Болезни Военный билет Призыв

Как возникает магнитное поле земли. Уникальное магнитное поле Земли

Работа по физике

Ученика 10 класса А

Школы №1202

Круглова Егора

Магнитное поле

В XIX веке была обнаружена связь между электричеством и магнетизмом и возникло представление о магнитном поле. По современным представлениям, проводники с током оказывают силовое действие друг на друга не непосредственно, а через окружающие их магнитные поля.

Источниками магнитного поля являются движущиеся электрические заряды (токи) . Магнитное поле возникает в пространстве, окружающем проводники с током, подобно тому, как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле. Магнитное поле постоянных магнитов также создается электрическими микротоками, циркулирующими внутри молекул вещества (гипотеза Ампера).

Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности электрического поля. Такой характеристикой является вектор магнитной индукции Вектор магнитной индукции определяет силы, действующие на токи или движущиеся заряды в магнитном поле.

За положительное направление вектора принимается направление от южного полюса S к северному полюсу N магнитной стрелки, свободно устанавливающейся в магнитном поле. Таким образом, исследуя магнитное поле, создаваемое током или постоянным магнитом, с помощью маленькой магнитной стрелки, можно в каждой точке пространства

Для того, чтобы количественно описать магнитное поле, нужно указать способ определения не только направления вектора но и его модуля.

Модуль вектора магнитной индукции равен отношению максимального значения силы Ампера, действующей на прямой проводник с током, к силе тока I в проводнике и его длине Δl :

Это соотношение принято называть законом Ампера.

В системе единиц СИ за единицу магнитной индукции принята индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется тесла (Тл).

Тесла – очень крупная единица. Магнитное поле Земли приблизительно равно 0,5·10–4 Тл. Большой лабораторный электромагнит может создать поле не более 5 Тл.

Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику. Для определения направления силы Ампера обычно используют правило левой руки: если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы, действующей на проводник.

Правило левой руки и правило буравчика.

Линии магнитной индукции полей постоянного магнита и катушки с током

В последние дни на научных информационных сайтах появилось большое количество новостей, посвященных магнитному полю Земли. Например, новость о том, что в последнее время оно существенно изменяется, или о том, что магнитное поле способствует утечке кислорода из земной атмосферы и даже про то, что вдоль линий магнитного поля ориентируются коровы на пастбищах. Что представляет собой магнитное поле и насколько важны все перечисленные новости?

– это область вокруг нашей планеты, где действуют магнитные силы. Вопрос о происхождении магнитного поля до сих пор окончательно не решен. Однако большинство исследователей сходятся в том, что наличием магнитного поля Земля хотя бы отчасти обязана своему ядру. Земное ядро состоит из твердой внутренней и жидкой наружной частей. Вращение Земли создает в жидком ядре постоянные течения. Как читатель может помнить из уроков физики, движение электрических зарядов приводит к появлению вокруг них магнитного поля.

Одна из самых распространенных теорий, объясняющих природу поля, - теория динамо-эффекта - предполагает, что конвективные или турбулентные движения проводящей жидкости в ядре способствуют самовозбуждению и поддержанию поля в стационарном состоянии.

Землю можно рассматривать как магнитный диполь. Его южный полюс находится на географическом Северном полюсе, а северный, соответственно, на Южном. На самом деле, географический и магнитный полюса Земли не совпадают не только по "направлению". Ось магнитного поля наклонена по отношению к оси вращения Земли на 11,6 градуса. Из-за того что разница не очень существенная, мы можем пользоваться компасом. Его стрелка точно указывает на южный магнитный полюс Земли и почти точно на Северный географический. Если бы компас был изобретен 720 тысяч лет назад, то он бы указывал и на географический и на магнитный северный полюс. Но об этом чуть ниже.

Магнитное поле защищает жителей Земли и искусственные спутники от губительного воздействия космических частиц. К таким частицам относятся, например, ионизированные (заряженные) частицы солнечного ветра. Магнитное поле изменяет траекторию их движения, направляя частицы вдоль линий поля. Необходимость наличия магнитного поля для существования жизни сужает круг потенциально обитаемых планет (если мы исходим из предположения, что гипотетически возможные формы жизни похожи на земных обитателей).

Ученые не исключают, что часть планет земного типа не имеют металлического ядра и, соответственно, лишены магнитного поля. До сих пор считалось, что планеты, состоящие из твердых скальных пород, как и Земля, содержат три основных слоя: твердую кору, вязкую мантию и твердое или расплавленное железное ядро. В недавней работе ученые из Массачусетсткого технологического института предложили сразу два возможных механизма образования "скалистых" планет без ядра. Если теоретические выкладки исследователей подтвердятся наблюдениями, то формулу для расчета вероятности встретить во Вселенной гуманоидов или хотя бы что-то, напоминающее иллюстрации из учебника биологии, придется переписать.

Земляне тоже могут лишиться своей магнитной защиты. Правда, точно сказать, когда это произойдет, геофизики пока не могут. Дело в том, что магнитные полюса Земли непостоянны. Периодически они меняются местами. Не так давно исследователи установили, что Земля "помнит" о смене полюсов. Анализ таких "воспоминаний" показал, что за последние 160 миллионов лет магнитные север и юг менялись местами около 100 раз. Последний раз это событие произошло около 720 тысяч лет назад.

Смена полюсов сопровождается изменением конфигурации магнитного поля. Во время "переходного периода" на Землю проникает существенно больше космических частиц, опасных для живых организмов. Одна из гипотез, объясняющих исчезновение динозавров, утверждает, что гигантские рептилии вымерли именно во время очередной смены полюсов.

Кроме "следов" плановых мероприятий по смене полюсов исследователи заметили в магнитном поле Земли опасные подвижки. Анализ данных о его состоянии за несколько лет показал, что в последние месяцы в нем начали происходить опасные изменения. Настолько резких "движений" поля ученые не регистрировали уже очень давно. Вызывающая беспокойства исследователей зона находится в южной части Атлантического океана. "Толщина" магнитного поля в этом районе не превышает трети от "нормальной". Исследователи давно обратили внимание на эту "прореху" в магнитном поле Земли. Собранные за 150 лет данные показывают, что за этот период поле здесь ослабло на десять процентов.

На данный момент трудно сказать, чем это грозит человечеству. Одним из последствий ослабления напряженности поля может стать увеличение (пусть и незначительное) содержания кислорода в земной атмосфере. Связь между магнитным полем Земли и этим газом была установлена с помощью системы спутников Cluster – проекта Европейского космического агентства. Ученые выяснили, что магнитное поле ускоряет ионы кислорода и "выбрасывает" их в космическое пространство.

Несмотря на то, что магнитное поле нельзя увидеть, обитатели Земли хорошо его чувствуют. Перелетные птицы, например, отыскивают дорогу, ориентируясь именно на него. Существует несколько гипотез, объясняющих, как именно они ощущают поле. Одна из последних предполагает, что птицы воспринимают магнитное поле визуально. Особые белки – криптохромы – в глазах перелетных птиц способны менять свое положение под воздействием магнитного поля. Авторы теории считают, что криптохромы могут выполнять роль компаса.

Кроме птиц магнитное поле Земли вместо GPS используют морские черепахи. И, как показал анализ спутниковых фотографий, представленных в рамках проекта Google Earth, коровы. Изучив фотографии 8510 коров в 308 районах мира, ученые заключили, что эти животные предпочтительно ориентируют свои тела с севера на юг (или с юга на север). Причем "реперными точками" для коров служат не географические, а именно магнитные полюса Земли. Механизм восприятия коровами магнитного поля и причины именно такой реакции на него остаются неясными.

Кроме перечисленных замечательных свойств магнитное поле способствует появлению полярных сияний. Они возникают в результате резких изменений поля, происходящих в удаленных регионах поля.

Магнитное поле не обошли своим вниманием сторонники одной из "теорий заговора" – теории о лунной мистификации. Как уже упоминалось выше, магнитное поле защищает нас от космических частиц. "Собранные" частицы скапливаются в определенных частях поля – так называемых радиационных поясах Ван Алена. Скептики, не верящие в реальность высадок на Луну, считают, что во время пролета сквозь радиационные пояса астронавты получили бы смертельную дозу радиации.

Магнитное поле Земли - удивительное следствие законов физики, защитный щит, ориентир и создатель полярных сияний. Если бы не оно, жизнь на Земле, возможно, выглядела бы совсем иначе. В общем, если бы магнитного поля не было - его необходимо было бы придумать.

Строение и характеристики магнитного поля Земли

На небольшом удалении от поверхности Земли, порядка трёх её радиусов, магнитные силовые линии имеют диполеподобное расположение. Эта область называется плазмосферой Земли.

По мере удаления от поверхности Земли усиливается воздействие солнечного ветра: со стороны Солнца геомагнитное поле сжимается, а с противоположной, ночной стороны, оно вытягивается в длинный хвост.

Плазмосфера

Заметное влияние на магнитное поле на поверхности Земли оказывают токи в ионосфере. Эта область верхней атмосферы, простирающаяся от высот порядка 100 км и выше. Содержит большое количество ионов. Плазма удерживается магнитным полем Земли, но её состояние определяется взаимодействием магнитного поля Земли с солнечным ветром, чем и объясняется связь магнитных бурь на Земле с солнечными вспышками.

Параметры поля

Точки Земли, в которых напряжённость магнитного поля имеет вертикальное направление, называют магнитными полюсами. Таких точек на Земле две: северный магнитный полюс и южный магнитный полюс.

Прямая, проходящая через магнитные полюсы, называется магнитной осью Земли. Окружность большого круга в плоскости, которая перпендикулярна к магнитной оси, называется магнитным экватором. Напряжённость магнитного поля в точках магнитного экватора имеет приблизительно горизонтальное направление.

Средняя напряжённость поля на поверхности Земли составляет около 0,5 э (40 А/м) и сильно зависит от географического положения. Напряжённость магнитного поля на магнитном экваторе около 0,34 э (Эрстед), у магнитных полюсов около 0,66 э. В некоторых районах (в так называемых районах магнитных аномалий) напряжённость резко возрастает. В районе Курской магнитной аномалии она достигает 2 э.

Дипольный магнитный момент Земли на 1995 год составлял 7,812x10 25 Гс·см 3 (или 7,812x10 22 А·м 2), уменьшаясь в среднем за последние десятилетия на 0,004x10 25 Гс·см 3 или на 1/4000 в год.

Распространена аппроксимация магнитного поля Земли в виде ряда по гармоникам - ряд Гаусса.

Для магнитного поля Земли характерны возмущения, называемые геомагнитными пульсациями вследствие возбуждения гидромагнитных волн в магнитосфере Земли; частотный диапазон пульсаций простирается от миллигерц до одного килогерца.

Магнитный меридиан

Магнитными меридианами называются проекции силовых линий магнитного поля Земли на её поверхность; сложные кривые, сходящиеся в северном и южном магнитных полюсах Земли.

Гипотезы о природе магнитного поля Земли

В последнее время получила развитие гипотеза, связывающая возникновение магнитного поля Земли с протеканием токов в жидком металлическом ядре. Подсчитано, что зона, в которой действует механизм «магнитное динамо», находится на расстоянии 0,25-0,3 радиуса Земли. Аналогичный механизм генерации поля может иметь место и на других планетах, в частности, в ядрах Юпитера и Сатурна (по некоторым предположениям, состоящих из жидкого металлического водорода).

Изменения магнитного поля Земли

Исследования остаточной намагниченности, приобретённой изверженными горными породами при остывании их ниже точки Кюри, свидетельствуют о неоднократных инверсиях магнитного поля Земли, зафиксированных в полосовых магнитных аномалиях океанической коры, параллельные осям срединных океанических хребтов.

Образование полосовых магнитных аномалий при спрединге.

Смещение магнитных полюсов Земли

Смещение магнитных полюсов регистрируется с 1885 г. За последние 100 лет магнитный полюс в южном полушарии переместился почти на 900 км и вышел в Индийский океан. Новейшие данные по состоянию арктического магнитного полюса (движущегося по направлению к Восточно-Сибирской мировой магнитной аномалии через Ледовитый океан) показали, что с 1973 по 1984 г. его пробег составил 120 км, с 1984 по 1994 г. - более 150 км. Хотя эти данные расчётные, они подтверждены замерами северного магнитного полюса. По данным на начало 2007-го года, скорость дрейфа северного магнитного полюса увеличилась с 10 км/год в 70-х годах, до 60 км/год в 2004-м году.

Напряжённость земного магнитного поля падает, причём неравномерно. За последние 22 года она уменьшилась в среднем на 1,7 %, а в некоторых регионах - например, в южной части Атлантического океана, - на 10 процентов. В некоторых местах напряжённость магнитного поля, вопреки общей тенденции, даже возросла.

Ускорение движения полюсов (в среднем на 3 км/год) и движение их по коридорам инверсии магнитных полюсов (более 400 палеоинверсий позволили выявить эти коридоры), позволяет предположить, что в данном перемещении полюсов следует усматривать не экскурс, а очередную инверсию магнитного поля Земли.

Это подтверждается и текущим возрастанием угла раствора каспов (полярных щелей в магнитосфере на севере и юге), который к середине 90-ых годов достиг 45°. В расширившиеся щели устремился радиационный материал солнечного ветра, межпланетного пространства и космических лучей, вследствие чего в полярные области поступает большее количество вещества и энергии, что может привести к дополнительному разогреву полярных шапок.

В прошлом инверсии магнитных полюсов происходили многократно и жизнь сохранилась. Вопрос в том, какой ценой. Если, как утверждается в некоторых гипотезах, во время перестановки полюсов магнитосфера Земли на некоторое время исчезнет, то на Землю обрушится поток космических лучей, что представляет опасность для обитателей суши и тем большую, если исчезновение магнитосферы будет сопряжено с истощением озонового слоя. Обнадёживает тот факт, что во время инверсии магнитного поля Солнца, произошедшего в марте 2001 года, полного исчезновения солнечной магнитосферы зафиксировано не было. Полный цикл обращения магнитного поля Солнца составляет 22 года.

Геомагнитные координаты (координаты Мак-Илвайна)

В физике космических лучей широко используется специфические координаты в геомагнитном поле, названные в честь ученого Мак Илвайна (Carl McIlwain), первым предложившим их использование, так как они основаны на инвариантах движения частиц в магнитном поле. Точка в дипольном поле характеризуются двумя координатами (L, B), где L - так называемая магнитная оболочка, или параметр Мак Илвайна (англ. L-shell, L-value, McIlwain L-parameter), B - магнитная индукция поля (обычно в Гс). За параметр магнитной оболочки обычно принимается величина L, равная отношению среднего удаления реальной магнитной оболочки от центра Земли в плоскости геомагнитного экватора, к радиусу Земли.

История исследований

О способности намагниченных предметов располагаться в определённом направлении было известно ещё китайцам несколько тысячелетий назад.

В 1544 году немецкий учёный Георг Гартман открыл магнитное наклонение. Магнитным наклонением называют угол, на который стрелка под действием магнитного поля Земли отклоняется от горизонтальной плоскости вниз или вверх. В полушарии севернее магнитного экватора (который не совпадает с географическим экватором) северный конец стрелки отклоняется вниз, в южном - наоборот. На самом магнитном экваторе линии магнитного поля параллельны поверхности Земли.

Впервые предположение о наличии магнитного поля Земли, которое и вызывает такое поведение намагниченных предметов, высказал английский врач и натурфилософ Уильям Гильберт (англ. William Gilbert) в 1600 году в своей книге «О магните» («De Magnete»), в которой описал опыт с шаром из магнитной руды и маленькой железной стрелкой. Гильберт пришел к заключению, что Земля представляет собой большой магнит. Наблюдения английского астронома Генри Геллибранда (англ. Henry Gellibrand) показали, что геомагнитное поле не постоянно, а медленно изменяется.

У Хосе де Акосты (одного из Основателей Геофизики, по словам Гумбольта) в его Истории (1590) впервые появилась теория о четырёх линиях без магнитного склонения (он описал использование компаса, угол отклонения, различия между Магнитным и Северным полюсом; хотя отклонения были известны еще в XV веке, он описал колебание отклонений от одной точки до другой; он идентифицировал места с нулевым отклонением: например, на Азорских островах).

Угол, на который отклоняется магнитная стрелка от направления север - юг, называют магнитным склонением. Христофор Колумб открыл, что магнитное склонение не остается постоянным, а претерпевает изменения с изменением географических координат. Открытие Колумба послужило толчком к новому изучению магнитного поля Земли: сведения о нем были нужны мореплавателям. Русский ученый М. В. Ломоносов в 1759 г. в докладе «Рассуждение о большой точности морского пути» дал ценные советы, позволяющие увеличить точность показаний компаса. Для изучения земного магнетизма М. В. Ломоносов рекомендовал организовать сеть постоянных пунктов (обсерваторий), в которых производить систематические магнитные наблюдения; такие наблюдения необходимо широко проводить и на море. Мысль Ломоносова об организации магнитных обсерваторий была осуществлена лишь спустя 60 лет в России.

В 1831 г. английским полярным исследователем Джоном Россом в Канадском архипелаге был открыт магнитный полюс - область, где магнитная стрелка занимает вертикальное положение, то есть наклонение равно 90°. В 1841 г. Джеймс Росс (племянник Джона Росса) достиг другого магнитного полюса Земли, находящегося в Антарктиде.

Карл Гаусс (нем. Carl Friedrich Gauss) выдвинул теорию о происхождении магнитного поля Земли и в 1839 году доказал, что основная его часть выходит из Земли, а причину небольших, коротких отклонений его значений необходимо искать во внешней среде.

источник - Википедия

Смотрите также раздел - скачать астрономические книги бесплатно

Смотрите также раздел - скачать астрономические статьи и рефераты бесплатно

Смотрите также раздел - купить в сети Интернет

Смотрите также раздел - статьи из научных журналов

Содержание статьи

МАГНИТНОЕ ПОЛЕ ЗЕМЛИ. Большинство планет Солнечной системы в той или иной степени обладают магнитными полями. По убыванию дипольного магнитного момента на первом месте Юпитер и Сатурн, а за ними следуют Земля, Меркурий и Марс, причем по отношению к магнитному моменту Земли значение их моментов составляет 20 000, 500, 1, 3/5000 3/10000. Дипольный магнитный момент Земли на 1970 составлял 7,98·10 25 Гс/см 3 (или 8,3·10 22 А.м 2), уменьшаясь за десятилетие на 0,04·10 25 Гс/см 3 . Средняя напряженность поля на поверхности составляет около 0,5 Э (5·10 –5 Тл). По форме основное магнитное поле Земли до расстояний менее трех радиусов близко к полю эквивалентного магнитного диполя. Его центр смещен относительно центра Земли в направлении на 18° с.ш. и 147,8° в. д. Ось этого диполя наклонена к оси вращения Земли на 11,5°. На такой же угол геомагнитные полюса отстоят от соответствующих географических полюсов. При этом южный геомагнитный полюс находится в северном полушарии. В настоящее время он расположен недалеко от северного географического полюса Земли в Северной Гренландии. Его координаты j = 78,6 + 0,04° Т с.ш., l = 70,1 + 0,07° T з.д., где Т – число десятилетий от 1970. У cеверного магнитного полюса j = 75° ю.ш., l = 120,4° в.д. (в Антарктиде). Реальные магнитные силовые линии магнитного поля Земли в среднем близки к силовым линиям этого диполя, отличаясь от них местными нерегулярностями, связанными с наличием намагниченных пород в коре. В результате вековых вариаций геомагнитный полюс прецессирует относительно географического полюса с периодом около 1200 лет. На больших расстояниях магнитное поле Земли несимметрично. Под действием исходящего от Солнца потока плазмы (солнечного ветра) магнитное поле Земли искажается и приобретает «шлейф» в направлении от Солнца, который простирается на сотни тысяч километров, выходя за орбиту Луны.

Специальный раздел геофизики, изучающий происхождение и природу магнитного поля Земли называется геомагнетизмом . Геомагнетизм рассматривает проблемы возникновения и эволюции основной, постоянной составляющей геомагнитного поля, природа переменной составляющей (примерно 1% от основного поля), а так же структура магнитосферы – самых верхних намагниченных плазменных слоев земной атмосферы, взаимодействующих с солнечным ветром и защищающих Землю от космического проникающего излучения. Важной задачей является изучение закономерностей вариаций геомагнитного поля, поскольку они обусловлены внешними воздействиями, связанными в первую очередь с солнечной активностью.

Происхождение магнитного поля.

Наблюдаемые свойства магнитного поля Земли согласуются с представлением о его возникновении благодаря механизму гидромагнитного динамо. В этом процессе первоначальное магнитное поле усиливается в результате движений (обычно конвективных или турбулентных) электропроводящего вещества в жидком ядре планеты или в плазме звезды. При температуре вещества в несколько тысяч К его проводимость достаточно высока, чтобы конвективные движения, происходящие даже в слабо намагниченной среде, могли возбуждать изменяющиеся электрические токи, способные, в соответствии с законами электромагнитной индукции, создавать новые магнитные поля. Затухание этих полей либо создает тепловую энергию (по закону Джоуля), либо приводит к возникновению новых магнитных полей. В зависимости от характера движений эти поля могут либо ослаблять, либо усиливать исходные поля. Для усиления поля достаточно определенной асимметрии движений. Таким образом, необходимым условием гидромагнитного динамо является само наличие движений в проводящей среде, а достаточным – наличие определенной асимметрии (спиральности) внутренних потоков среды. При выполнении этих условий процесс усиления продолжается до тех пор, пока растущие с увеличением силы токов потери на джоулево тепло не уравновесят приток энергии, поступающей за счет гидродинамических движений.

Динамо-эффект – самовозбуждение и поддержание в стационарном состоянии магнитных полей вследствие движения проводящей жидкости или газовой плазмы. Его механизм подобен генерации электрического тока и магнитного поля в динамо-машине с самовозбуждением. С динамо-эффектом связывают происхождение собственных магнитных полей Солнца Земли и планет, а также их локальные поля, например, поля пятен и активных областей.

Составляющие геомагнитного поля.

Собственное магнитное поле Земли (геомагнитное поле) можно разделить на cледующие три основные части.

1. Основное магнитное поле Земли, испытывающее медленные изменения во времени (вековые вариации) с периодами от 10 до 10 000 лет, сосредоточенными в интервалах 10–20, 60–100, 600–1200 и 8000 лет. Последний связан с изменением дипольного магнитного момента в 1,5–2 раза.

2. Мировые аномалии – отклонения от эквивалентного диполя до 20% напряженности отдельных областей с характерными размерами до10 000 км. Эти аномальные поля испытывают вековые вариации, приводящие к изменениям со временем в течение многих лет и столетий. Примеры аномалий: Бразильская, Канадская, Сибирская, Курская. В ходе вековых вариаций мировые аномалии смещаются, распадаются и возникают вновь. На низких широтах имеется западный дрейф по долготе со скоростью 0,2° в год.

3. Магнитные поля локальных областей внешних оболочек с протяженностью от нескольких до сотен км. Они обусловлены намагниченностью горных пород в верхнем слое Земли, слагающих земную кору и расположенных близко к поверхности. Одна из наиболее мощных – Курская магнитная аномалия.

4. Переменное магнитное поле Земли (так же называемое внешним) определяется источниками в виде токовых систем, находящимися за пределами земной поверхности и в ее атмосфере. Основными источниками таких полей и их изменений являются корпускулярные потоки замагниченной плазмы, приходящие от Солнца вместе с солнечным ветром, и формирующие структуру и форму земной магнитосферы.

Структура магнитного поля земной атмосферы.

Земное магнитное поле находится под воздействием потока намагниченной солнечной плазмы. В результате взаимодействия с полем Земли образуется внешняя граница околоземного магнитного поля, называемая магнитопаузой. Она ограничивает земную магнитосферу. Из-за воздействия солнечных корпускулярных потоков размеры и форма магнитосферы постоянно меняются, и возникает переменное магнитное поле, определяемое внешними источниками. Его переменность обязана своим происхождением токовым системам, развивающимся на различных высотах от нижних слоев ионосферы до магнитопаузы. Изменения магнитного поля Земли во времени, вызванные различными причинами, называются геомагнитными вариациями, которые различаются как по своей длительности, так и по локализации на Земле и в ее атмосфере.

Магнитосфера – область околоземного космического пространства, контролируемая магнитным полем Земли. Магнитосфера формируется в результате взаимодействия солнечного ветра с плазмой верхних слоев атмосферы и магнитным полем Земли. По форме магнитосфера представляет собой каверну и длинный хвост, которые повторяют форму магнитных силовых линий. Подсолнечная точка в среднем находится на расстоянии 10 земных радиусов, а хвост магнитосферы простирается за орбиту Луны. Топология магнитосферы определяется областями вторжения солнечной плазмы внутрь магнитосферы и характером токовых систем.

Хвост магнитосферы образован силовыми линиями магнитного поля Земли, выходящими из полярных областей и вытянутых под действием солнечного ветра на сотни земных радиусов от Солнца в ночную сторону Земли. В итоге плазма солнечного ветра и солнечных корпускулярных потоков как бы обтекают земную магнитосферу, придавая ей своеобразную хвостатую форму. В хвосте магнитосферы, на больших расстояниях от Земли, напряженность магнитного поля Земли, а следовательно и их защитные свойства, ослабляются, и некоторые частицы солнечной плазмы получают возможность проникнуть и попасть во внутрь земной магнитосферы и магнитных ловушек радиационных поясов. Проникая в головную часть магнитосферы в область овалов полярных сияний под действием изменяющегося давления солнечного ветра и межпланетного поля, хвост служит местом формирования потоков высыпающихся частиц, вызывающих полярные сияния и авроральные токи. Магнитосфера отделена от межпланетного пространства магнитопаузой. Вдоль магнитопаузы частицы корпускулярных потоков обтекают магнитосферу. Влияние солнечного ветра на земное магнитное поле иногда бывает очень сильным. Магнитопауза внешняя граница магнитосферы Земли (или планеты), на которой динамическое давление солнечного ветра уравновешивается давлением собственного магнитного поля. При типичных параметрах солнечного ветра подсолнечная точка удалена от центра Земли на 9–11 земных радиусов. В период магнитных возмущений на Земле магнитопауза может заходить за геостационарную орбиту (6,6 радиусов Земли). При слабом солнечном ветре подсолнечная точка находится на расстоянии 15–20 радиусов Земли.

Солнечный ветер –

истечение плазмы солнечной короны в межпланетное пространство. На уровне орбиты Земли средняя скорость частиц солнечного ветра (протонов и электронов) около 400 км/с, число частиц – несколько десятков в 1 см 3 .

Магнитная буря.

Локальные характеристики магнитного поля изменяются и колеблются иногда в течение многих часов, а потом восстанавливаются до прежнего уровня. Это явление называется магнитной бурей . Магнитные бури часто начинаются внезапно и одновременно по всему земному шару.


Геомагнитные вариации.

Изменение магнитного поля Земли во времени под действием различных факторов называются геомагнитными вариациями. Разность между наблюдаемой величиной напряженности магнитного поля и средним ее значением за какой-либо длительный промежуток времени, например, месяц или год, называется геомагнитной вариацией. Согласно наблюдениям, геомагнитные вариации непрерывно изменяются во времени, причем такие изменения часто носят периодический характер.

Cуточные вариации . Cуточные вариации геомагнитного поля возникают регулярно в основном за счет токов в ионосфере Земли, вызванных изменениями освещенности земной ионосферы Солнцем в течение суток.

Нерегулярные вариации . Нерегулярные вариации магнитного поля возникают вследствие воздействия потока солнечной плазмы (солнечного ветра) на магнитосферу Земли, а так же изменений внутри магнитосферы и взаимодействия магнитосферы с ионосферой.

27-дневные вариации . 27-дневные вариации существуют как тенденция к повторению увеличения геомагнитной активности через каждые 27 дней, соответствующих периоду вращения Солнца относительно земного наблюдателя. Эта закономерность связана с существованием долгоживущих активных областей на Солнце, наблюдаемых в течении нескольких оборотов Солнца. Эта закономерность проявляется в виде 27-дневной повторяемости магнитной активности и магнитных бурь.

Сезонные вариации . Сезонные вариации магнитной активности уверенно выявляются на основании среднемесячных данных о магнитной активности, полученных путем обработки наблюдений за несколько лет. Их амплитуда увеличивается с ростом общей магнитной активности. Найдено, что сезонные вариации магнитной активности имеют два максимума, соответствующие периодам равноденствий, и два минимума, соответствующие периодам солнцестояний. Причиной этих вариаций является образование активных областей на Солнце, которые группируются в зонах от 10 до 30° северной и южной гелиографических широт. Поэтому в периоды равноденствий, когда плоскости земного и солнечного экваторов совпадают, Земля наиболее подвержена действию активных областей на Солнце.

11-летние вариации . Наиболее ярко связь между солнечной активностью и магнитной активностью проявляется при сопоставлении длинных рядов наблюдений, кратных 11 летним периодам солнечной активности. Наиболее известной мерой солнечной активности является число солнечных пятен. Найдено, что в годы максимального количества солнечных пятен магнитная активность также достигает наибольшей величины, однако возрастание магнитной активности несколько запаздывает по отношению к росту солнечной, так что в среднем это запаздывание составляет один год.

Вековые вариации – медленные вариации элементов земного магнетизма с периодами от нескольких лет и более. В отличии от суточных, сезонных, и других вариаций внешнего происхождения, вековые вариации связаны с источниками, лежащими внутри земного ядра. Амплитуда вековых вариаций достигает десятков нТл/год, изменения среднегодовых значений таких элементов, названы вековым ходом. Изолинии вековых вариаций концентрируются вокруг нескольких точек – центры или фокусы векового хода, в этих центрах величина векового хода достигает максимальных значений.

Радиационные пояса и космические лучи.

Радиационные пояса Земли – две области ближайшего околоземного космического пространства, которые в виде замкнутых магнитных ловушек окружают Землю.

В них сосредоточены огромные потоки протонов и электронов, захваченных дипольным магнитным полем Земли. Магнитное поле Земли оказывает сильное влияние на электрически заряженные частицы, движущиеся в околоземном космическом пространстве. Есть два основных источника возникновения этих частиц: космические лучи, т.е. энергичные (от 1 до12 ГэВ) электроны, протоны и ядра тяжелых элементов, приходящие с почти световыми скоростями, главным образом, из других частей Галактики. И корпускулярные потоки менее энергичных заряженных частиц (10 5 –10 6 эВ), выброшенных Солнцем. В магнитном поле электрические частицы движутся по спирали; траектория частицы как бы навивается на цилиндр, по оси которого проходит силовая линия. Радиус этого воображаемого цилиндра зависит от напряженности поля и энергии частицы. Чем больше энергия частицы, тем при данной напряженности поля радиус (он называется ларморовским) больше. Если ларморовский радиус много меньше, чем радиус Земли, частица не достигает ее поверхности, а захватывается магнитным полем Земли. Если ларморовский радиус много больше, чем радиус Земли, частица движется так, как будто бы магнитного поля нет, частицы проникают сквозь магнитное поле Земли в экваториальных районах, если их энергия больше 10 9 эв. Такие частицы вторгаются в атмосферу и вызывают при столкновении с ее атомами ядерные превращения, которые дают определенные количества вторичных космических лучей. Эти вторичные космические лучи уже регистрируются на поверхности Земли. Для исследования космических лучей в их первоначальной форме (первичных космических лучей) аппаратуру поднимают на ракетах и искусственных спутниках Земли. Примерно 99% энергичных частиц, «пробивающих» магнитный экран Земли, являются космическими лучами галактического происхождения и лишь около 1% образуется на Солнце. Магнитное поле Земли удерживает огромное число энергичных частиц, как электронов, так и протонов. Их энергия и концентрация зависят от расстояния до Земли и геомагнитной широты. Частицы заполняют как бы огромные кольца или пояса, охватывающие Землю вокруг геомагнитного экватора.


Эдвард Кононович

Эти глобальные модели - такие как Международное геомагнитное аналитическое поле (International Geomagnetic Reference Field, IGRF) и Всемирная магнитная модель (World Magnetic Model, WMM) - создаются различными международными геофизическими организациями, и каждые 5 лет утверждаются и публикуются обновлённые наборы коэффициентов Гаусса, определяющих все данные о состоянии геомагнитного поля и его параметрах . Так, согласно модели WMM2015, северный геомагнитный полюс (по сути это южный полюс магнита) имеет координаты 80,37° с. ш. и 72,62° з. д., южный геомагнитный полюс - 80,37° ю. ш., 107,38° в. д., наклон оси диполя относительно оси вращения Земли - 9,63° .

Поля мировых аномалий

Реальные силовые линии магнитного поля Земли, хотя в среднем и близки к силовым линиям диполя, отличаются от них местными нерегулярностями, связанными с наличием намагниченных пород в коре , расположенных близко к поверхности. Из-за этого в некоторых местах на земной поверхности параметры поля сильно отличаются от значений в близлежащих районах, образуя так называемые магнитные аномалии . Они могут накладываться одна на другую, если вызывающие их намагниченные тела залегают на разных глубинах .

Существование магнитных полей протяжённых локальных областей внешних оболочек приводит к тому, что истинные магнитные полюса - точки (вернее, небольшие области), в которых силовые линии магнитного поля абсолютно вертикальны, - не совпадают с геомагнитными, при этом они лежат не на самой поверхности Земли, а под ней . Координаты магнитных полюсов на тот или иной момент времени также вычисляются в рамках различных моделей геомагнитного поля путём нахождения итеративным методом всех коэффициентов в ряду Гаусса. Так, согласно актуальной модели WMM, в 2015 г. северный магнитный полюс находился в точке 86° с. ш., 159° з. д., а южный - 64° ю. ш., 137° в.д . Значения актуальной модели IGRF12 немного отличаются: 86,3° с. ш., 160° з. д., для северного полюса, 64,3° ю. ш., 136,6° в.д для южного .

Соответственно, магнитная ось - прямая, проходящая через магнитные полюса, - не проходит через центр Земли и не является её диаметром .

Положения всех полюсов постоянно смещаются - геомагнитный полюс прецессирует относительно географического с периодом около 1200 лет .

Внешнее магнитное поле

Оно определяется источниками в виде токовых систем, находящимися за пределами земной поверхности в её атмосфере . В верхней части атмосферы (100 км и выше) - ионосфере - её молекулы ионизируются, формируя плазму , поэтому эта часть магнитосферы Земли, простирающаяся на расстояние до трёх её радиусов, называется плазмосферой . Плазма удерживается магнитным полем Земли, но её состояние определяется его взаимодействием с солнечным ветром - потоком плазмы солнечной короны .

Таким образом, на большем удалении от поверхности Земли магнитное поле несимметрично, так как искажается под действием солнечного ветра: со стороны Солнца оно сжимается, а в направлении от Солнца приобретает «шлейф», который простирается на сотни тысяч километров, выходя за орбиту Луны . Эта своеобразная «хвостатая» форма возникает, когда плазма солнечного ветра и солнечных корпускулярных потоков как бы обтекают земную магнитосферу - область околоземного космического пространства, ещё контролируемая магнитным полем Земли, а не Солнца и других межпланетных источников ; она отделяется от межпланетного пространства магнитопаузой , где динамическое давление солнечного ветра уравновешивается давлением собственного магнитного поля. Подсолнечная точка магнитосферы в среднем находится на расстоянии 10 земных радиусов * R ⊕ ; при слабом солнечном ветре это расстояние достигает 15-20 R ⊕ , а в период магнитных возмущений на Земле магнитопауза может заходить за геостационарную орбиту (6,6 R ⊕) . Вытянутый хвост на ночной стороне имеет диаметр около 40 R ⊕ и длину более 900 R ⊕ ; начиная с расстояния примерно 8 R ⊕ , он разделен на части плоским нейтральным слоем, в котором индукция поля близка к нулю .

Геомагнитное поле вследствие специфической конфигурации линий индукции создает для заряженных частиц - протонов и электронов - магнитную ловушку. Оно захватывает и удерживает огромное их количество, так что магнитосфера является своеобразным резервуаром заряженных частиц. Общая их масса, по различным оценкам, составляет от 1 кг до 10 кг. Они формируют так называемый радиационный пояс , охватывающий Землю со всех сторон, кроме приполярных областей. Его условно разделяют на два - внутренний и внешний. Нижняя граница внутреннего пояса находится на высоте около 500 км, его толщина - несколько тысяч километров. Внешний пояс находится на высоте 10-15 тыс. км. Частицы радиационного пояса под действием силы Лоренца совершают сложные периодические движения из Северного полушария в Южное и обратно, одновременно медленно перемещаясь вокруг Земли по азимуту. В зависимости от энергии они совершают полный оборот вокруг Земли за время от нескольких минут до суток .

Магнитосфера не подпускает к земле потоки космических частиц . Однако в её хвосте, на больших расстояниях от Земли напряженность геомагнитного поля, а следовательно, и его защитные свойства, ослабляются, и некоторые частицы солнечной плазмы получают возможность попасть вовнутрь магнитосферы и магнитных ловушек радиационных поясов. Хвост таким образом служит местом формирования потоков высыпающихся частиц, вызывающих полярные сияния и авроральные токи . В полярных областях часть потока солнечной плазмы вторгается в верхние слои атмосферы из радиационного пояса Земли и, сталкиваясь с молекулами кислорода и азота, возбуждает их или ионизирует, а при обратном переходе в невозбужденное состояние атомы кислорода излучают фотоны с λ = 0,56 мкм и λ = 0,63 мкм, ионизированные же молекулы азота при рекомбинации высвечивают синие и фиолетовые полосы спектра. При этом наблюдаются полярные сияния, особенно динамичные и яркие во время магнитных бурь . Они происходят при возмущениях в магнитосфере, вызванных увеличением плотности и скорости солнечного ветра при усилении солнечной активности .

Параметры поля

Наглядное представление о положении линий магнитной индукции поля Земли даёт магнитная стрелка, закреплённая таким образом, что может свободно вращаться и вокруг вертикальной, и вокруг горизонтальной оси (например, в кардановом подвесе), - в каждой точке вблизи поверхности Земли она устанавливается определённым образом вдоль этих линий.

Поскольку магнитные и географические полюса не совпадают, магнитная стрелка указывает направление с севера на юг только приблизительно. Вертикальную плоскость, в которой устанавливается магнитная стрелка, называют плоскостью магнитного меридиана данного места, а линию, по которой эта плоскость пересекается с поверхностью Земли, - магнитным меридианом . Таким образом, магнитные меридианы - это проекции силовых линий магнитного поля Земли на её поверхность, сходящиеся в северном и южном магнитных полюсах . Угол между направлениями магнитного и географического меридианов называют магнитным склонением . Оно может быть западным (часто обозначается знаком «-») или восточным (обозначается знаком «+»), в зависимости от того, к западу или востоку отклоняется северный полюс магнитной стрелки от вертикальной плоскости географического меридиана .

Далее, линии магнитного поля Земли, вообще говоря, не параллельны её поверхности. Это означает, что магнитная индукция поля Земли не лежит в плоскости горизонта данного места, а образует с этой плоскостью некий угол - он называется магнитным наклонением . Оно близко к нулю лишь в точках магнитного экватора - окружности большого круга в плоскости, которая перпендикулярна к магнитной оси .

Магнитное склонение и магнитное наклонение определяют направление магнитной индукции поля Земли в каждом конкретном месте. А численное значение этой величины можно найти, зная наклонение и одну из проекций вектора магнитной индукции B {\displaystyle \mathbf {B} } - на вертикальную или горизонтальную ось (последнее оказывается более удобным на практике). Таким образом, три этих параметра - магнитное склонение, наклонение и модуль вектора магнитной индукции B (либо вектора напряжённости магнитного поля H {\displaystyle \mathbf {H} } ) - полностью характеризуют геомагнитное поле в данном месте. Их точное знание для максимально большого числа пунктов на Земле имеет чрезвычайно важное значение . Составляются специальные магнитные карты, на которых нанесены изогоны (линии одинакового склонения) и изоклины (линии одинакового наклонения), необходимые для ориентации с помощью компаса .

В среднем интенсивность магнитного поля Земли колеблется от 25,000 до 65,000 нТл (0,25 - 0,65 Гс) и сильно зависит от географического положения . Это соответствует средней напряжённости поля около 0,5 (40 /) . На магнитном экваторе её величина - около 0,34 , у магнитных полюсов - около 0,66 Э. В некоторых районах (магнитных аномалий) напряжённость резко возрастает: в районе Курской магнитной аномалии она достигает 2 Э .

Природа магнитного поля Земли

Впервые объяснить существование магнитных полей Земли и Солнца попытался Дж. Лармор в 1919 году , предложив концепцию динамо , согласно которой поддержание магнитного поля небесного тела происходит под действием гидродинамического движения электропроводящей среды. Однако в 1934 году Т. Каулинг доказал теорему о невозможности поддержания осесимметричного магнитного поля посредством гидродинамического динамо-механизма. А поскольку большинство изучаемых небесных тел (и тем более Земля) считались аксиально-симметричными, на основании этого можно было сделать предположение, что их поле тоже будет аксиально-симметричным, и тогда его генерация по такому принципу будет невозможна согласно этой теореме. Позже было показано, что не у всех уравнений с аксиальной симметрией, описывающих процесс генерации магнитного поля, решение будет аксиально-симметричным, и в 1950-х гг. несимметричные решения были найдены .

С тех пор теория динамо успешно развивается, и на сегодняшний день общепринятым наиболее вероятным объяснением происхождения магнитного поля Земли и других планет является самовозбуждающийся динамо-механизм, основанный на генерации электрического тока в проводнике при его движении в магнитном поле, порождаемом и усиливаемом самими этими токами. Необходимые условия создаются в ядре Земли : в жидком внешнем ядре , состоящем в основном из железа при температуре порядка 4-6 тысяч кельвин, которое отлично проводит ток, создаются конвективные потоки, отводящие тепло от твёрдого внутреннего ядра (генерируемого благодаря распаду радиоактивных элементов либо освобождению скрытой теплоты при затвердевании вещества на границе между внутренним и внешним ядром по мере постепенного остывания планеты). Силы Кориолиса закручивают эти потоки в характерные спирали, образующие так называемые столбы Тейлора . Благодаря трению слоёв они приобретают электрический заряд, формируя контурные токи. Таким образом, создаётся система токов, циркулирующих по проводящему контуру в движущихся в (изначально присутствующем, пусть и очень слабом) магнитном поле проводниках, как в диске Фарадея . Она создает магнитное поле, которое при благоприятной геометрии течений усиливает начальное поле, а это, в свою очередь, усиливает ток, и процесс усиления продолжается до тех пор, пока растущие с увеличением тока потери на джоулево тепло не уравновесят притоки энергии, поступающей за счет гидродинамических движений .

Математически этот процесс описывается дифференциальным уравнением

∂ B ∂ t = η ∇ 2 B + ∇ × (u × B) {\displaystyle {\frac {\partial \mathbf {B} }{\partial t}}=\eta \mathbf {\nabla } ^{2}\mathbf {B} +\mathbf {\nabla } \times (\mathbf {u} \times \mathbf {B})} ,

где u - скорость потока жидкости, B - магнитная индукция , η = 1/μσ - магнитная вязкость , σ - электропроводность жидкости, а μ - магнитная проницаемость , практически не отличающаяся при такой высокой температуре ядра от μ 0 - проницаемости вакуума.

Однако для полного описания необходимо записать систему магнитогидродинамических уравнений. В приближении Буссинеска (в рамках которого все физические характеристики жидкости полагаются постоянными, кроме силы Архимеда , при расчёте которой учитываются изменения плотности вследствие разности температур) это :

  • Уравнение Навье - Стокса , содержащее члены, выражающие совокупное действие вращения и магнитного поля:
ρ 0 (∂ u ∂ t + u ⋅ ∇ u) = − ∇ P + ρ 0 ν ∇ 2 u + ρ g ¯ − 2 ρ 0 Ω × u + J × B {\displaystyle \rho _{0}\left({\frac {\partial \mathbf {u} }{\partial t}}+\mathbf {u} \cdot \mathbf {\nabla } \mathbf {u} \right)=-\nabla \mathbf {P} +\rho _{0}\nu \mathbf {\nabla } ^{2}\mathbf {u} +\rho {\bar {\mathbf {g} }}-2\rho _{0}\mathbf {\Omega } \times \mathbf {u} +\mathbf {J} \times \mathbf {B} } .
  • Уравнение теплопроводности , выражающее закон сохранения энергии :
∂ T ∂ t + u ⋅ ∇ T = κ ∇ 2 T + ϵ {\displaystyle {\frac {\partial T}{\partial t}}+\mathbf {u} \cdot \mathbf {\nabla } T=\kappa \mathbf {\nabla } ^{2}T+\epsilon } ,

Прорыв в этом отношении был достигнут в 1995 году в работах групп из Японии и Соединённых Штатов . Начиная с этого момента, результаты ряда работ численного моделирования удовлетворительно воспроизводят качественные характеристики геомагнитного поля в динамике, в том числе инверсии .

Изменения магнитного поля Земли

Это подтверждается и текущим возрастанием угла раствора каспов (полярных щелей в магнитосфере на севере и юге), который к середине 1990-х годов достиг 45°. В расширившиеся щели устремился радиационный материал солнечного ветра, межпланетного пространства и космических лучей, вследствие чего в полярные области поступает большее количество вещества и энергии, что может привести к дополнительному разогреву полярных шапок [ ] .

Геомагнитные координаты (координаты Мак-Илвайна)

В физике космических лучей широко используются специфические координаты в геомагнитном поле, названные в честь учёного Карла Мак-Илвайна (Carl McIlwain ), первым предложившего их использование , так как они основаны на инвариантах движения частиц в магнитном поле. Точка в дипольном поле характеризуется двумя координатами (L, B), где L - так называемая магнитная оболочка, или параметр Мак-Илвайна (англ. L-shell, L-value, McIlwain L-parameter ), B - магнитная индукция поля (обычно в Гс). За параметр магнитной оболочки обычно принимается величина L, равная отношению среднего удаления реальной магнитной оболочки от центра Земли в плоскости геомагнитного экватора, к радиусу Земли. .

История исследований

Ещё несколько тысячелетий назад в Древнем Китае было известно, что намагниченные предметы располагаются в определённом направлении, в частности стрелка компаса всегда занимает определённое положение в пространстве. Благодаря этому человечество с давних пор получило возможность при помощи такой стрелки (компаса) ориентироваться в открытом море вдали от берегов. Однако до плавания Колумба из Европы в Америку (1492 г.) особого внимания к исследованию такого явления никто не проявлял, так как ученые того времени полагали, что оно происходит в результате притяжения стрелки Полярной звездой . В Европе и омывающих её морях компас в то время устанавливался почти по географическому меридиану. При пересечении же Атлантического океана Колумб заметил, что примерно на полпути между Европой и Америкой стрелка компаса отклонилась почти на 12° к западу. Этот факт сразу же породил сомнение в правильности прежней гипотезы о притяжении стрелки Полярной звездой, дал толчок к серьезному изучению вновь открытого явления: сведения о магнитном поле Земли были нужны мореплавателям. С этого момента и получила свое начало наука о земном магнетизме, начались повсеместные измерения магнитного склонения , то есть угла между географическим меридианом и осью магнитной стрелки, то есть магнитным меридианом. В 1544 году немецкий учёный Георг Хартман открыл новое явление: магнитная стрелка не только отклоняется от географического меридиана, но, будучи подвешена за центр тяжести, стремится встать под некоторым углом к горизонтальной плоскости, названным магнитным наклонением .

С этого момента наряду с изучением явления отклонения ученые начали также исследовать и наклонение магнитной стрелки. У Хосе де Акосты (одного из основателей геофизики , по словам Гумбольдта) в его Истории (1590) впервые появилась теория о четырёх линиях без магнитного склонения. Он описал использование компаса, угол отклонения, различия между Магнитным и Северным полюсом, а также колебание отклонений от одной точки до другой, идентифицировал места с нулевым отклонением, например, на Азорских островах .

В результате наблюдений было установлено, что как склонение, так и наклонение имеют различные значения в разных точках земной поверхности. При этом их изменения от точки к точке подчиняются некоторой сложной закономерности. Её исследование позволило придворному врачу английской королевы Елизаветы и натурфилософу Уильяму Гильберту выдвинуть в 1600 году в своей книге «О магните» («De Magnete») гипотезу о том, что Земля представляет собой магнит, полюсы которого совпадают с географическими полюсами. Другими словами, У. Гильберт полагал, что поле Земли подобно полю намагниченной сферы. Свое утверждение У. Гильберт основывал на опыте с моделью нашей планеты, представляющей собой намагниченный железный шар, и маленькой железной стрелкой. Главным аргументом в пользу своей гипотезы Гильберт считал, что магнитное наклонение, измеренное на такой модели, оказалось почти одинаковым с наклонением, наблюдавшимся на земной поверхности. Несоответствие же земного склонения со склонением на модель Гильберт объяснял отклоняющим действием материков на магнитную стрелку. Хотя многие факты, установленные позднее, не совпадали с гипотезой Гильберта, она не теряет своего значения и до сих пор. Основная мысль Гильберта о том, что причину земного магнетизма следует искать внутри Земли, оказалась правильной, равно как и то, что в первом приближении Земля действительно является большим магнитом, представляющим собой однородно намагниченный шар .

В 1634 году английский астроном Генри Геллибранд ?! установил, что магнитное склонение в Лондоне меняется со временем. Это стало первым зафиксированным свидетельством вековых вариаций - регулярных (от года к году) изменений средних годовых значений компонентов геомагнитного поля .

Углы склонения и наклонения определяют направление в пространстве напряженности магнитного поля Земли, но не могут дать её численного значения. До конца XVIII в. измерения величины напряженности не производились по той причине, что не были известны законы взаимодействия между магнитным полем и намагниченными телами. Лишь после того, как в 1785-1789 гг. французским физиком Шарлем Кулоном был установлен закон, названный его именем , появилась возможность таких измерений. С конца XVIII в., наряду с наблюдением склонения и наклонения, начались повсеместные наблюдения горизонтальной составляющей, представляющей собой проекцию вектора напряженности магнитного поля на горизонтальную плоскость (зная же склонение и наклонение, можно рассчитать и величину полного вектора напряженности магнитного поля) .

Первая теоретическая работа о том, что представляет собой магнитное поле Земли, то есть каковы величина и направление его напряженности в каждой точке земной поверхности, принадлежит немецкому математику Карлу Гауссу . В 1834 г. он дал математическое выражение для составляющих напряженности как функции координат - широты и долготы места наблюдения. Пользуясь этим выражением, можно для каждой точки земной поверхности найти значения любой из составляющих, которые носят названия элементов земного магнетизма. Эта и другие работы Гаусса стали фундаментом, на котором построено здание современной науки о земном магнетизме . В частности, в 1839 году он доказал, что основная часть магнитного поля выходит из Земли, а причину небольших, коротких отклонений его значений необходимо искать во внешней среде .

В 1831 году английским полярным исследователем Джоном Россом в Канадском архипелаге был открыт северный магнитный полюс - область, где магнитная стрелка занимает вертикальное положение, то есть наклонение равно 90°. А в 1841 г. Джеймс Росс (племянник Джона Росса) достиг другого магнитного полюса Земли , находящегося в Антарктиде .

См. также

  • Intermagnet (англ. )

Примечания

  1. Ученые в США выяснили, что магнитное поле Земли на 700 млн лет старше, чем считалось
  2. Эдвард Кононович. Магнитное поле Земли (неопр.) . http://www.krugosvet.ru/ . Энциклопедия Кругосвет: Универсальная научно-популярная онлайн-энциклопедия. Проверено 2017-04-26 .
  3. Geomagnetism Frequently Asked Questions (англ.) . https://www.ngdc.noaa.gov/ngdc.html . National Centers for Environmental Information (NCEI). Проверено 23 апреля 2017.
  4. А. И. Дьяченко. Магнитные полюса Земли . - Москва: Издательство Московского центра непрерывного математического образования, 2003. - 48 с. - ISBN 5-94057-080-1 .
  5. А. В. Викулин. VII. Геомагнитное поле и электромагнетизм Земли // Введение в физику Земли. Учебное пособие для геофизических специальностей вузов.. - Издательство Камчатского государственного педагогического университета, 2004. - 240 с. - ISBN 5-7968-0166-X .

Строение и характеристики магнитного поля Земли

На небольшом удалении от поверхности Земли, порядка трёх её радиусов, магнитные силовые линии имеют диполеподобное расположение. Эта область называется плазмосферой Земли.

По мере удаления от поверхности Земли усиливается воздействие солнечного ветра : со стороны Солнца геомагнитное поле сжимается, а с противоположной, ночной стороны, оно вытягивается в длинный «хвост».

Плазмосфера

Заметное влияние на магнитное поле на поверхности Земли оказывают токи в ионосфере . Это область верхней атмосферы, простирающаяся от высот порядка 100 км и выше. Содержит большое количество ионов . Плазма удерживается магнитным полем Земли, но её состояние определяется взаимодействием магнитного поля Земли с солнечным ветром, чем и объясняется связь магнитных бурь на Земле с солнечными вспышками.

Параметры поля

Точки Земли, в которых напряжённость магнитного поля имеет вертикальное направление, называют магнитными полюсами . Таких точек на Земле две: северный магнитный полюс и южный магнитный полюс .

Прямая, проходящая через магнитные полюсы, называется магнитной осью Земли. Окружность большого круга в плоскости, которая перпендикулярна к магнитной оси, называется магнитным экватором. Вектор магнитного поля в точках магнитного экватора имеет приблизительно горизонтальное направление.

Для магнитного поля Земли характерны возмущения, называемые геомагнитными пульсациями вследствие возбуждения гидромагнитных волн в магнитосфере Земли; частотный диапазон пульсаций простирается от миллигерц до одного килогерца .

Магнитный меридиан

Магнитными меридианами называются проекции силовых линий магнитного поля Земли на её поверхность; сложные кривые, сходящиеся в северном и южном магнитных полюсах Земли .

Гипотезы о природе магнитного поля Земли

В последнее время получила развитие гипотеза, связывающая возникновение магнитного поля Земли с протеканием токов в жидком металлическом ядре. Подсчитано, что зона, в которой действует механизм «магнитное динамо », находится на расстоянии 0,25-0,3 радиуса Земли . Аналогичный механизм генерации поля может иметь место и на других планетах, в частности, в ядрах Юпитера и Сатурна (по некоторым предположениям, состоящих из жидкого металлического водорода).

Изменения магнитного поля Земли

Это подтверждается и текущим возрастанием угла раствора каспов (полярных щелей в магнитосфере на севере и юге), который к середине 1990-х годов достиг 45°. В расширившиеся щели устремился радиационный материал солнечного ветра, межпланетного пространства и космических лучей, вследствие чего в полярные области поступает большее количество вещества и энергии, что может привести к дополнительному разогреву полярных шапок.

Геомагнитные координаты (координаты Мак-Илвайна)

В физике космических лучей широко используются специфические координаты в геомагнитном поле, названные в честь учёного Карла Мак-Илвайна (Carl McIlwain ), первым предложившего их использование , так как они основаны на инвариантах движения частиц в магнитном поле. Точка в дипольном поле характеризуется двумя координатами (L, B), где L - так называемая магнитная оболочка, или параметр Мак-Илвайна (англ. L-shell, L-value, McIlwain L-parameter ), B - магнитная индукция поля (обычно в Гс). За параметр магнитной оболочки обычно принимается величина L, равная отношению среднего удаления реальной магнитной оболочки от центра Земли в плоскости геомагнитного экватора, к радиусу Земли. .

История исследований

О способности намагниченных предметов располагаться в определённом направлении было известно ещё китайцам несколько тысячелетий назад.

В 1544 году немецкий учёный Георг Гартман открыл магнитное наклонение . Магнитным наклонением называют угол, на который стрелка под действием магнитного поля Земли отклоняется от горизонтальной плоскости вниз или вверх. В полушарии севернее магнитного экватора (который не совпадает с географическим экватором) северный конец стрелки отклоняется вниз, в южном - наоборот. На самом магнитном экваторе линии магнитного поля параллельны поверхности Земли.

Впервые предположение о наличии магнитного поля Земли, которое и вызывает такое поведение намагниченных предметов, высказал английский врач и натурфилософ Уильям Гильберт (англ. William Gilbert ) в 1600 году в своей книге «О магните» («De Magnete»), в которой описал опыт с шаром из магнитной руды и маленькой железной стрелкой. Гильберт пришел к заключению, что Земля представляет собой большой магнит. Наблюдения английского астронома Генри Геллибранда (англ. Henry Gellibrand ) показали, что геомагнитное поле не постоянно, а медленно изменяется.

Угол, на который отклоняется магнитная стрелка от направления север - юг, называют магнитным склонением. Христофор Колумб открыл, что магнитное склонение не остается постоянным, а претерпевает изменения с изменением географических координат. Открытие Колумба послужило толчком к новому изучению магнитного поля Земли: сведения о нём были нужны мореплавателям. Русский ученый М. В. Ломоносов в 1759 г. в докладе «Рассуждение о большой точности морского пути» дал ценные советы, позволяющие увеличить точность показаний компаса. Для изучения земного магнетизма М. В. Ломоносов рекомендовал организовать сеть постоянных пунктов (обсерваторий), в которых производить систематические магнитные наблюдения; такие наблюдения необходимо широко проводить и на море. Мысль Ломоносова об организации магнитных обсерваторий была осуществлена лишь спустя 60 лет в России.

В 1831 г. английским полярным исследователем Джоном Россом в Канадском архипелаге был открыт магнитный полюс - область, где магнитная стрелка занимает вертикальное положение, то есть наклонение равно 90°. В 1841 г. Джеймс Росс (племянник Джона Росса) достиг другого магнитного полюса Земли, находящегося в Антарктиде.

Карл Гаусс (нем. Carl Friedrich Gauß ) выдвинул теорию о происхождении магнитного поля Земли и в 1839 году доказал, что основная его часть выходит из Земли, а причину небольших, коротких отклонений его значений необходимо искать во внешней среде.

См. также

  • Intermagnet (англ. )

Примечания

Литература

  • Сивухин Д. В. Общий курс физики. - Изд. 4-е, стереотипное. - М .: Физматлит ; Изд-во МФТИ, 2004. - Т. III. Электричество. - 656 с. - ISBN 5-9221-0227-3 ; ISBN 5-89155-086-5 .
  • Кошкин Н.И., Ширкевич М.Г. Справочник по элементарной физике. - М .: Наука, 1976.
  • Н. В. Короновский Магнитное поле геологического прошлого Земли. Соросовский образовательный журнал, N5, 1996, с. 56-63

Ссылки

Карты смещения магнитных полюсов Земли за период с 1600 по 1995 год

Прочая информация по теме

  • Инверсии магнитного поля в геологической истории Земли
  • Влияние инверсии магнитного поля на климат и эволюцию жизни на Земле

Wikimedia Foundation . 2010 .

Смотреть что такое "Магнитное поле Земли" в других словарях:

    До расстояний? 3R= (R= радиус Земли) соответствует приблизительно полю однородно намагниченного шара с напряженностью поля? 55 7 А/м (0,70 Э) у полюсов магнитных Земли и 33,4 А/м (0,42 Э) на магнитном экваторе. На расстояниях 3R магнитное поле… … Большой Энциклопедический словарь

    Пространство вокруг земного шара, в котором обнаруживается сила земного магнетизма. Магнитное поле Земли характеризуется вектором напряженности, магнитным наклонением и магнитным склонением. EdwART. Толковый Военно морской Словарь, 2010 … Морской словарь