрезке :

Какова точность определения ? Ясно, что для слегка отличающейся длины волны мы получим примерно то же самое значение N. Неопределенность в длине волны ведет к неопределенности

в числе узлов, причем измерению доступны лишь . Так как

то отсюда немедленно следует знаменитое соотношение неопределенностей В. Гейзенберга для координат - импульсов (1927 г.):

Точности ради надо заметить, что, во-первых, величина в данном случае означает неопределенность проекции импульса на ось OX и, во-вторых, приведенное рассуждение имеет скорее качественный, нежели количественный характер, поскольку мы не дали строгой математической формулировки, что понимается под неопределенностью измерения. Обычно соотношение неопределенностей для координат-импульсов записывается в виде

Аналогичные соотношения справедливы для проекций радиуса-вектора и импульса частицы на две другие координатные оси:

Представим теперь, что мы стоим на месте и мимо проходит электронная волна. Наблюдая за ней в течение времени , хотим найти ее частоту n . Насчитав колебаний, определяем частоту с точностью

откуда имеем

или (с учетом соотношения )

Аналогично неравенству (3.12) соотношение неопределенностей Гейзенберга для энергии системы чаще используется в виде

Рис. 3.38. Ве́рнер Карл Ге́йзенберг (1901–1976)

Поговорим о физическом смысле этих соотношений. Может сложиться представление, что в них проявляется «несовершенство» макроскопических приборов. Но приборы совсем не виноваты: ограничения носят принципиальный, а не технический характер. Сам микрообъект не может быть в таком состоянии, когда определенные значения одновременно имеют какая-то из его координат и проекция импульса на ту же ось.

Смысл второго соотношения: если микрообъект живет конечное время, то его энергия не имеет точного значения, она как бы размыта. Естественная ширина спектральных липни - прямое следствие формул Гейзенберга. На стационарной орбите электрон живет неограниченно долго и энергия определена точно. В этом - физический смысл понятия стационарного состояния. Если неопределенность в энергии электрона превышает разность энергий соседних состояний

то нельзя точно сказать, на каком уровне находится электрон. Иными словами, на короткое время порядка

электрон может перескочить с уровня 1 на уровень 2 , не излучая фотона, и затем вернуться назад. Это - виртуальный процесс, который не наблюдается и, следовательно, не нарушает закона сохранения энергии.

Похожие соотношения существуют и для других пар так называемых канонически сопряженных динамических переменных. Так, при вращении частицы вокруг некоторой оси по орбите радиусом R неопределенность ее угловой координаты влечет за собой неопределенность ее положения на орбите . Из соотношений (3.12) следует, что неопределенность импульса частицы удовлетворяет неравенству

Учитывая связь момента импульса электрона L с его импульсом L = Rp, получаем , откуда следует еще одно соотношение неопределенностей

Некоторые следствия соотношений неопределенностей

    Отсутствие траекторий частиц. Для нерелятивистской частицы p = mv и

Для массивных объектов правая часть исчезающе мала, что позволяет одновременно измерить скорость и положение объекта (область справедливости классической механики). В атоме же Бора импульс электрона

и неопределенность положения оказывается порядка радиуса орбиты.

Например, для осциллятора (тело на пружине) энергию Е можно записать в виде

Основное состояние в классической механике это состояние покоя в положении равновесия:

Поэтому величина неопределенностей и имеет порядок самих значений импульса и координаты, откуда получаем

Минимум энергии достигается в точке

Вообще говоря, такие оценки не могут претендовать на точный ответ, хотя в данном случае (как и для атома водорода) он действительно точен. Мы получили так называемые нулевые колебания : квантовый осциллятор, в отличие от классического, не может оставаться в покое - это противоречило бы соотношению неопределенностей Гейзенберга. Точные расчеты показывают, что формулу Планка для уровней энергии осциллятора надо было бы писать в виде

где n = 0, 1, 2, 3, ... - колебательное квантовое число.

При решении задач на применение соотношения неопределенностей следует иметь в виду, что в основном состоянии в классической физике электрон покоится в точке, соответствующей минимуму потенциальной энергии. Соотношения неопределенностей не позволяют ему это делать в квантовой теории, так что электрон должен иметь некоторый разброс импульсов. Поэтому неопределенность импульса (его отклонение от классического значения 0 ) и сам импульс по порядку величины совпадают

Соотношения неопределённостей
Uncertainty relations

Соотношения неопределённостей – фундаментальные соотношения квантовой механики, устанавливающие предел точности одновременного определения так называемых дополнительных физических величин, характеризующих систему (например, координаты и импульса). В упрощённой формулировке эти соотношения утверждают, что дополнительные физические величины не могут быть одновременно точно определены. Неопределённостей соотношения являются следствием двойственной, корпускулярно-волновой природы частиц материи, отражением вероятностной (статистической) сути квантовой механики.
Неопределённостей соотношения имеют вид неравенств, например, ΔxΔp > ћ = h/2π, где Δx – неопределённость координаты (частицы или системы), Δp – неопределённость её импульса, а h = 6.6·10 -34 Дж. с = 4.1·10 -15 эВ. с - постоянная Планка. Отсюда видно, что произведение неопределённостей координаты и импульса не может быть меньше ћ, и никаким усовершенствованием методов наблюдения нельзя преодолеть этот рубеж. Увеличение точности определения координаты неизбежно ведёт к потере точности определения импульса. Предельная точность одновременного определения координаты и импульса даётся соотношением Δx·Δp ≈ ћ.
Другая важная пара дополнительных физических величин – энергия Е и время t. Соотношение неопределённостей для них имеет вид ΔЕ·Δt > ћ. Это соотношение для релятивистских системы или частиц (двигающихся со скоростью близкой к скорости света с) может быть получено из соотношения неопределённостей для координаты и импульса простым преобразованием: Δx/с·Δpс = ΔtΔЕ > ћ. Полученное соотношение для времени и энергии можно трактовать следующим образом. Для того, чтобы определить энергию частицы (системы) с точностью ΔЕ, необходимо проводить измерения в течение промежутка времени Δt > ћ/ΔЕ. Следствием этого соотношения является возможность виртуальных (ненаблюдаемых) процессов, лежащих в основе механизма взаимодействия частиц в квантовой теории поля. Две частицы взаимодействуют, обмениваясь с нарушением баланса энергии на величину ΔЕ виртуальным (ненаблюдаемым) переносчиком взаимодействия, существующим в течение времени Δt < ћ/ΔЕ.
Другая трактовка соотношения ΔЕΔt ≈ ћ связана с понятием времени жизни нестабильного (распадающегося состояния системы или частицы). Так, если квантовая система в дискретном энергетическом состоянии живёт в среднем время τ ≈ Δt, то энергетическая ширина уровня Г даётся соотношением Г ≈ ΔЕ ≈ ћ/Δt ≈ ћ/τ.
В силу крайней малости константы Планка ћ, соотношения неопределённостей не играют практически никакой роли для макроскопических тел.

Соотношения неопределённости Гейзенберга

В классической механике состояние материальной точки (классической частицы определяется заданием значений координат, импульса, энергии и т.д.). Микрообъекту не могут быть приписаны перечисленные переменные. Однако, информацию о микрочастицах мы получаем, наблюдая их взаимодействие с приборами представляющие собой макроскопические тела. Поэтому результаты измерений поневоле выражаются в терминах, разработанных для характеристики макротел, следовательно, приписываются и микрочастицам. Например, говорят о состоянии электрона, в котором он имеет какое-то значение энергии или импульса.

Своеобразие свойств микрочастиц проявляется в том, что не для всех переменных получается при измерениях точные значения. Так, например, электрон (и любая другая микрочастица) не может одновременно иметь точных значений координаты х и компоненты импульса Р х. Неопределённость значений x и Р х удовлетворяет соотношению:

Из уравнения (1) следует, что чем меньше неопределённость одной из переменных, тем больше неопределённость другой. Возможно, такое состояние, в котором одна из переменных имеет точное значение, другая переменная при этом оказывается совершенной неопределенной (ее неопределённость равна бесконечности).

– классические в механике пары называются

канонически сопряженными

т.е.

Произведение неопределённостей значений двух сопряженных переменных не может быть по порядку величины меньше постоянной Планка .

Гейзенберг (1901-1976 гг.), немец, Нобелевский лауреат 1932 г., в 1927 г. сформулировал принцип неопределенности, ограничивающий применение к микрообъектам классических понятий и представлений:

– это соотношение означает, что определение энергии с точностью до E должно занять интервал времени, равный по меньшей мере

Попытаемся определить значение координаты х свободно летящей микрочастицы, поставив на ее пути щель шириной х, расположенную перпендикулярно к направлению движения частицы. До прохождения через щель, Р х =0 Þ , зато координата х является совершенно неопределенной. В момент прохождения щель положение меняется. Вместо полной неопределенности х появляется неопределенность х, но это достигается ценой утраты определенности значения P х. Вследствие дифракции появляется некоторая вероятность того, что частица будет двигаться в пределах угла 2j, j – угол, соответствующий первому дифракционному min (интенсивностью высших порядков можно пренебречь).

Краю центрального дифракционного max (первому min) получающемуся от щели шириной х, соответствует угол j, для которого

Соотношение неопределённости показывает в какой мере можно пользоваться понятиями классической механики, в частности, с какой степенью точности можно говорить о траектории микрочастиц.

Подставим вместо

Мы видим, что чем больше масса частицы, тем меньше неопределённости её координаты и скорости, следовательно, c тем большей точностью применимо для неё понятие траектории.

Соотношение неопределённости является одним из фундаментальных положений квантовой механики.

В частности, оно позволяет объяснить тот факт, что электрон не падает на ядро атома, а также оценить размеры простейшего атома и минимальную возможную энергию электрона в таком атоме.

Если бы электрон упал на ядро, его координаты и импульс приняли бы определенные (нулевые) значения, что несовместимо с принципом неопределенности (доказательство от обратного).

Пример Хотя соотношение неопределённости распространяется на частицы любых масс, для макрочастиц оно принципиального значения не имеет. Например, для тела m=1 г., движущегося с =600 м/с, при определении скорости с очень высокой точностью 10 -6 %, неопределенность координаты:

Т.е. очень и очень мала.

Для электрона движущегося с (что соответствует его энергии в 1эВ).

При определении скорости с точностью до 20%

Это очень большая неопределенность, т.к. расстояние между узлами кристаллической решетки твердых тел порядка единиц ангстрем.

Таким образом, любая квантовая система не может находится в состояниях, в которых координаты ее центра инерции (для частицы – координаты частицы) и импульс одновременно принимает вполне определенные значения.

В квантовой механике теряет смысл понятие траектории, т.к. если мы точно определим значения координат, то ничего не можем сказать о направлении ее движения (т.е. импульса), и наоборот.

Вообще говоря, принцип неопределенности справедлив как для макро-, так и для микрообъектов. Однако для макрообъектов значения неопределенности, оказывается пренебрежимо малыми по отношению к значениям самих этих величин, тогда как в микромире эти неопределённости оказываются существенными.