Болезни Военный билет Призыв

Как научиться решать матрицы. Решение матриц. Объясняем, как решать матрицы. Операция умножения матриц

1-й курс, высшая математика, изучаем матрицы и основные действия над ними. Здесь мы систематизируем основные операции, которые можно проводить с матрицами. С чего начать знакомство с матрицами? Конечно, с самого простого - определений, основных понятий и простейших операций. Заверяем, матрицы поймут все, кто уделит им хотя бы немного времени!

Определение матрицы

Матрица – это прямоугольная таблица элементов. Ну а если простым языком – таблица чисел.

Обычно матрицы обозначаются прописными латинскими буквами. Например, матрица A , матрица B и так далее. Матрицы могут быть разного размера: прямоугольные, квадратные, также есть матрицы-строки и матрицы-столбцы, называемые векторами. Размер матрицы определяется количеством строк и столбцов. Например, запишем прямоугольную матрицу размера m на n , где m – количество строк, а n – количество столбцов.

Элементы, для которых i=j (a11, a22, .. ) образуют главную диагональ матрицы, и называются диагональными.

Что можно делать с матрицами? Складывать/вычитать , умножать на число , умножать между собой , транспонировать . Теперь обо всех этих основных операциях над матрицами по порядку.

Операции сложения и вычитания матриц

Сразу предупредим, что можно складывать только матрицы одинакового размера. В результате получится матрица того же размера. Складывать (или вычитать) матрицы просто – достаточно только сложить их соответствующие элементы . Приведем пример. Выполним сложение двух матриц A и В размером два на два.

Вычитание выполняется по аналогии, только с противоположным знаком.

На произвольное число можно умножить любую матрицу. Чтобы сделать это, нужно умножить на это число каждый ее элемент. Например, умножим матрицу A из первого примера на число 5:

Операция умножения матриц

Перемножить между собой удастся не все матрицы. Например, у нас есть две матрицы - A и B. Их можно умножить друг на друга только в том случае, если число столбцов матрицы А равно числу строк матрицы В. При этом каждый элемент получившейся матрицы, стоящий в i-ой строке и j-м столбце, будет равен сумме произведений соответствующих элементов в i-й строке первого множителя и j-м столбце второго . Чтобы понять этот алгоритм, запишем, как умножаются две квадратные матрицы:

И пример с реальными числами. Умножим матрицы:

Операция транспонирования матрицы

Транспонирование матрицы – это операция, когда соответствующие строки и столбцы меняются местами. Например, транспонируем матрицу A из первого примера:

Определитель матрицы

Определитель, о же детерминант – одно из основных понятий линейной алгебры. Когда-то люди придумали линейные уравнения, а за ними пришлось выдумать и определитель. В итоге, разбираться со всем этим предстоит вам, так что, последний рывок!

Определитель – это численная характеристика квадратной матрицы, которая нужна для решения многих задач.
Чтобы посчитать определитель самой простой квадратной матрицы, нужно вычислить разность произведений элементов главной и побочной диагоналей.

Определитель матрицы первого порядка, то есть состоящей из одного элемента, равен этому элементу.

А если матрица три на три? Тут уже посложнее, но справиться можно.

Для такой матрицы значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.

К счастью, вычислять определители матриц больших размеров на практике приходится редко.

Здесь мы рассмотрели основные операции над матрицами. Конечно, в реальной жизни можно ни разу так и не встретить даже намека на матричную систему уравнений или же наоборот - столкнуться с гораздо более сложными случаями, когда придется действительно поломать голову. Именно для таких случаев и существует профессиональный студенческий сервис . Обращайтесь за помощью, получайте качественное и подробное решение, наслаждайтесь успехами в учебе и свободным временем.

Умножение

Умножение матриц (Произведение матриц):

Операция умножения двух матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы .

Это условие не выполняется, произведение АВ не существует.

Произведение матрицы и вектора А b :

Скалярное произведение векторов ( b ,с):

Найти определитель матрицы А:

В частности, формула вычисления определителя матрицы

такова:

= a 11 a 22 a 33 − a 11 a 23 a 32 − a 12 a 21 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 13 a 22 a 31

2*(-4)*5 – 2*4*2 – (-2)*5*5 + (-2)*4*(-1) +(-1)*5*2 – (-1)*(-4)*(-1) = -40 – 16 +50 + 8 – 10 + 4 = -4

Найти обратную матрицу А -1:

Решение .


Определитель введенной Вами матрицы равен:

Определитель не равен нулю, следовательно обратная матрица существует.

Допишем к исходной матрице единичную матрицу справа.

Начнем приведение левой квадратной матрицы к единичному виду. При помощи элементарных преобразований уберем все коэффициенты ниже главной диагонали.


Приведем все коэффициенты выше главной диагонали к 0, при помощи элементарных преобразований.

Ответ .

Как уже ранее упоминалось, мы при помощи элементарных преобразований переместили единичную матрицу из правой части в левую, при этом не нарушив ни одного правила работы с матрица.

Квадратная матрица, которую Вы видите справа и есть обратная матрица к введенной Вами .


Решение системы уравнений Ах= b :

Условие

Найдем определитель главной матрицы, составленной из коэффициентов при X 1 - n:

Определитель главной матрицы системы уравнений не равен нулю, следовательно данная система уравнений имеет единственное решение. Найдем его. Достоим главный определитель системы уравнений еще одним столбцом, в который вставим значения за знаком равенства.

Теперь последовательно, при помощи элементарных преобразований преобразуем левую часть матрицы (3 × 3) до треугольного вида (обнулим все коэффициенты находящиеся не на главной диагонали, а коэффициенты на главной диагонали преобразуем до единиц).

Вычтем 1 - ую строку из всех строк, которые находятся ниже нее. Это действие не противоречит элементарным преобразованиям матрицы.

Вычтем 2 - ую строку из всех строк, которые находятся ниже нее. Это действие не противоречит элементарным преобразованиям матрицы.

Вычтем 3 - ую строку из всех строк, которые находятся выше нее. Это действие не противоречит элементарным преобразованиям матрицы.

Вычтем 2 - ую строку из всех строк, которые находятся выше нее. Это действие не противоречит элементарным преобразованиям матрицы.


Приведем все коэффициенты на главной диагонали матрицы к 1. Поделим каждую строку матрицы на коэффициент этой строки находящийся на главной диагонали, если он не равен 1.

Ответ .

Числа получившиеся правее единичной матрицы и будут решением Вашей системы уравнений.

Элементарные преобразования матрицы

Элементарными преобразованиями матрицы называются следующие преобразования: 1) умножение строки матрицы на число, отличное от нуля; 2) прибавление к одной строке матрицы другой строки; 3) перестановка строк; 4) вычеркивание (удаление) одной из одинаковых строк (столбцов); 5) транспонирование матрицы ;

Те же операции, применяемые для столбцов матрицы , также называются элементарными преобразованиями. С помощью элементарных преобразований можно к какой-либо строке или столбцу матрицы прибавить линейную комбинацию остальных строк (столбцов).

Начинаем решать вот такую систему уравнений методом Гаусса


Определитель основной матрицы равен -4

Хотим сделать элемент равным 1. Разделили всю строку 1 на элемент =2.

Сделали в 1 строке элемент 1 единичным.

Обнулим 1 столбец: Из 2 строки вычли 1 строку , умноженную на элемент =5.

Из 3 строки вычли 1 строку , умноженную на элемент =-1.

Матрицы, познакомьтесь с ее основными понятиями. Определяющими элементами матрицы являются ее диагонали - и побочная. Главная начинается с элемента в первом ряду, первом столбце и продолжается до элемента последнего столбца, последнего ряда (то есть идет слева направо). Побочная же диагональ начинается наоборот в первом ряду, но последнем столбце и продолжается до элемента, имеющего координаты первого столбца и последнего ряда (идет справа налево).

Для того чтобы перейти к следующим определениям и алгебраическим операциям с матрицами, изучите виды матриц. Самые простые из них - это квадратная, единичная, нулевая и обратная. В совпадает число столбцов и строк. Транспонированная матрица, назовем ее В, получается из матрицы А, путем замены столбцов на строки. В единичной все элементы главной диагонали - единицы, а другие - нули. А в нулевой даже элементы диагоналей нулевые. Обратная матрица - это та, на которую исходная матрица приходит к единичному виду.

Также матрица может быть симметрична относительно главной или побочной осей. То есть элемент, имеющий координаты а(1;2), где 1 - это номер строки, а 2 - столбца, равен а(2;1). А(3;1)=А(1;3) и так далее. Матрицы согласованными - это те, где количество столбцов одной равно количеству строк другой (такие матрицы можно перемножать).

Главные действия, которые можно совершить с матрицами - это сложение, умножение и нахождение определителя. Если матрицы одинакового размера, то есть имеют равное количество строк и столбцов, то их можно сложить. Складывать необходимо элементы, стоящие на одинаковых местах в матрицах, то есть а (m;n) сложите с в (m;n), где m и n - это соответствующие координаты столбца и строки. При сложении матриц действует главное правило обычного арифметического сложения - при перемене мест слагаемых сумма не меняется. Таким образом, если вместо простого элемента а стоит выражение а+в, то его можно сложить в элементом с другой соразмерной матрицы по правилам а+(в+с)= (а+в)+с.

Умножать можно согласованные матрицы, которым дано выше. При этом получается матрица, где каждый элемент - это сумма попарно перемноженных элементов строки матрицы А и столбца матрицы В. При перемножении очень важен порядок действий. m*n не равно n*m.

Также одно из главных действий - это нахождение . Еще его называют детерминантом и обозначают так: det. Эта величина определяется по модулю, то есть никогда не бывает отрицательной. Легче всего найти детерминант у квадратной матрицы 2х2. Для этого необходимо перемножить элементы главной диагонали и вычесть из них перемноженные элементы побочной диагонали.

New Page 1

Матричное исчисление для чайников. Урок 1 . Понятие матрицы.

Матричное исчисление (или матричная алгебра) - это раздел математики, который изучает матрицы. Матрицы присутствуют во многих расчетных задачах, например, решение систем линейных уравнений (когда их много), в задачах оптимизации и так далее. Поэтому очень важно знать и понимать этот раздел математики. Итак, сначала мы познакомимся с самим понятием матрицы.

Матрица - это просто таблица чисел. Сама обычная таблица. У нее есть строки и столбцы. Но есть еще и научное определение матрицы, его тоже надо знать. а звучит оно вот так: "Пусть дано некоторое числовое поле K. Тогда прямоугольную таблицу чисел из поля K :

будем называть матрицей ".

Тут использовано еще одно, может быть, незнакомое вам понятие - числовое поле. Давайте и с ним определимся. Итак, числовое поле - это любая совокупность чисел, в пределах которой выполнимы и однозначны четыре операции: сложение, вычитание, умножение и деление на число, отличное от нуля. Таким образом, к числовому полю принадлежать все нормальные числа, колесные, кстати, тоже (см. также циклы уроков и )). А вот если кто-нибудь изобретет какие-нибудь "экзотические" числа, для которых не будет хотя бы одного однозначно выполнимого из перечисленных четырех математических операций, то уже нельзя будет сказать, что эти числа принадлежат к числовому полю.

Если говорить простыми словами, то матрицей считается только таблица чисел, а также любых других математических объектов, которые можно нормально складывать, вычитать, умножать и делить. А вот если в таблицу поместить нечто, что нельзя, к примеру, складывать, то это будет уже не матрица. Дело в том, что над матрицами тоже можно делать некоторые математические действия, которые сводятся к действиям над входящими в матрицу числами. А если в матрице будут не числа, а невесть что, например, строки, или какие-нибудь экзотические объекты, то над такой таблицей мы уже не сможем произвести те математические операции, которые можем делать над матрицей.

Итак, давайте еще раз обсудим, что может быть внутри матрицы, а что нет. Могут быть числа, комплексные (так как их можно складывать, вычитать и делить). Могут быть функции и математические выражение, если результатом их вычисления будет число (или комплексное число). Действительно, если у нас есть некая функция и есть некая функция , результат вычисления которых "нормальное" число, то кто нам машет совершить операцию , или, например, ?

Числа n и m - это размеры матрицы, если они одинаковые, то такая матрица называется квадратной . В этом случае число n, равное m, называется порядком матрицы. В общем случае, когда m и n не равны, матрица называется прямоугольной . Числа, входящие в матрицу, называются элементами матрицы .

Рассмотрим, как матрица обозначается. В самом начале урока я показал общее обозначение матрицы. Существует еще упрощенное: , где i=1,2,3...m, j=1,2,3,... n. При двухиндексном обозначении элементов матрицы всегда первый индекс показывает номер строки, а второй - номер столбца.

Матрицу также обозначают одной буквой, например, A. Если A - это квадратная матрица порядка n, то можно записать

У квадратной матрицы может быть определитель. Определитель матрицы обозначают или . До определителей мы еще доберемся, сейчас я лишь вкратце скажу, что это такое. Итак, определитель (или детерминант) - это многочлен, комбинирующий элементы квадратной матрицы таким образом, что его значение сохраняется при транспонировании и линейных комбинациях строк или столбцов. Под транспонированием понимается "переворачивание" матрицы - строки становятся столбцами, а столбцы строками.

Существуют также особые виды матрицы, которые могут иметь отдельные обозначает. В частности, прямоугольную матрицу вида:

или, говоря иными словами, матрицу, состоящую из одного столбца, принято обозначать вот так . Такая матрица называется столбцевой . Матрица бывает также и строчной :

Обозначается она вот так:

Если все элементы квадратной матрицы, кроме главной диагонали, равны нулю:

То такая матрица называется диагональной . Обозначается она вот так.

Занятие № 1. Матрицы. Операции над матрицами.

1. Что называется матрицей.

2. Какие две матрицы называются равными.

3. Какая матрица называется квадратной, диагональной, единичной.

4. Как выполнить операции сложения матриц и умножение матрицы на число.

5. Для каких матриц вводится операция умножения и правило ее выполнения.

6. Какие преобразования над матрицами являются элементарными.

7. Какую матрицу называют канонической.

Типовые примеры Действия над матрицами

Задача № 1. Даны матрицы

Найти матрицу D=
(1)

Решение. По определению произведения матрица на число получаем:

D=

Задача № 2 . Найти произведение АВ двух квадратных матриц:

Решение. Обе матрицы являются квадратными матрицами 2-го порядка. Такие матрицы можно умножить, используя формулу

Формула (2) имеет следующий смысл: чтобы получить элемент матрицы С = АВ, стоящий на пересечении строки истолбца нужно взять сумму произведений элементов-ой строки матрицы А на соответствующие элементы-го столбца матрицы В.

В соответствии с формулой (2) найдем:

Следовательно, произведение С = АВ будет иметь вид:

Задача № 3. Найти произведение АВ и ВА матриц:

Решение. Согласно формуле (2),элементы матриц АВ и ВА будут иметь вид:

Вывод: Сравнивая матрицы АВ и ВА и пользуясь определением равенства матриц, делаем вывод, что АВВА, т. е. умножение матриц не подчиняется переместительному закону.

Задача № 4 (устно). Даны матрицы
Существуют ли произведения (в скобках даны правильные ответы): АВ (да), ВА (нет), АС (да), СА (нет), АВС (нет), АСВ (да), СВА (нет).

Задача № 5. Найти произведение АВ и ВА двух матриц вида:

Решение. Приведенные матрицы вида
следовательно, существуют произведения АВ и ВА данных матриц, которые будут иметь вид:

Задача № 6 . Найти произведение АВ матриц:

Ответ:

Задачи для самостоятельного решения:

    Даны матрицы

Найти матрицу D=2А-4В+3С.

2. Найти произведения АВ и ВА квадратных матриц:

    Найти произведение матриц:

    Найти произведение матриц:



7. Найти произведение матриц:

8.Найти матрицу: В=6А 2 +8А, если
.

9. Дана матрица
.Найти все матрицы В, перестановочные с матрицей А.

10. Доказать, что если А - диагональная матрица и все элементы ее главной диагонали различны между собой, то любая матрица, перестановочная с А, тоже диагональная.

Занятие 2. Определители квадратных матриц и их вычисление. Обратная матрица.

Для усвоения практического материала нужно ответить на следующие теоретические вопросы:

    Что называется определителем n-го порядка? Правила вычисления приn=1,2,3.

    Свойства определителей.

    Какая матрица называется невырожденной?

    Какая матрица называется единичной?

    Какая матрица называется обратной по отношению к данной?

    Что является необходимым и достаточным условием для существования обратной матрицы?

    Сформулировать правило нахождения обратной матрицы.

    Ранг матрицы. Правила нахождения.

Типовые примеры Вычисление определителей

Задача № 1. Вычислить определитель
:

а) по правилу треугольника;

б) с помощью разложения по первой строке;

в) преобразованием, используя свойства определителей.

в)

Задача № 2 . Найти минор и алгебраическое дополнение элементаa 23 определителя
и вычислить его разложением по элементам строки или столбца.

Решение.

М 23
; А 23

Задача № 3. Вычислить определитель с помощью разложения по 2 строке:

Ответ:

Задача № 4. Решить уравнение

Задача № 5. Вычислить определитель 4-го порядка разложением по элементам строки или столбца: