Болезни Военный билет Призыв

Какие окружности. Чем круг отличается от окружности: объяснение. Площадь круга по длине окружности: формула

Формы круга, окружности мы встречаем повсюду: это и колесо машины, и линия горизонта, и диск Луны. Математики стали заниматься геометрической фигурой - кругом на плоскости - очень давно.

Кругом с центром и радиусом называется множество точек плоскости, удаленных от на расстояние, не большее . Круг ограничен окружностью, состоящей из точек, удаленных от центра в точности на расстояние . Отрезки, соединяющие центр с точками окружности, имеют длину и также называются радиусами (круга, окружности). Части круга, на которые он делится двумя радиусами, называются круговыми секторами (рис. 1). Хорда - отрезок, соединяющий две точки окружности, - делит круг на два сегмента, а окружность – на две дуги (рис. 2). Перпендикуляр, проведенный из центра к хорде, делит ее и стягиваемые ею дуги пополам. Хорда тем длиннее, чем ближе она расположена к центру; самые длинные хорды - хорды, проходящие через центр, - называются диаметрами (круга, окружности).

Если прямая удалена от центра круга на расстояние , то при она не пересекается с кругом, при пересекается с кругом по хорде и называется секущей, при имеет с кругом и окружностью единственную общую точку и называется касательной. Касательная характеризуется тем, что она перпендикулярна радиусу, проведенному в точку касания. К кругу из точки, лежащей вне его, можно провести две касательные, причем их отрезки от данной точки до точек касания равны.

Дуги окружности, как и углы, можно измерять в градусах и его долях. За градус принимают часть всей окружности. Центральный угол (рис. 3) измеряется тем же числом градусов, что и дуга , на которую он опирается; вписанный угол измеряется половиной дуги . Если вершина угла лежит внутри круга, то этот угол в градусной мере равен полусумме дуг и (рис. 4,а). Угол с вершиной вне круга (рис. 4,б), высекающий на окружности дуги и , измеряется полуразностью дуг и . Наконец, угол между касательной и хордой равен половине заключенной между ними дуги окружности (рис. 4,в).

Круг и окружность имеют бесконечное множество осей симметрии.

Из теорем об измерении углов и подобия треугольников следуют две теоремы о пропорциональных отрезках в круге. Теорема о хордах говорит, что если точка лежит внутри круга, то произведение длин отрезков проходящих через нее хорд постоянно. На рис. 5,a . Теорема о секущей и касательной (имеются в виду длины отрезков частей этих прямых) утверждает, что если точка лежит вне круга, то произведение секущей на ее внешнюю часть тоже неизменно и равно квадрату касательной (рис. 5,б).

Еще в древности пытались решить задачи, связанные с кругом, - измерить длину окружности или ее дуги, площадь круга или сектора, сегмента. Первая из них имеет чисто «практическое» решение: можно уложить вдоль окружности нить, а потом развернуть ее и приложить к линейке или же отметить на окружности точку и «прокатить» ее вдоль линейки (можно, наоборот, «обкатить» линейкой окружность). Так или иначе измерения показывали, что отношение длины окружности к ее диаметру одно и то же для всех окружностей. Это отношение принято обозначать греческой буквой («пи» - начальная буква греческого слова perimetron, которое и означает «окружность»).

Однако древнегреческих математиков такой эмпирический, опытный подход к определению длины окружности не удовлетворял: окружность - это линия, т.е., по Евклиду, «длина без ширины», а таких нитей не бывает. Если же мы катим окружность по линейке, то возникает вопрос: почему при этом мы получим длину окружности, а не какую-нибудь другую величину? К тому же такой подход не позволял определить площадь круга.

Выход был найден такой: если рассмотреть вписанные в круг правильные -угольники , то при , стремящемся к бесконечности, в пределе стремятся к . Поэтому естественно ввести следующие, уже строгие, определения: длина окружности - это предел последовательности периметров правильных вписанных в окружность -угольников, а площадь круга - предел последовательности их площадей. Такой подход принят и в современной математике, причем по отношению не только к окружности и кругу, но и к другим кривым или ограниченным криволинейными контурами областям: вместо правильных многоугольников рассматривают последовательности ломаных с вершинами на кривых или контурах областей, а предел берется при стремлении длины наибольшего звена ломаной к нулю.

Аналогичным образом определяется длина дуги окружности: дуга делится на равных частей, точки деления соединяются ломаной и длина дуги полагается равной пределу периметров таких ломаных при , стремящемся к бесконечности. (Подобно древним грекам, мы не уточняем само понятие предела - оно относится уже не к геометрии и было вполне строго введено лишь в XIX в.)

Из самого определения числа следует формула для длины окружности:

Для длины дуги можно записать аналогичную формулу: поскольку для двух дуг и с общим центральным углом из соображений подобия вытекает пропорция , а из нее - пропорция , после перехода к пределу мы получаем независимость (от радиуса дуги) отношения . Это отношение определяется только центральным углом и называется радианной мерой этого угла и всех отвечающих ему дуг с центром в . Тем самым получается формула для длины дуги:

где - радианная мера дуги.

Записанные формулы для и - это всего лишь переписанные определения или обозначения, но с их помощью получаются уже далекие от просто обозначений формулы для площадей круга и сектора:

Для вывода первой формулы достаточно перейти к пределу в формуле для площади вписанного в круг правильного -угольника:

По определению левая часть стремится к площади круга , а правая - к числу

и , основания его медиан и , середины и отрезков прямых от точки пересечения его высот до его вершин.

Эта окружность, найденная в XVIII в. великим ученым Л. Эйлером (поэтому ее часто также называют окружностью Эйлера), была заново открыта в следующем столетии учителем провинциальной гимназии в Германии. Звали этого учителя Карл Фейербах (он был родным братом известного философа Людвига Фейербаха). Дополнительно К. Фейербах выяснил, что окружность девяти точек имеет еще четыре точки, тесно связанные с геометрией любого данного треугольника. Это - точки ее касания с четырьмя окружностями специального вида (рис. 2). Одна из этих окружностей вписанная, остальные три - вневписанные. Они вписаны в углы треугольника и касаются внешним образом его сторон. Точки касания этих окружностей с окружностью девяти точек и называются точками Фейербаха. Таким образом, окружность девяти точек является в действительности окружностью тринадцати точек.

Окружность эту очень легко построить, если знать два ее свойства. Во-первых, центр окружности девяти точек лежит в середине отрезка, соединяющего центр описанной около треугольника окружности с точкой - его ортоцентром (точка пересечения его высот). Во-вторых, ее радиус для данного треугольника равен половине радиуса описанной около него окружности.

Чтобы в общих чертах представить себе, что такое окружность, взгляните на кольцо или обруч. Можно также взять круглый стакан и чашку, поставить вверх дном на лист бумаги и обвести карандашом. При многократном увеличении полученная линия станет толстой и не совсем ровной, и края ее будут размытыми. Окружность как геометрическая фигура не имеет такой характеристики, как толщина.

Окружность: определение и основные средства описания

Окружность - это замкнутая кривая, состоящая из множества точек, расположенных в одной плоскости и равноудаленных от центра окружности. При этом центр находится в той же плоскости. Как правило, он обозначается буквой О.

Расстояние от любой из точек окружности до центра называется радиусом и обозначается буквой R.

Если соединить две любые точки окружности, то полученный отрезок будет называться хордой. Хорда, проходящая через центр окружности, - это диаметр, обозначаемый буквой D. Диаметр делит окружность на две равные дуги и по длине вдвое превышает размер радиуса. Таким образом, D = 2R, или R = D/2.

Свойства хорд

  1. Если через две любые точки окружности провести хорду, а затем перпендикулярно последней - радиус или диаметр, то этот отрезок разобьет и хорду, и дугу, отсеченную ею, на две равные части. Верно и обратное утверждение: если радиус (диаметр) делит хорду пополам, то он перпендикулярен ей.
  2. Если в пределах одной и той же окружности провести две параллельные хорды, то дуги, отсеченные ними, а также заключенные между ними, будут равны.
  3. Проведем две хорды PR и QS, пересекающиеся в пределах окружности в точке T. Произведение отрезков одной хорды всегда будет равно произведению отрезков другой хорды, то есть PT х TR = QT х TS.

Длина окружности: общее понятие и основные формулы

Одной из базовых характеристик данной геометрической фигуры является длина окружности. Формула выводится с использованием таких величин, как радиус, диаметр и константа "π", отражающая постоянство отношения длины окружности к ее диаметру.

Таким образом, L = πD, или L = 2πR, где L - это длина окружности, D - диаметр, R - радиус.

Формула длины окружности может рассматриваться как исходная при нахождении радиуса или диаметра по заданной длине окружности: D = L/π, R = L/2π.

Что такое окружность: основные постулаты

  • не иметь общих точек;
  • иметь одну общую точку, при этом прямая называется касательной: если провести радиус через центр и точку касания, то он будет перпендикулярен касательной;
  • иметь две общие точки, при этом прямая называется секущей.

2. Через три произвольные точки, лежащие в одной плоскости, можно провести не более одной окружности.

3. Две окружности могут соприкасаться только в одной точке, которая расположена на отрезке, соединяющем центры этих окружностей.

4. При любых поворотах относительно центра окружность переходит сама в себя.

5. Что такое окружность с точки зрения симметрии?

  • одинаковая кривизна линии в любой из точек;
  • относительно точки О;
  • зеркальная симметрия относительно диаметра.

6. Если построить два произвольных вписанных угла, опирающихся на одну и ту же дугу окружности, они будут равны. Угол, опирающийся на дугу, равную половине то есть отсеченную хордой-диаметром, всегда равен 90°.

7. Если сравнивать замкнутые кривые линии одинаковой длины, то получится, что окружность отграничивает участок плоскости наибольшей площади.

Окружность, вписанная в треугольник и описанная около него

Представление о том, что такое окружность, будет неполным без описания особенностей взаимосвязи этой с треугольниками.

  1. При построении окружности, вписанной в треугольник, ее центр всегда будет совпадать с точкой пересечения треугольника.
  2. Центр окружности, описанной около треугольника, располагается на пересечении срединных перпендикуляров к каждой из сторон треугольника.
  3. Если описать окружность около то ее центр будет находиться на середине гипотенузы, то есть последняя будет являться диаметром.
  4. Центры вписанной и описанной окружностей будут находиться в одной точке, если базой для построения является

Основные утверждения об окружности и четырехугольниках

  1. Вокруг выпуклого четырехугольника можно описать окружность лишь тогда, когда сумма его противоположных внутренних углов равняется 180°.
  2. Построить вписанную в выпуклый четырехугольник окружность можно, если одинакова сумма длин его противоположных сторон.
  3. Описать окружность вокруг параллелограмма можно, если его углы прямые.
  4. Вписать в параллелограмм окружность можно в том случае, если все его стороны равны, то есть он является ромбом.
  5. Построить окружность через углы трапеции можно, только если она равнобедренная. При этом центр описанной окружности будет располагаться на пересечении четырехугольника и срединного перпендикуляра, проведенного к боковой стороне.

Окружность - геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки.

Данная точка (O) называется центром окружности .
Радиус окружности - это отрезок, соединяющий центр с какой-либо точкой окружности. Все радиусы имеют одну и ту же длину (по определению).
Хорда - отрезок, соединяющий две точки окружности. Хорда, проходящая через центр окружности, называется диаметром . Центр окружности является серединой любого диаметра.
Любые две точки окружности делят ее на две части. Каждая из этих частей называется дугой окружности . Дуга называется полуокружностью , если отрезок, соединяющий её концы, является диаметром.
Длина единичной полуокружности обозначается через π .
Сумма градусных мер двух дуг окружности с общими концами равна 360º .
Часть плоскости, ограниченная окружностью, называется кругом .
Круговой сектор - часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга. Дуга, которая ограничивает сектор, называется дугой сектора .
Две окружности, имеющие общий центр, называются концентрическими .
Две окружности, пересекающиеся под прямым углом, называются ортогональными .

Взаимное расположение прямой и окружности

  1. Если расстояние от центра окружности до прямой меньше радиуса окружности (d), то прямая и окружность имеют две общие точки. В этом случае прямая называется секущей по отношению к окружности.
  2. Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая и окружность имеют только одну общую точку. Такая прямая называется касательной к окружности , а их общая точка называется точкой касания прямой и окружности .
  3. Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек
  4. .

Центральные и вписанные углы

Центральный угол - это угол с вершиной в центре окружности.
Вписанный угол - угол, вершина которого лежит на окружности, а стороны пересекают окружность.

Теорема о вписанном угле

Вписанный угол измеряется половиной дуги, на которую он опирается.

  • Следствие 1.
    Вписанные углы, опирающиеся на одну и ту же дугу, равны.

  • Следствие 2.
    Вписанный угол, опирающийся на полуокружность - прямой.

Теорема о произведении отрезков пересекающихся хорд.

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Основные формулы

  • Длина окружности:
C = 2∙π∙R
  • Длина дуги окружности:
R = С/(2∙π) = D/2
  • Диаметр:
D = C/π = 2∙R
  • Длина дуги окружности:
l = (π∙R) / 180∙α ,
где α - градусная мера длины дуги окружности)
  • Площадь круга:
S = π∙R 2
  • Площадь кругового сектора:
S = ((π∙R 2) / 360)∙α

Уравнение окружности

  • В прямоугольной системе координат уравнение окружности радиуса r с центром в точке C (x о;y о) имеет вид:
(x - x о) 2 + (y - y о) 2 = r 2
  • Уравнение окружности радиуса r с центром в начале координат имеет вид:
x 2 + y 2 = r 2

Это замкнутая плоская линия, всякая точки которой равноудалена от одной и той же точки (O ), называемой центром .

Прямые (OA , OB , OС. . .), соединяющие центр с точками окружности - это радиусы .

Из этого получаем:

1. Все радиусы одной окружности равны.

2. Два круга с одинаковыми радиусами будут равны.

3. Диаметр равен двум радиусам.

4. Точка , лежащая внутри круга, ближе к центру, а точка, лежащая вне круга, дальше от центра, чем точки окружности.

5. Диаметр , перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам.

6. Дуги , заключенные между параллельными хордами , равны.

При работе с окружностями применяют следующие теоремы:

1. Теорема . Прямая и окружность не могут иметь более двух общих точек.

Из этой теоремы получаем два логично вытекающих следствия:

Никакая часть окружности не может совместиться с прямой, потому что в противном случае окружность с прямой имела бы более двух общих точек.

Линия, никакая часть которой не может совместиться с прямой, называется кривой .

Из предыдущего следует, что окружность есть кривая линия .

2. Теорема . Через всякие три точки, не лежащие на одной прямой, можно провести окружность и только одну.

Как следствие данной теоремы получаем:

Три перпендикуляра к сторонам треугольника вписанного в окружность проведенные через их середины, пересекаются в одной точке, которая является центром окружности.

Решим задачу. Требуется найти центр предложенной окружности .

Отметим на предложенной три любые точки A, B и С, начертим через них две хорды , например, AB и СB, и из середины этих хорд укажем перпендикуляры MN и PQ. Искомый центр, будучи одинаково удален от A, B и С, должен лежать и на MN, и на PQ, следовательно, он находится на пересечении этих перпендикуляров, т.е. в точке O.