Болезни Военный билет Призыв

Изучение равновесия тела под действием нескольких тел. Условия равновесия тел



РАВНОВЕСИЕ ТЕЛ

«Дайте мне точку опоры, и я подниму Землю.»

Архимед


Условия равновесия.

  • I условие равновесия:
  • Тело находится в равновесии, если геометрическая сумма внешних сил, приложенных к телу, равна нулю.

F=0.

  • II условие равновесия:
  • Сумма моментов сил, действующих по часовой стрелке, должна равняться сумме моментов сил, действующих против часовой стрелки.

∑ M по час. =∑ M против час.

  • М = F l, где М – момент силы, F - сила, l – плечо силы – кратчайшее расстояние от точки опоры до линии действия силы.

Центр тяжести тела.

  • Центр тяжести тела- это точка, через которую проходит равнодействующая всех параллельных сил тяжести, действующих на отдельные элементы тела.
  • Найти центр тяжести данных фигур.
  • Найти центр тяжести данных фигур.
  • Найти центр тяжести данных фигур.
  • Найти центр тяжести данных фигур.

ВИДЫ РАВНОВЕСИЯ

Безразличное

Устойчивое

Неустойчивое


Если на тело, имеющее опору, действуют уравновешивающие силы, то тело находится в положении равновесия.


При отклонении тела от положения равновесия нарушается и равновесие сил. Если тело под действием равнодействующей силы возвращается в исходное положение, то это - устойчивое равновесие .

Если же тело под действием равнодействующей силы, ещё сильнее отклоняется от положения равновесия, то это - неустойчивое равновесие .


Возможен случай, когда при любом положении тела, равновесие сил сохраняется. Это состояние называется безразличным равновесием .


Вывод :

  • Равновесие устойчиво, если при малом отклонении от положения равновесия есть сила, стремящаяся вернуть его в это положение.
  • Устойчиво такое положение, в котором его потенциальная энергия минимальна.



В случае если центр тяжести расположен ниже точки опоры, равновесие тела или системы тел – устойчивое . При отклонении тела, центр тяжести повышается, и тело возвращается в исходное состояние.


Равновесие тела, имеющего точку опоры ниже центра тяжести, неустойчиво . Но равновесие может восстанавливаться путём смещения точки опоры тела в сторону смещения центра тяжести.



По положению центра тяжести можно судить о виде равновесия. Например езда эквилибриста по канату на велосипеде с противовесом является примером устойчивого равновесия .


Вывод :

  • Для устойчивости тела, находящегося на одной точке или линии опоры необходимо, чтобы центр тяжести находился ниже точки (линии) опоры.



Если при отклонении тела, имеющего площадь опоры, происходит повышение центра тяжести, то равновесие будет устойчивым. При устойчивом равновесии вертикальная прямая, проходящая через центр тяжести, всегда будет проходить через площадь опоры.


Два тела, у которых одинаковы вес и площадь опоры, но разная высота, имеют разный предельный угол наклона. Если этот угол превысить, то тела опрокидываются.


При более низком положении центра тяжести необходимо затратить большую работу для опрокидывания тела. Следовательно работа по опрокидыванию может служить мерой его устойчивости.


Неустойчивое равновесие

Устойчивое равновесие




Вывод :

1. Устойчиво то тело, у которого площадь опоры больше.

2. Из двух тел одинаковой площади устойчиво то, у которого центр тяжести расположен ниже, т.к. его можно отклонить без опрокидывания на большой угол.





  • Существует три вида равновесия: устойчивое, неустойчивое, безразличное.
  • Устойчиво положение тела, в котором его потенциальная энергия минимальна.
  • Устойчивость тел на плоской поверхности тем больше, чем больше площадь опоры и ниже центр тяжести.

Лабораторная работа № 6 «Изучение равновесия тел под действием нескольких сил».

Цель работы: установить соотношение между моментами сил, приложенных к плечам рычага при его равновесии. Для этого к одному из плеч рычага подвешивают один или несколько грузов, а к другому прикрепляют динамометр (рис. 179).

С помощью этого динамометра измеряют модуль силы F, которую необходимо приложить для того, чтобы рычаг находился в равновесии. Затем с помощью того же динамометра измеряют модуль веса грузов Р. Длины плеч рычага измеряют с помощью линейки. После этого определяют абсолютные значения моментов М 1 и М 2 сил Р и F:

Вывод о погрешности экспериментальной проверки правила моментов можно сделать, сравнив с единицей

отношение:

Средства измерения:

1) линейка; 2) динамометр.

Материалы: 1) штатив с муфтой; 2) рычаг; 3) набор грузов.

Порядок выполнения работы

1. Установите рычаг на штатив и уравновесьте его в горизонтальном положении с помощью расположенных на его концах передвижных гаек.

2. Подвесьте в некоторой точке одного из плеч рычага груз.

3. Прикрепите к другому плечу рычага динамометр и определите силу, которую необходимо прило

жить к рычагу для того, чтобы он находился в равновесии.

4. Измерьте с помощью линейки длины плеч рычага.

5. С помощью динамометра определите вес груза Р.

6. Найдите абсолютные значения моментов сил Р и F

7. Найденные величины занесите в таблицу:

l 1 , м l 2 , М P, Н F, Н M 1 = Pl 1 , Н⋅м M 2 =Fl 2 ,

с единицей и сделайте вывод о погрешности экспериментальной проверки правила моментов.

Основной целью работы является установление соотношения между моментами сил, приложенных к телу с закрепленной осью вращения при его равновесии. В нашем случае в качестве такого тела мы используем рычаг. Согласно правилу моментов, чтобы такое тело находилось в равновесии, необходимо чтобы алгебраическая сумма моментов сил относительно оси вращения была равна нулю.

Рассмотрим такое тело (в нашем случае рычаг). На него действуют две силы: вес грузов P и сила F (упругости пружины динамометра), чтобы рычаг находился в равновесии и моменты этих сил должны быть равны по модулю меду собой. Абсолютные значения моментов сил F и P определим соответственно:

Выводы о погрешности экспериментальной проверки правила моментов можно сделать сравнив с единицей отношение:

Средства измерения: линейка (Δl = ±0,0005 м), динамометр (ΔF = ±0,05 H). Массу грузов из набора по механике полагаем равной (0,1±0,002) кг.

Выполнение работы

№ опыта l 1 , м l 2 , м P=mg, H F, H M 1 , нм M 2 , нм M 1 / M 2
1 0,1 0,35 4 1,1 0,4 0,385 1,04
2 0,2 0,15 2 2,7 0,4 0,405 0,99
3 0,3 0,1 1 3 0,3 0,3 1

Вычисления:

Оценим погрешности.

Статикой называется раздел механики, изучающий условия равновесия тел.

Из второго закона Ньютона следует, что если геометрическая сумма всех внешних сил, приложенных к телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение. В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга. При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс .

Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю .

На рис. 1.14.1 дан пример равновесия твердого тела под действием трех сил. Точка пересечения O линий действия сил и не совпадает с точкой приложения силы тяжести (центр масс C ), но при равновесии эти точки обязательно находятся на одной вертикали. При вычислении равнодействующей все силы приводятся к одной точке.

Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил .

Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения.

Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы .

Произведение модуля силы на плечо d называется моментом силы M . Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки (рис. 1.14.2).

Правило моментов : тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

В Международной системе единиц (СИ) моменты сил измеряются в Н ьютон метрах (Н∙м ) .

В общем случае, когда тело может двигаться поступательно и вращаться, для равновесия необходимо выполнение обоих условий: равенство нулю равнодействующей силы и равенство нулю суммы всех моментов сил.

Катящееся по горизонтальной поверхности колесо – пример безразличного равновесия (рис. 1.14.3). Если колесо остановить в любой точке, оно окажется в равновесном состоянии. Наряду с безразличным равновесием в механике различают состояния устойчивого и неустойчивого равновесия.

Состояние равновесия называется устойчивым, если при малых отклонениях тела от этого состояния возникают силы или моменты сил, стремящиеся возвратить тело в равновесное состояние.

При малом отклонении тела из состояния неустойчивого равновесия возникают силы или моменты сил, стремящиеся удалить тело от положения равновесия.

Шар, лежащий на плоской горизонтальной поверхности, находится в состоянии безразличного равновесия. Шар, находящийся в верхней точке сферического выступа, – пример неустойчивого равновесия. Наконец, шар на дне сферического углубления находится в состоянии устойчивого равновесия (рис. 1.14.4).

Для тела, имеющего неподвижную ось вращения, возможны все три вида равновесия. Безразличное равновесие возникает, когда ось вращения проходит через центр масс. При устойчивом и неустойчивом равновесии центр масс находится на вертикальной прямой, проходящей через ось вращения. При этом, если центр масс находится ниже оси вращения, состояние равновесия оказывается устойчивым. Если же центр масс расположен выше оси – состояние равновесия неустойчиво (рис. 1.14.5).

Особым случаем является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела. Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры , т. е. внутри контура, образованного линиями, соединяющими точки опоры. Если же эта линия не пересекает площадь опоры, то тело опрокидывается. Интересным примером равновесия тела на опоре является падающая башня в итальянском городе Пиза (рис. 1.14.6), которую по преданию использовал Галилей при изучении законов свободного падения тел. Башня имеет форму цилиндра высотой 55 м и радиусом 7 м. Вершина башни отклонена от вертикали на 4,5 м.

Вертикальная линия, проведенная через центр масс башни, пересекает основание приблизительно в 2,3 м от его центра. Таким образом, башня находится в состоянии равновесия. Равновесие нарушится и башня упадет, когда отклонение ее вершины от вертикали достигнет 14 м. По-видимому, это произойдет очень нескоро.

Если груз отклонен от вертикалиr на расстояние r, как и при дви-

жении по окружности, то сила F равна той силе, которая вызывала движение груза по окружностиr . Мы получаем возможность срав-

ружности, по которой движется груз, изменялся вследствие влияния сопротивления воздуха медленнее и изменение это незначительно влияло на измерения, следует выбирать его небольшим (порядок

0,05÷ 0,1 м).

Выполнение работы

tср , c

a, м/c2

Вычисления

tср =

t1 + t2 + t3 + t4

12c+ 13c+ 14c

t ср

4 (13,4)2

(13,5с)2

ma = 0,1кг 1,082 м/с2 = 0,108 F≈ 0,1H

Оценка погрешностей.

Точность измерения: линейка − ∆ r =± 0,0005 м секундомер− ∆ t =± 0,5 с динамометр−∆ F =± 0,05 Н

Подсчитаем погрешность определения периода (если считать, что число n определено точно):

εТ =

0,5с

t ср

Погрешность определения ускорения подсчитаем как:

εа =

∆а

∆r

0,0005м +2 0,04= 0,05 (5%)

Погрешность определения ma ε m а =ε m

+ ε а = 0,002

(7%), то есть ma = (0,108± 0,008) Н. С другой стороны, силу F мы измерили со следующей погрешностью:ε F =∆ F F =0 0,1 ,05 Н Н =0,5 (50%)

Такая погрешность измерения, конечно, очень велика. Измерения с такими погрешностями годны только для приблизительных

оценок. Отсюда видно, что отклонение отношение m F a от единицы

может быть существенным при использовании примененных нами способов измерения* .

Лабораторная работа № 6

«Изучение равновесия тел под действием нескольких сил»

Основной целью работы является установление соотношения между моментами сил, приложенных к телу с закрепленной осью вращения при его равновесии. В нашем случае в качестве такого тела мы используем рычаг. Согласно правилу моментов, чтобы такое тело находилось в равновесии, необходимо чтобы алгебраическая сумма моментов сил относительно оси вращения была равна нулю.

Рассмотрим такое тело (в нашем случае рычагr ). На негоr действуют две силы: вес гру-

зов P и сила F (упругости пружины динамометра), чтобы рычаг находился в равновесии и моменты этих сил должны быть равны по модулю медуr собойr . Абсолютные значения

моментов сил F и P определим соответст-

венно: М1 = Рl 1 ; M2 = Fl 2 .

Выводы о погрешности экспериментальной проверки правила мо-

ментов можно сделать сравнив с единицей отношение: M 1 . M2

Средства измерения: линейка (∆l = ±0,0005 м), динамометр (∆F =

±0,05 H). Массу грузов из набора по механике полагаем равной

(0,1±0,002) кг.

Выполнение работы

l 1 , м

l 2 , м

M1 , нм

M2 , нм

M1 / M2

1* Так что вам не следует смущаться, если в этой лабораторной работе отношениеma F будет отличным от единицы. Просто аккуратно оцените все погрешности измерений и сделайте соответствующий вывод.

Вычисления: M1 =Pl 1, M2 = Fl 2

1) M 1 =4H 0,1м=0,4 Н м M2 =1,1H 0,35м=0,385 Н м

M 2 =1,04

2) M 1 =2H 0,2м=0,4 Н м M2 =2,7H 0,1 5м=0,405 Н мM

M1 =1H 0,3м=0,3 Н м

M2 =3H 0,1 м=0,3 Н м

Оценим погрешности:

ε M 1

= ε M1+ ε M2= ε P+ ε l + ε F+ ε l

εP = εm + εg =

∆m

∆g

0,2м/ c2

10м/ c2

В 1-м опыте отклонение от единицы максимально и составляет

(1,04 − 1)× 100%=4%. Для первого опыта:

0,04+

0,04 +0,005+0,045+0,001

Поскольку ε р = const и не зависит от количества грузов, ясно, что

ε M 1

в любом опыте меньше, чем (относительная погрешность оп-

ределения P . Вывод. Во всех опытах отклонение

от единицы

лежит в пределах погрешности измерений.

Лабораторная работа № 7

«Изучение закона сохранения механической энергии»

Закон сохранения механической энергии. Полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения или силами упругости, остается неизменной при любых дви-

жениях тел системы Ер1 + Ек1 = Ер2 + Ек2

Рассмотрим такое тело (в нашем случаеr рычагr ). На не-

го действуют две силы: вес грузов P и сила F (упругости пружины динамометра), чтобы рычаг находился в равновесии и моменты этих сил должны быть равны по модулюr медуr собой. Абсолютные значения момен-

тов сил F и P определим соответственно: М1 = Рl 1 ;

M2 = Fl 2 .

Рассмотрим груз, прикрепленный к упругой пружине таким образом, как показано на рисунке. Вначале удерживаем тело в положении 1, пружина не натянута и сила упругости, действующая на тело

равна нулю. Затем отпускаем тело и оно падает под действием силы тяжести до положения 2, в котором сила тяжести полностью компенсируется силой упругости пружины при удлинении ее на h (тело покоится в этот момент времени).

Рассмотрим изменение потенциальной энергии системы при переходе тела из положения 1 в положение 2. При переходе из положения 1 в положение 2 потенциальная энергия тела уменьшается на величину mgh, а потенциальная энергия пружины возрастает на ве-

личину kh 2 2 .

Целью работы является сравнение этих двух величин. Средства измерения: динамометр с известной заранее жесткостью пружины 40 Н/м, линейка, груз из набора по механике.

Выполнение работы:

h=xmax , м

hср =xñð , м

Е1ср , Дж

Е2ср , Дж

E 1cp

E 2cp

Вычисления: hср = хср =

x1 + x2

X3 + x4 + x5

0,054 м + 0,052 м + 0,048 м + 0,05 м + 0,052 м

Е1ср = mghcp = 0,1 кг 9,81 м/с2 0,051 м = 0,050 Дж

40 H /м (0,051м ) 2

Е 2ср

0,052 Дж .

Оценим погрешности:

ε Е

= εЕ

+ εЕ

х + εm + εx = 3εx + εm

x cp

0,05 = 0,96 0,05 ≈ 0,05

Отношение потенциальных энергий запишем как:

откуда видно, что полученное отклонение от единицы лежит в пределах погрешности измерений.

Лабораторная работа № 8

«Измерение ускорения свободного падения с помощью маятника»

Изучая курс физики вам часто приходилось использовать в решении задач и других расчетах значение ускорения свободного падения на поверхности земли. Вы принимали значение g = 9,81 м/с2 , то есть с той точностью, которой вполне достаточно для производимых вами расчетов.

Целью данной лабораторной работы является экспериментальное установление ускорения свободного падения с помощью маятника. Зная формулу периода колебания математического маятника Т =

2π g l можно выразить значение g через величины, доступные про-

стому установлению путем эксперимента и рассчитать g с некото-

рой точностью. Выразим g = 4 π 2 l , гдеl − длина подвеса, а Т− пери-

од колебаний маятника. Период колебаний маятника Т легко определить, измерив время t, необходимое для совершения некоторого

количества N полных колебаний маятника Т = N t . Математическим

маятником называют груз, подвешенный к тонкой нерастяжимой нити, размеры которого много меньше длины нити, а масса − много больше массы нити. Отклонение этого груза от вертикали происходит на бесконечно малый угол, а трение отсутствует. В реальных

условиях формула Т=2π g l имеет приблизительный характер.

Рассмотрим такое тело (в нашем случаеr рычаг). Наr

него действуют две силы: вес грузов P и сила F (упругости пружины динамометра), чтобы рычаг находился в равновесии и моменты этих сил должны быть равны по модулюr медуr собой. Абсолютные

значения моментов сил F и P определим соответственно:

М1 = Рl 1 ; M2 = Fl 2 .

В лабораторных условиях для измерения с некоторой степенью точности можно использовать небольшой, но массивный металлический шарик, подвешенный на нити длиной 1− 1,5 м (или большей, если есть возможность такой подвес разместить) и отклонять его на небольшой угол. Ход работы целиком понятен из описания ее в учебнике.

Средства измерения: секундомер (∆ t =± 0,5 c); линейка или измерительная лента (∆ l =± 0,5 cм)

Выполнение работы:

tcp , с

Т cp

gср , м/с2

Вычисления:

t cp

t 1+ t 2+ t 3

100 c + 98 c+ 99 c

2,475

4π 2 l

4 (3,14)2 1,5 м

9,б57 м/ с2 .

(2,475 с)2

Погрешность:

− g

9,657 −

0,015 (1,5%) g = 9,8l м/c2 .

, действующих на одно тело .

на другую состояние тела не изменится

~ 0 .

систему сил называют плоской .

Аксиомы статики.

Первая аксиома.



.

Вторая аксиома.

Третья аксиома.

Аксиома параллелограмма сил.

Четвертая аксиома.

Аксиома действия и противодействия (3-й закон Ньютона).

Пятая аксиома.

Аксиома отвердевания (принцип отвердевания).

Шестая аксиома.

Аксиома связей (принцип освобождаемости от связей)..

Тело называется свободным, если его движение в пространстве ничем не ограничено.

Тело, перемещения которого ограничены, называется несвободным телом.

Согласно шестой аксиоме, ограничить движение тела может только другое тело.

Тела, которые ограничивают движение свободного тела и делают его несвободным телом, называются связями.

Силы, с которыми связи действуют на несвободное тело, являются реакциями связей.

Остальные силы, не являющиеся реакциями связей, называются активными силами. .

Система пар сил.

Системой пар сил является совокупность пар сил, приложенных к одному телу.

Сложение пар сил. Система пар сил эквивалентна одной паре, момент которой равен сумме моментов пар, образующих систему:

(8)

где M 1 = M(F 1 ,F 1 ") , M 2 = M(F 2 ,F 2 ") , ..., M n = M(F n ,F n ") .

На рис. 25, a представлена исходная система пар сил. По второму свойству заменяем пары их моментами и переносим моменты пар, как свободные векторы, в одну произвольную точку (рис. 25, b). По правилу параллелограмма мы складываем векторы моментов пар и получаем второе выражение в (8). Одному моменту пары M соответствует одна пара сил (F,F") и M = M(F,F") (рис. 25, c).

Если все пары лежат в одной плоскости, векторное суммирование моментов пар теряет смысл. Поэтому мы используем алгебраические моменты пар сил и получаем

Необходимость условия сразу следует из (8). Если M = 0 , то (F,F") ~ 0 и, следовательно, ((F 1 ,F" 1), (F 2 ,F" 2), ..., (F n ,F" n)) ~ 0 . Достаточность условия докажем методом от противного. Предположим, что условие (10) не выполняется и M 0 , а твердое тело находится в равновесии. В этом случае система пар сил приводится к одной паре (F,F") и тело в равновесии находиться не может. Таким образом, наше предположение не верно, а условие (10) является верным, и его достаточность доказана.

Необходимым и достаточным условием равновесия системы пар, лежащих в одной плоскости, является равенство нулю алгебраической суммы моментов всех пар системы:

(11)

Таким образом, в этом параграфе мы рассмотрели пару сил, являющуюся, как и сила, самостоятельным элементом статики, изучили свойства пары сил, эквивалентность пар, сложение и условия равновесия для системы пар сил.

Виды трения.

Трение покоя проявляется в том случае, если тело находившееся в состоянии покоя, приводится в движение. Коэффициент трения покоя обозначается μ 0 .

Трение скольжения проявляется при наличии движения тела, и оно значительно меньше трения покоя.

μ ск < μ 0

Трение качения проявляется в том случае, когда тело катится по опоре, и оно значительно меньше трения скольжения.

μ кач << μ ск

Сила трения качения зависит от радиуса катящегося предмета. В типичных случаях (при расчетах трения качения колес поезда или автомобиля), когда радиус колеса известен и постоянен, его учитывают непосредственно в коэффициенте трения качения μ кач .

Определение коэффициента трения

Коэффициент трения можно определить экспериментально. Для этого помещают тело на наклонную плоскость, и определяют угол наклона при котором:

Коэффициент трения покоя

тело начинает двигаться
(коэффициент трения покоя μ 0 )

Предмет статики. Основные понятия статики. Аксиомы статики.

Статика - это раздел теоретической механики, в котором изучают равновесие тел под действием сил и преобразования систем сил.

Для статики и динамики одним из основных понятий является понятие силы. Состояние равновесия или движения тела зависит от его взаимодействия с другими телами. Меру этого взаимодействия в механике называют силой.

Действие силы на реальное физическое тело, которое деформируется силой, определяется: 1) величиной или модулем силы; 2) направлением силы; 3) точкой приложения силы. То есть сила, приложенная к физическому телу, является связанным вектором , который нельзя перемещать внутри физического тела. Прямая LM, на которой лежит вектор силы, называется линией действия силы .

Силу, как связанный вектор, удобнее определить в системе отсчета OXYZ (рис. 3) следующими параметрами. Это координаты точки приложения XA, YA, ZA и проекции силы на оси координат Fx, Fy, Fz . Первые три параметра определяют точку приложения силы A, а остальные три определяют величину и направление силы:

В выражении (2) представлены косинусы углов между осями координат и силой, которые называются направляющими косинусами и определяют направление силы в пространстве.

Системой сил назовем совокупность сил , действующих на одно тело .

Системы сил эквивалентны друг другу, если при замене одной системы сил на другую состояние тела не изменится . Математическая запись этого утверждения .

Система сил является уравновешенной или эквивалентной нулю, если под ее действием тело находится в равновесии и тогда ~ 0 .

В равновесии или покое все точки тела не перемещаются относительно системы отсчета.

В том случае, когда система сил эквивалентна одной силе , последняя называется равнодействующей.

В заключение пункта рассмотрим классификацию систем сил. Если на положение сил системы нет ограничений и силы произвольно расположены в пространстве, то систему сил называют произвольной или пространственной . Если силы системы лежат в одной плоскости, то систему сил называют плоской .

Аксиомы статики.

Первая аксиома.

О равновесии твердого тела под действием двух сил.

Под действием двух сил твердое тело находится в равновесии только тогда, когда силы равны по величине и направлены по одной прямой в разные стороны.

Случай равновесия изображен на рис. 4. Система двух сил будет уравновешенной, или эквивалентной нулю, то есть .

Вторая аксиома.

О добавлении (вычитании) уравновешенной системы сил.