Болезни Военный билет Призыв

Какое атмосферное давление в космосе. Какая температура в космосе и на других планетах

Один из самых интересных вопросов о космосе касается изучения температуры за пределами земной атмосферы. Любопытствующих пользователей интересует также, какова она в межзвездном пространстве и будет ли она холоднее, если двинуться за пределы нашей галактики. С другой стороны, имеет ли смысл вообще вести речь о температуре в отношении вакуума, ведь если это пустота, то сложно представить, что она подвергается температурному воздействию. Давайте разберемся.

Сперва стоит выяснить, чем же, по сути, является температура , как появляется тепло и вследствие чего появляется холод. Для этого необходимо проанализировать строение материи на микроуровнях. Каждое вещество во Вселенной состоит из простейших частиц:

  • фотонов;
  • протонов;
  • электронов и проч.

Из их комбинаций формируются атомы и молекулы. Микрочастицы не представляют собой неподвижные объекты.

Молекулы и атомы постоянно движутся и колеблются. А простейшие частицы, более того, передвигаются со скоростями, которые близки к световым. Так какая здесь связь с температурой? Как ни странно, самая прямая: энергия перемещения микрочастиц и является теплом. Чем интенсивнее колеблются, к примеру, молекулы в кусочке металла, тем теплее он станет.

Если тепло - это сила перемещения микрочастиц, то какой именно окажется температурный показатель в вакууме , в том самом космосе? Разумеется, космическое пространство не совершенно пустое - через него передвигаются фотоны, которые несут свет. Однако, плотность материи в нем в разы ниже, чем у нас, на Земле. Чем мельче атомы, которые сталкиваются друг с другом, тем меньше согревается вещество, которое состоит из них.

Если газ, который находится под большим давлением, отпустить в разреженное пространство, то его температура быстро понизится. На данном принципе основывается работа всем знакомого компрессорного холодильника. Соответственно, температурные показатели в космосе, где частицы располагаются весьма далеко друг от друга и не могут сталкиваться, должны стремиться к полному нулю. Однако, так ли это на самом деле?

Как совершается передача тепла

Когда нагревается вещество , его атомы начинают испускают фотоны. Данное явление также отлично всем знакомо - аналогичный принцип наблюдается в накаляющемся металлическом волоске, когда электролампочка начинает ярко гореть. Одновременно фотоны начинают переносить тепло. Соответственно, энергия начинает перемещаться от горячего вещества к прохладному.

Космическое пространство пронизано не только фотонами, которые излучают многочисленные звезды и галактики. Вселенная исполнена в том числе реликтовым излучением, а оно образовалось на начальных этапах появления ее существования. Именно за счет того, что температура в космическом пространстве не может упасть до безусловного нуля. Даже вдали от галактик и звезд материя не прекратит получать тепло, рассеянное по Вселенной от того самого реликтового излучения.

Абсолютный нуль

Ни одно вещество невозможно остудить ниже минимальной температуры. Поскольку остывание - это просто утрата энергии . В строгом соответствии с законами термодинамики, в обусловленной точке энтропия системы дойдет до нуля. В данном состоянии вещество уже не будет способно дальше терять энергию. Это и станет предельно возможной низкой температурой.

Температура абсолютного нуля составляет минус 273,15 градуса по Цельсию или же ноль по системе Кельвина. На теоретическом уровне такую температуру возможно получить только в замкнутых системах. Однако на практике нигде, ни на Земле, ни в космосе, невозможно создать или сымитировать такую область пространства, на которую не могли бы оказывать влияния никакие внешние силы.

Температура в космосе

Вселенная далеко не однородна. Все ядра звезд разогреты до миллиардов градусов. Однако большая часть пространства, само собой разумеется, серьёзно холодней . Если стоит вопрос о температуре в открытом космосе, то, как это ни странно, она всего лишь на 2,7 градуса выше показателя абсолютного нуля. Соответственно, его показатель будет минус 270,45 по Цельсию.

Эта разница в 2,7 градуса возникает по причине реликтового излучения, уже упоминавшегося. Однако, Вселенная распространяется, разрастается (понятие энтропии), а это говорит о том, что ее температура станет потихоньку снижаться. Чисто умозрительно говоря, спустя триллионы лет, материя и вещества в ней имеют возможность остынуть до самой минимальной отметки.

Но вопрос состоит в том, завершится ли в таком случае расширение Вселенной так называемой «тепловой смертью» , или же она окажется более структурированной или разнородной из-за воздействия сил гравитации, - это и по сей день остается объектом дискуссий. В участках сосредоточения материи теплее, но ненамного.

Скопления пыли и газа, которые встречаются между звездами нашей галактики, обладают температурой в диапазоне 10−20 градусов выше отметки абсолютного нуля, иначе говоря, минус 263−253 градусов Цельсия. И лишь рядом со звездами, в центре которых происходят реакции ядерного синтеза, находится достаточно теплоты для комфортной жизни белковых форм существования.

Околоземная орбита

Теперь коснемся следующих тем, связанных с нашей главной тематикой:

  1. Какова температура рядом с нашей планетой?
  2. Нужно ли космонавтам, которые отправляются на МКС, припасать теплые вещи?

На околоземной орбите под прямыми солнечными лучами металл накаливается до 150−160 градусов Цельсия. Одновременно с этим в тени предметы остывают до минус 90−100 градусов Цельсия. По этой причине для выхода в открытый космос применяются скафандры:

  • с прочной теплоизоляцией, мощными нагревателями;
  • с отменно работающей системой охлаждения.

Они защищают тело человека от настолько суровых скачков температур.

Такие же экстремальные условия встречаются на плоскости Луны. На ее солнечной стороне даже жарче, чем в самое жаркое время в Сахаре. Температурная отметка там нередко превышает 120 градусов Цельсия. Однако, на несолнечной стороне она снижается предположительно до минус 170 градусов. Во время посадки на Луну американцы воспользовались скафандрами, которые имели порядка 17 слоев предохранительных материалов. Теплорегуляция обеспечивалась специально предназначенной системой трубочек, в которых циркулировала дистиллированная вода.

Прочие планеты Солнечной системы

На любой планете Солнечной системы климат зависит от наличия или отсутствия атмосферы . Атмосфера - вторая по значению причина после дальности до Солнца. Разумеется, по мере удаления от горячей звезды температура в межпланетном пространстве падает. Однако присутствие атмосферы дает возможность удержать часть тепла за счет парникового эффекта. Особенно яркой иллюстрацией данного явления могут послужить климатические характеристики Венеры.

Температура на поверхности этой планеты поднимается до 477 градусов Цельсия. За счет атмосферы Венера жарче Меркурия, находящегося по расположению ближе к Солнцу.

За счет реликтового излучения межзвездное пространство прогревается, а по этой причине температура в космосе не опускается ниже 270 градусов ниже нуля . Однако, как выясняется, могут быть и более холодные участки.

19 лет назад телескоп Хаббл заметил газопылевое облако, стремительно расширяющееся. Туманность, получившая название Бумеранг, сформировалась вследствие явления, знакомого по названию как «звездный ветер». Это весьма любопытный процесс. Суть его заключается в том, что из центральной звезды с громадной скоростью «выдувается» ток материи, которая, влетая в разреженное пространство космоса, остывает вследствие резкого расширения.

По оценкам научных работников, температура в туманности Бумеранг достигает всего одного градуса по Кельвину, то есть -272 Цельсия. Это наиболее низкая отметка в космическом пространстве, которую на текущий момент удалось зарегистрировать астрономам. Туманность Бумеранг располагается на расстоянии 5000 световых лет от нашей планеты. Отслеживать ее можно в плеяде Центавра.

Мы выяснили информацию насчет самой низкой температурной отметки в космосе - ее величину и точки нахождения. Для полноты раскрытия вопроса остается узнать, какие наиболее низкие температуры были зафиксированы на нашей планете . А произошло это в процессе недавних научных исследований. В 2000 году ученые Технологического университета города Хельсинки остудили металл родия практически до абсолютного нуля. В течение эксперимента они получили температуру равную. 1×10−10 по Кельвину. И эта отметка всего лишь на 1 миллиардную градуса больше нижнего рубежа.

Целью проведенных исследований было не только получение сверхнизких температур. Ключевая задача состояла в изучении магнетизма атомов родия. Данное исследование оказалось крайне эффективным и принесло ряд увлекательных результатов. Эксперимент дал возможность понять, каким образом магнетизм оказывает действие на сверхпроводящие электроны.

Получение рекордно низких температур складывается из нескольких поочередных этапов охлаждения . Сначала с помощью криостата родий остывает до температурной отметки 3×10−3 по Кельвину. На последующих двух ступенях используется метод ядерного адиабатического размагничивания. Металл родия остывает сначала до температуры 5×10−5 по Кельвину, а после этого падает до рекордно низкой температурной отметки.

Видео

Из этого видео вы узнаете, какие бывают температуры в космосе.

Не получили ответ на свой вопрос? Предложите авторам тему.

Любой предмет в окружающем нас мире имеет температуру, отличную от абсолютного нуля. По этой причине он излучает в окружающее пространство электромагнитные волны всех длин. Это утверждение верно, разумеется, и для человеческих тел. И мы с вами — излучатели не только тепла, но и радиоволн, и ультрафиолетового излучения. И, строго говоря, электромагнитных волн любого диапазона. Правда, интенсивность излучения для различных волн весьма различна. И если, скажем, тепловое излучение нашего тела легко ощутимо, то как радиостанция тело работает очень плохо.

Для обычных, реальных предметов распределение интенсивности излучения в зависимости от длины волны весьма сложно. Поэтому физики вводят понятие идеального излучателя. Им служит так называемое абсолютно черное тело. То есть тело, которое поглощает все падающее на него излучение. А при нагревании излучает во всех диапазонах по так называемому закону Планка. Закон этот показывает распределение энергии излучения в зависимости от длины волны. Для каждой температуры существует своя кривая Планка. И по ней (или по формуле Планка) легко найти, как будет испускать, скажем, радиоволны или рентгеновское излучение данное абсолютно черное тело.

Солнце как абсолютно черное тело

Разумеется, таких тел в природе не существует. Но есть объекты, по характеру излучения очень напоминающие абсолютно черные тела. Как это ни странно, к ним принадлежат звезды. И, в частности, наше . Распределение энергии в их спектрах напоминает кривую Планка. Если излучение подчиняется закону Планка, оно называется тепловым. Всякое отступление от этого правила заставляет астрономов искать причины таких аномалий.

Все это вступление понадобилось для того, чтобы читатель понял суть недавнего выдающегося открытия. Оно в значительной мере раскрывает роль человека во Вселенной.

Спутник «Ирас»

В январе 1983 г. на околоземную полярную орбиту с высотой 900 км был выведен международный спутник «Ирас». В его создании участвовали специалисты Великобритании, Нидерландов и США. Спутник имел рефлектор с поперечником зеркала 57 см. В фокусе него располагался приемник инфракрасного излучения. Главная цель, поставленная исследователями, — обзор неба в инфракрасном диапазоне для длин волн от 8 до 120 мкм. В декабре 1983 г. бортовая аппаратура спутника прекратила свою работу. Но тем не менее за 11 месяцев был собран колоссальный научный материал. Его обработка заняла несколько лет, но уже первые результаты привели к поразительным открытиям. Из 200000 инфракрасных космических источников излучения, зарегистрированных «Ирасом», прежде всего обратила на себя внимание Вега.

Эта главная звезда в Лиры является ярчайшей звездой северного полушария неба. Она удалена от нас на 26 световых лет и потому считается близкой звездой. Вега — горячая голубовато-белая звезда с температурой поверхности около 10000 кельвинов. Для нее легко вычислить и нарисовать соответствующую этой температуре кривую Планка. К удивлению астрономов оказалось, что в инфракрасном диапазоне излучение Веги не подчиняется закону Планка. Оно было почти в 20 раз мощнее, чем положено по этому закону. Источник инфракрасного излучения оказался протяженным, имеющим поперечник 80 а. е., что близко к поперечнику нашей планетной системы (100 а.е.). Температура этого источника близка к 90 К, и излучение от него наблюдается в основном в инфракрасной части спектра.

Облако вокруг Веги

Специалисты пришли к выводу, что источником излучения служит облако твердой пыли, со всех сторон окутывающее Вегу. Частицы пыли не могут быть очень мелкими — в противном случае их выбросит в пространство световым давлением лучей Веги. Немного более крупные частицы также просуществовали бы недолго. На них весьма заметно действовало бы боковое световое давление (эффект Пойнтинга — Робертсона). Тормозя полет частиц, оно заставляло бы частицы по спирали падать на звезду. Значит, пылевая оболочка Веги состоит из частиц, поперечник которых не меньше нескольких миллиметров. Вполне возможно, что спутниками Веги могут быть и гораздо более крупные твердые тела планетного типа.

Вега — молодая. Её возраст вряд ли превышает 300 миллионов лет. Тогда как возраст Солнца оценивается в 5 миллиардов лет. Поэтому естественно предположить, что около Веги открыта молодая планетная система. Она находится в процессе своего формирования.

Вега не единственная звезда, окруженнаяпо-видимому планетной системой. Вскоре пришло сообщение об открытии пылевого облака вокруг Фомальгаута — главной звезды из созвездия Южной Рыбы. Она почти на 4 световых года ближе Веги и также представляет собой горячую бело-голубую звезду.

Протопланетные диски

В последние годы японские астрономы обнаружили газовые диски, окружающие ряд звезд в созвездиях Тельца и Ориона. Их поперечники весьма внушительны — десятки тысяч астрономических единиц. Не исключено, что внутренние части этих дисков в будущем станут планетными системами. Рядом с молодой звездой типа Т Тельца американские астрономы нашли точечный инфракрасный источник. Он очень похож на зарождающуюся протопланету.

Все эти открытия заставляют оптимистически расценивать распространенность планетных систем во Вселенной. Еще совсем недавно звезды типа Веги и Фомальгаута исключались из числа тех, которые могут иметь такие системы. Они очень горячи, быстро вращаются вокруг оси и, как считалось, не отделили от себя планеты. Но если образование планет не связано с отделением от центральной звезды, её быстрое вращение не может служить аргументом против наличия у звезды каких-либо планет. В то же время не исключено, что в природе планетные системы в разных ситуациях возникают по-разному. Одно ныне бесспорно — наша планетная система далеко не уникальна во Вселенной.

Наука

Температура – одно из фундаментальных понятий в физике, она играет огромную роль в том, что касается земной жизни любых форм . При очень высоких или очень низких температурах различные вещи могут вести себя очень странно. Предлагаем вам узнать о ряде интересных фактов, связанных с температурами.

Какая температура самая высокая?

Самая высокая температура, которую создал человек, составила 4 миллиарда градусов Цельсия. Трудно поверить, что температура вещества может достичь такого невероятного уровня! Эта температура в 250 раз выше температуры ядра Солнца.

Невероятный рекорд был поставлен в Естественной Лаборатории Брукхэвена в Нью-Йорке в ионном коллайдере RHIC , длина которого - около 4 километров.



Ученые заставили столкнуться ионы золота, пытаясь воспроизвести условия Большого взрыва, создав кварк-глюонную плазму. В таком состоянии частицы, которые составляют ядра атомов – протоны и нейтроны, разбиваются, в результате чего получается "суп" из конституэнтных кварков.

Экстремальная температура в Солнечной системе

Температура среды в Солнечной системе отличается от той, к которой мы привыкли на Земле. Наша звезда Солнце невероятно горячая. В ее центре температура составляет около 15 миллионов Кельвинов , а поверхность Солнца имеет температуру всего около 5700 Кельвинов.



Температура в ядре нашей планеты составляет примерно столько же, сколько температура поверхности Солнца. Самая горячая планета Солнечной системы – Юпитер, температура ядра которого в 5 раз выше , чем температура поверхности Солнца.

Самая холодная температура в нашей системе зафиксирована на Луне: в некоторых кратерах в тени температура составляет всего 30 Кельвинов выше абсолютного нуля. Эта температура ниже, чем температура Плутона!

Температура среды обитания человека

Некоторые народы живут в весьма экстремальных условиях и необычных местах, не совсем удобных для жизни. Например, одни их самых холодных населенных пунктов – поселок Оймякон и город Верхноянск в Якутии , Россия. Температура зимой тут в среднем составляет минус 45 градусов Цельсия.



Самый холодный более крупный город тоже находится в Сибири – Якутск с населением около 270 тысяч человек . Температура зимой там составляется также около минус 45 градусов, а вот летом может подниматься до 30 градусов !

Самая высокая среднегодовая температура была замечена в оставленном городе Даллол , Эфиопия. В 1960-х годах тут зафиксировали средний показатель температуры - 34 градуса Цельсия выше нуля. Среди крупных городов самым жарким считается город Бангкок , столица Таиланда, где средняя температура составляет в марте-мае также около 34 градусов.



Самая экстремально высокая температура, где работают люди, замечена в золотых шахтах Mponeng в Южной Африке. Температура на уровне около 3 километров под землей составляет плюс 65 градусов Цельсия . Предпринимаются меры для охлаждения шахт, например, используют лед или изолирующие покрытия для стен, чтобы шахтеры могли работать без перегревания.

Какая температура самая низкая?

В попытках получить самую низкую температуру , ученые столкнулись с рядом важных для науки вещей. Человеку удалось получить самые холодные вещи во Вселенной, которые намного холоднее, чем любая вещь, созданная природой и космосом.



Замораживание допускает понижение температуры до нескольких милиКельвинов. Самая низкая температура, которую удалось достичь в искусственных условиях - 100 пикоКельвинов или 0.0000000001 K . Чтобы добиться такой температуры, необходимо воспользоваться магнитным охлаждением. Также подобных низких температур можно добиться, используя лазеры.

При таких температурах материал ведет себя вовсе не так, как при обычных условиях.

Какая температура в космосе?

Если вы, к примеру, возьмете в открытый космос термометр и оставите его там на некоторое время в месте, далеком от источника радиации, вы можете заметить, что он показывает температуру 2,73 Кельвина или около минус 270 градусов Цельсия . Это самая низкая естественная температура во Вселенной.



В космосе температура держится выше абсолютного нуля за счет радиации, которая осталась после Большого взрыва. Хотя космос очень холодный по нашим меркам, интересно отметить, что одной из важнейших проблем, с которыми сталкиваются космонавты в космосе, является жара .

Голый металл, из которого сделаны объекты, находящиеся на орбите, может нагреваться до 260 градусов Цельсия из-за свободных солнечных лучей. Чтобы понизить температуру кораблей, их нужно обертывать в специальный материал, который может понизить температуру только в 2 раза.



Температура открытого космоса тем не менее постоянно падает . Теории об этом появились уже давно, однако только недавние измерения подтвердили, что Вселенная охлаждается примерно на 1 градус каждые 3 миллиарда лет.

Температура космоса будет приближаться к абсолютному нулю, однако никогда его не достигнет. Температура на Земле не зависит от той температуры, которая сегодня имеется в космосе, и мы знаем, что наша планета последнее время постепенно нагревается.

Что такое теплород?

Тепло – механическое свойство материала. Чем горячее объект, тем больше энергии имеют его частицы во время движения. Атомы веществ в горячем твердом состоянии вибрируют быстрее, чем атомы тех же, но охлажденных веществ.

Будет ли вещество оставаться в жидком или газообразном состоянии зависит от того, до какой температуры его нагреть . Сегодня об этом знает любой школьник, однако до 19-го столетия ученые полагали, что тепло само по себе является субстанцией – невесомым флюидом , названным теплород .



Ученые считали, что этот флюид испарялся из теплого материала, таким образом, охлаждая его. Он может перетекать из горячих объектов в холодные . Многие прогнозы, основанные на этой теории, на самом деле верны. Несмотря на заблуждения по поводу тепла, были сделаны многие действительно правильные выводы и научные открытия . Теория теплорода была окончательно побеждена в конце 19-го века.

Существует ли самая высокая температура?

Абсолютный нуль – температура, ниже которой невозможно опуститься. А какая температура самая высокая из возможных? Наука пока точно ответить на этот вопрос не может.

Самой высокой температурой называют Планковскую температуру . Именно эта температура была во Вселенной в момент Большого взрыва , согласно представлениям современной науки. Эта температура равна 10^32 Кельвинов.



Для сравнения: если вы можете представить, эта температура в миллиарды раз больше самой высокой температуры , полученной искусственно человеком, о которой упоминалось ранее.

Согласно стандартной модели, Планковская температура пока остается самой высокой температурой из возможных . Если существует что-то еще более горячее, то привычные нам законы физики перестанут работать.



Есть предположения, что температура может подняться еще выше этого уровня , но что произойдет в таком случае, наука объяснить не может. В нашей модели реальности что-либо более горячее существовать не сможет. Может быть, реальность станет другой?

Вопрос, поставленный в заголовке, в принципе является некорректным, ведь космос представляет собой пустоту, то есть пространство, где нет ничего. А температуру «ничего» измерить невозможно. Температура — следствие движения (активности) молекул, из которых состоят все материальные объекты. А нет материи – нет и температуры.

Теоретически ноль, а практически…

Космос лишь теоретически является вакуумом, ведь Вселенная согласно общепринятой научной (космологической) модели возникла в результате Большого взрыва, что обусловило реликтовое (космическое электромагнитное) излучение. Его спектр отвечает абсолютно черному телу, имеющему температуру по Кельвину – 2,725 (по Фаренгейту — минус 454,8°, по Цельсию – минус 270,425°).

Электромагнитное излучение в космосе – это дождь фотонов (безмассовых элементарных частиц), присутствующих в терагерцевом, инфракрасном, ультрафиолетовом, рентгеновском и гамма-излучении, а также в радиоволнах.

В наибольшей степени свойствами абсолютно черного тела обладает Солнце, его наружные слои имеют температуру около 6200 К, то есть температура в космосе может разниться.

Определенная роль в «температурном режиме» космоса принадлежит также планетам и их спутникам, астероидам, метеоритам и кометам, космической пыли и молекулам газов. Поэтому во Вселенной могут быть температурные отклонения. К примеру, в туманности Бумеранг (созвездие Центавра) благодаря «Хаббл» — автоматической обсерватории на орбите Земли была зафиксирована самая низкая космическая температура – 1 К (минус 272 градуса по шкале Цельсия). Ее причиной является «звездный ветер» (поток материи), идущий от центральной звезды.

О наличии космической пыли свидетельствует ночное свечение, обнаруженное астрономами в плоскости зодиакальных созвездий. Свечение, как установили ученые, — это свет, отражаемый от частиц космической пыли.

Материальными являются и космические лучи. В основном их структура состоит из стремительных ядер водородных и гелиевых атомов, а также более тяжелых ядер, к примеру, железа и никеля.

Таким образом, сколько градусов в космосе? Теоретически — 0° по шкале Кельвина или минус 273,15°С. На самом же деле, учитывая реликтовое излучение — 2,725 К (минус 270,425°С). Но это, если не брать во внимание тепло, излучаемое звездами и планетами.

Холодно — жарко

Отвечая на вопрос: «Какая температура в космосе», нужно отметить, что на все тела, находящиеся в космосе, действует не только смертельный для человека холод, но и губительная жара. Простейший пример тому – космический корабль. На его солнечной стороне – жарко, на теневой – холодно. И чем ближе или дальше звездолет от небесного светила, тем больше разница температур.

Положение Солнца влияет и на климат Земли. Одна теория гласит, что вращаясь вокруг Солнца, планета то приближается, то удаляется от него, поэтому происходит и смена времен года: зиму сменяет лето и наоборот. Однако на экваторе никогда не бывает зимы.

Дело в том, что земля вращается в наклонном положении относительно Солнца (23°27") и по-разному разворачивается к нему: то северным, то южным полушарием. Соответственно, лучи Солнца падают отвесно или под углом — в зависимости от этого земная поверхность нагревается больше или меньше.

з наете ли вы, какой температурой обладает космическое пространство ? На самом деле для человека в нём царит холод – около -270 градусов. Космос – это по большей части незаполненная пустота, поэтому температура в нём имеет большое влияние. Те же объекты, которые находятся в космическом пространстве , приобретают его температуру.

Воздух здесь отсутствует, а передача тепла идёт за счёт инфракрасного излучения. То есть, постепенно тепло теряется. Объект, попадающий в глубины космоса, теряет его не моментально, а постепенно, по нескольку градусов. Чтобы замёрзнуть полностью в открытом космосе человеку потребуется несколько часов, но умереть от замерзания ему вряд ли придётся, так как в вакууме есть множество других явлений, которые убьют вас намного раньше. Курсирующие в космосе объекты обладают очень низкой температурой. Если вы прикоснетесь к ним, сразу же погибнете, так как они заберут всё ваше тепло.

Т ем не менее, ветер в космосе может быть очень горячим. Взять хотя бы Солнце, которое излучает инфракрасные волны высокой температуры. А оно такое не одно, есть большое количество звёздных облаков между звёздами, нагревающихся до нескольких тысяч градусов.

То, что поверхность Солнца обладает высокой температурой, оказывает влияние на жизнь на Земле. Та сторона орбиты нашей планеты, которая повернута к нему, может нагреваться выше 100 градусов, другая сторона орбиты, расположенная в тени, наоборот, имеет температуру около -100 градусов. Для человека оба варианта считаются неприемлемыми. Быстрые перепады температур он выдерживать тоже не в состоянии.

Температура поверхности других тел зависит от множества факторов. Роль играет и масса тела, и её форма, и удаленность от Солнца, и влияние других объектов космоса. К примеру, если отправить по направлению к Солнцу алюминий, находясь от звезды на расстоянии, равном расстоянию, на котором находится от неё наша планета, он приобретет температуру до 850 F. Если же взять непрозрачный элемент и покрыть его краской белого цвета, выше значения -40 F он не нагреется. Именно поэтому выход в открытый космос без использования скафандра чрезвычайно опасен для человека. Что касается инопланетян , быть может, они устроены по-другому, поэтому могут жить в вакууме без дополнительных приспособлений.

Температура кипения жидкости в космосе непостоянна. Она зависит от давления, влияющего на неё. На высокой местности вода кипит быстро, так как газ там жидкий. Так как за атмосферой воздуха нет, температура кипения становится ниже. Поэтому нахождение в вакууме человека так опасно, его кровь может просто закипеть в жилах. Это объясняет то, что в нем встречаются в основном твёрдые тела.