Болезни Военный билет Призыв

Какой электропроводностью обладает полупроводник. Свойства полупроводников. Устройство и работа. Применение. Как происходит образование перехода

По значению удельного электрического сопротивления полупроводники занимают промежуточное положение между хорошими проводниками (σ = 10 6 -10 4 Ом -1 см -1) и диэлектриками (σ= -12 — 10 -10 Ом -1 см -1). К числу полупроводников относятся многие химические элементы (германий, кремний, селен, индий, теллур, мышьяк и др.), огромное количество сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира – полупроводники. Самым распространенным в природе полупроводником является кремний, составляющий около 30 % земной коры.

На электрическую проводимость полупроводников оказывает влияние кроме температуры сильное электрическое поле, давление, воздействие оптического и ионизирующего излучения, наличие примесей и другие факторы, способные изменять структуру вещества и состояние электронов. Это обстоятельство играет решающую роль в многочисленном и разнообразном использовании полупроводников .

Качественное отличие полупроводников от металлов проявляется прежде всего в зависимости удельного сопротивления от температуры. С понижением температуры сопротивление металлов падает. У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами.


Зависимость удельного сопротивления чистого полупроводника от температуры.

Такой ход зависимости ρ (T ) показывает, что у полупроводников концентрация носителей свободного заряда не остается постоянной, а увеличивается с ростом температуры. Механизм электрического тока в полупроводниках нельзя объяснить в рамках модели газа свободных электронов. Рассмотрим качественно этот механизм на примере германия (Ge). В кристалле кремния (Si) механизм аналогичен.

Атомы германия на внешней оболочке имеют четыре слабо связанных электрона. Их называют ковалентными электронами . В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной, т. е. осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам.


Парно-электронные связи в кристалле германия и образование электронно-дырочной пары

Валентные электроны в кристалле германия связаны с атомами гораздо сильнее, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит.

При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название дырок. Вакантное место может быть занято валентным электроном из соседней пары, тогда дырка переместится на новое место в кристалле. При заданной температуре полупроводника в единицу времени образуется определенное количество электронно-дырочных пар. В то же время идет обратный процесс – при встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами германия. Этот процесс называется рекомбинацией. Электронно-дырочные пары могут рождаться также при освещении полупроводника за счет энергии электромагнитного излучения. В отсутствие электрического поля электроны проводимости и дырки участвуют в хаотическом тепловом движении.

Концентрация электронов проводимости в полупроводнике равна концентрации дырок: n n = n p . Электронно-дырочный механизм проводимости проявляется только у чистых (т. е. без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников .

При наличии примесей электрическая проводимость полупроводников сильно изменяется. Например, добавка в кристалл кремния примесей фосфора в количестве 0,001 атомного процента уменьшает удельное сопротивление более чем на пять порядков. Такое сильное влияние примесей может быть объяснено на основе изложенных выше представлений о строении полупроводников. Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла.

Проводимость полупроводников при наличии примесей называется примесной проводимостью . Различают два типа примесной проводимости – электронную и дырочную .

Электронная проводимость возникает, когда в кристалл германия с четырехвалентными атомами введены пятивалентные атомы (например, атомы мышьяка, As). Полупроводник n — типа. Атом мышьяка в кристаллической решётке германия.

На рисунке показан пятивалентный атом мышьяка, оказавшийся в узле кристаллической решетки германия. Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказался излишним; он легко отрывается от атома мышьяка и становится свободным. Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки. Примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла, называется донорной примесью . В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника – в тысячи и даже миллионы раз. Удельное сопротивление проводника с большим содержанием примесей может приближаться к удельному сопротивлению металлического проводника.

В кристалле германия с примесью мышьяка есть электроны и дырки, ответственные за собственную проводимость кристалла. Но основным типом носителей свободного заряда являются электроны, оторвавшиеся от атомов мышьяка. В таком кристалле n n >> n p . Такая проводимость называется электронной , а полупроводник, обладающий электронной проводимостью, называется полупроводником n -типа .

Дырочная проводимость возникает, когда в кристалл германия введены трехвалентные атомы (например, атомы индия, In). На рисунке показан атом индия, который с помощью своих валентных электронов создал ковалентные связи лишь с тремя соседними атомами германия.


Полупроводник р-типа. Атом Индия в кристаллической решётке германия

На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия. Примесь атомов, способных захватывать электроны, называется акцепторной примесью . В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места (дырки). На эти места могут перескакивать электроны из соседних ковалентных связей, что приводит к хаотическому блужданию дырок по кристаллу.

Наличие акцепторной примеси резко снижает удельное сопротивление полупроводника за счет появления большого числа свободных дырок. Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: n p >> n n . Проводимость такого типа называется дырочной проводимостью . Примесный полупроводник с дырочной проводимостью называется полупроводником p -типа . Основными носителями свободного заряда в полупроводниках p -типа являются дырки.

Следует подчеркнуть, что дырочная проводимость в действительности обусловлена эстафетным перемещением по вакансиям от одного атома германия к другому электронов, которые осуществляют ковалентную связь.

Для полупроводников n — и p -типов закон Ома выполняется в определенных интервалах сил тока и напряжений при условии постоянства концентраций свободных носителей.

Здравствуйте уважаемые читатели сайта . На сайте есть раздел посвященный начинающим радиолюбителям, но пока что для начинающих, делающих первые шаги в мир электроники, я толком ничего и не написал. Восполняю этот пробел, и с этой статьи мы начинаем знакомиться с устройством и работой радиокомпонентов (радиодеталей).

Начнем с полупроводниковых приборов. Но чтобы понять, как работает диод, тиристор или транзистор, надо представлять, что такое полупроводник . Поэтому мы, сначала изучим структуру и свойства полупроводников на молекулярном уровне, а затем уже будем разбираться с работой и устройством полупроводниковых радиокомпонентов.

Общие понятия.

Почему именно полупроводниковый диод, транзистор или тиристор? Потому, что основу этих радиокомпонентов составляют полупроводники – вещества, способные, как проводить электрический ток, так и препятствовать его прохождению.

Это большая группа веществ, применяемых в радиотехнике (германий, кремний, селен, окись меди), но для изготовления полупроводниковых приборов используют в основном только Кремний (Si) и Германий (Ge).

По своим электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками электрического тока.

Свойства полупроводников.

Электропроводность проводников сильно зависит от окружающей температуры.
При очень низкой температуре, близкой к абсолютному нулю (-273°С), полупроводники не проводят электрический ток, а с повышением температуры, их сопротивляемость току уменьшается .

Если на полупроводник навести свет , то его электропроводность начинает увеличиваться. Используя это свойство полупроводников, были созданы фотоэлектрические приборы. Также полупроводники способны преобразовывать энергию света в электрический ток, например, солнечные батареи. А при введении в полупроводники примесей определенных веществ, их электропроводность резко увеличивается.

Строение атомов полупроводников.

Германий и кремний являются основными материалами многих полупроводниковых приборов и имеют во внешних слоях своих оболочек по четыре валентных электрона .

Атом германия состоит из 32 электронов, а атом кремния из 14. Но только 28 электронов атома германия и 10 электронов атома кремния, находящиеся во внутренних слоях своих оболочек, прочно удерживаются ядрами и никогда не отрываются от них. Лишь только четыре валентных электрона атомов этих проводников могут стать свободными, да и то не всегда. А если атом полупроводника потеряет хотя бы один электрон, то он становится положительным ионом .

В полупроводнике атомы расположены в строгом порядке: каждый атом окружен четырьмя такими же атомами. Причем они расположены так близко друг к другу, что их валентные электроны образуют единые орбиты, проходящие вокруг соседних атомов, тем самым связывая атомы в единое целое вещество.

Представим взаимосвязь атомов в кристалле полупроводника в виде плоской схемы.
На схеме красные шарики с плюсом, условно, обозначают ядра атомов (положительные ионы), а синие шарики – это валентные электроны .

Здесь видно, что вокруг каждого атома расположены четыре точно таких же атома, а каждый из этих четырех имеет связь еще с четырьмя другими атомами и т.д. Любой из атомов связан с каждым соседним двумя валентными электронами, причем один электрон свой, а другой заимствован у соседнего атома. Такая связь называется двухэлектронной или ковалентной .

В свою очередь, внешний слой электронной оболочки каждого атома содержит восемь электронов: четыре своих, и по одному , заимствованных от четырех соседних атомов. Здесь уже не различишь, какой из валентных электронов в атоме «свой», а какой «чужой», так как они сделались общими. При такой связи атомов во всей массе кристалла германия или кремния можно считать, что кристалл полупроводника представляет собой одну большую молекулу . На рисунке розовым и желтым кругами показана связь между внешними слоями оболочек двух соседних атомов.

Электропроводность полупроводника.

Рассмотрим упрощенный рисунок кристалла полупроводника, где атомы обозначаются красным шариком с плюсом, а межатомные связи показаны двумя линиями, символизирующими валентные электроны.

При температуре, близкой к абсолютному нулю полупроводник не проводит ток, так как в нем нет свободных электронов . Но с повышением температуры связь валентных электронов с ядрами атомов ослабевает и некоторые из электронов, вследствие теплового движения, могут покидать свои атомы. Вырвавшийся из межатомной связи электрон становится «свободным », а там где он находился до этого, образуется пустое место, которое условно называют дыркой .

Чем выше температура полупроводника, тем больше в нем становится свободных электронов и дырок. В итоге получается, что образование «дырки» связано с уходом из оболочки атома валентного электрона, а сама дырка становится положительным электрическим зарядом равным отрицательному заряду электрона.

А теперь давайте рассмотрим рисунок, где схематично показано явление возникновения тока в полупроводнике .

Если приложить некоторое напряжение к полупроводнику, контакты «+» и «-», то в нем возникнет ток.
Вследствие тепловых явлений , в кристалле полупроводника из межатомных связей начнет освобождаться некоторое количество электронов (синие шарики со стрелками). Электроны, притягиваясь положительным полюсом источника напряжения, будут перемещаться в его сторону, оставляя после себя дырки , которые будут заполняться другими освободившимися электронами . То есть, под действием внешнего электрического поля носители заряда приобретают некоторую скорость направленного движения и тем самым создают электрический ток .

Например: освободившийся электрон, находящийся ближе всего к положительному полюсу источника напряжения притягивается этим полюсом. Разрывая межатомную связь и уходя из нее, электрон оставляет после себя дырку . Другой освободившийся электрон, который находится на некотором удалении от положительного полюса, также притягивается полюсом и движется в его сторону, но встретив на своем пути дырку, притягивается в нее ядром атома, восстанавливая межатомную связь.

Образовавшуюся новую дырку после второго электрона, заполняет третий освободившийся электрон, находящийся рядом с этой дыркой (рисунок №1). В свою очередь дырки , находящиеся ближе всего к отрицательному полюсу, заполняются другими освободившимися электронами (рисунок №2). Таким образом, в полупроводнике возникает электрический ток.

Пока в полупроводнике действует электрическое поле , этот процесс непрерывен : нарушаются межатомные связи — возникают свободные электроны — образуются дырки. Дырки заполняются освободившимися электронами – восстанавливаются межатомные связи, при этом нарушаются другие межатомные связи, из которых уходят электроны и заполняют следующие дырки (рисунок №2-4).

Из этого делаем вывод: электроны движутся от отрицательного полюса источника напряжения к положительному, а дырки перемещаются от положительного полюса к отрицательному .

Электронно-дырочная проводимость.

В «чистом» кристалле полупроводника число высвободившихся в данный момент электронов равно числу образующихся при этом дырок, поэтому электропроводность такого полупроводника мала , так как он оказывает электрическому току большое сопротивление, и такую электропроводность называют собственной .

Но если в полупроводник добавить в виде примеси некоторое количество атомов других элементов, то электропроводность его повысится в разы, и в зависимости от структуры атомов примесных элементов электропроводность полупроводника будет электронной или дырочной .

Электронная проводимость.

Допустим, в кристалле полупроводника, в котором атомы имеют по четыре валентных электрона, мы заменили один атом атомом, у которого пять валентных электронов. Этот атом своими четырьмя электронами свяжется с четырьмя соседними атомами полупроводника, а пятый валентный электрон останется «лишним » – то есть свободным. И чем больше больше окажется свободных электронов, а значит, такой полупроводник по своим свойствам приблизится к металлу, и чтобы через него проходил электрический ток, в нем не обязательно должны разрушаться межатомные связи .

Полупроводники, обладающие такими свойствами, называют полупроводниками с проводимостью типа «n », или полупроводники n -типа. Здесь латинская буква n происходит от слова «negative» (негатив) — то есть «отрицательный». Отсюда следует, что в полупроводнике n -типа основными носителями заряда являются – электроны , а не основными – дырки.

Дырочная проводимость.

Возьмем все тот же кристалл, но теперь заменим его атом атомом, в котором только три свободных электрона. Своими тремя электронами он свяжется только с тремя соседними атомами, а для связи с четвертым атомом у него не будет хватать одного электрона. В итоге образуется дырка . Естественно, она заполнится любым другим свободным электроном, находящимся поблизости, но, в любом случае, в кристалле такого полупроводника не будет хватать электронов для заполнения дырок. И чем больше будет таких атомов в кристалле, тем больше будет дырок.

Чтобы в таком полупроводнике могли высвобождаться и передвигаться свободные электроны, обязательно должны разрушаться валентные связи между атомами . Но электронов все равно не будет хватать, так как число дырок всегда будет больше числа электронов в любой момент времени.

Такие полупроводники называют полупроводниками с дырочной проводимостью или проводниками p -типа, что в переводе от латинского «positive» означает «положительный». Таким образом, явление электрического тока в кристалле полупроводника p-типа сопровождается непрерывным возникновением и исчезновением положительных зарядов – дырок. А это значит, что в полупроводнике p -типа основными носителями заряда являются дырки , а не основными — электроны.

Теперь, когда Вы имеете некоторое представление о явлениях, происходящих в полупроводниках, Вам не составит труда понять принцип действия полупроводниковых радиокомпонентов.

На этом давайте остановимся, а в рассмотрим устройство, принцип работы диода, разберем его вольт-амперную характеристику и схемы включения.
Удачи!

Источник:

1 . Борисов В.Г. — Юный радиолюбитель. 1985г.
2 . Сайт academic.ru: http://dic.academic.ru/dic.nsf/es/45172.

Полупроводниковые приборы, обладающие рядом свойств, которые делают их применение предпочтительным перед вакуумными приборами, все более широко используются в электронной технике. В последние годы, характеризующиеся прогрессом в полупроводниковой электронике, разрабатываются приборы на новых физических принципах.

К полупроводникам относят многие химические элементы, такие, как кремний, германий, индий, фосфор и др., большинство оксидов, сульфидов, селенидов и теллуридов, некоторые сплавы, ряд минералов. По словам академика А. Ф. Иоффе, "полупроводники - это почти весь окружающий нас неорганический мир".

Полупроводники бывают кристаллические, аморфные и жидкие. В полупроводниковой технике обычно используют только кристаллические полупроводники (монокристаллы с примесями не более одного атома примеси на 1010 атомов основного вещества). Обычно к полупроводникам относят вещества, по удельной электрической проводимости занимающие промежуточное положение между металлами и диэлектриками (отсюда происхождение их названия). При комнатной температуре удельная электрическая проводимость их составляет от 10-8 до 105 См/м (для металлов - 106-108 См/м, для диэлектриков - 10-8-10-13 См/м). Основная особенность полупроводников - возрастание удельной электрической проводимости при повышении температуры (для металлов она падает). Электропроводность полупроводников значительно зависит от внешних воздействий: нагревания, облучения, электрического и магнитного полей, давления, ускорения, а также от содержания даже незначительного количества примесей. Свойства полупроводников хорошо поясняются с помощью зонной теории твердого тела.

Атомы всех веществ состоят из ядра и электронов, движущихся по замкнутой орбите вокруг ядра. Электроны в атоме группируются в оболочки. У основных полупроводников, используемых для создания полупроводниковых приборов - кремния и германия, кристаллическая решетка тетраэдрическая (имеет форму правильной треугольной пирамиды) (рис. 16.1). Проекция структуры Ge на плоскость показана на рис. 16.2. Каждый валентный электрон, т. е. электрон, находящийся на внешней, незаполненной, оболочке атома, в кристалле принадлежит не только своему, но и ядру соседнего атома. Все атомы в кристаллической решетке расположены на одинаковом расстоянии друг от друга и связаны ковалентными связями (ковалентной называется связь между парой валентных электронов двух атомов, на рис. 16.2 она показана двумя линиями). Эти связи являются прочными; чтобы их разорвать, нужно извне приложить энергию.

Энергия электрона W дискретна, или квантована, поэтому электрон может двигаться только по той орбите, которая соответствует его энергии. Возможные значения энергии электрона можно представить на диаграмме энергетическими уровнями (рис. 16.3). Чем более удалена орбита от ядра, тем больше энергия электрона и тем более высок его энергетический уровень. Энергетические уровни разделены зонами II, соответствующими запрещенной энергии для электронов (запрещенные зоны). Так как в твердом теле соседние атомы находятся очень близко друг от друга, это вызывает смещение и расщепление энергетических уровней, в результате чего образуются энергетические зоны, называемые разрешенными (I, III, IV на рис. 16.3). Ширина разрешенных зон обычно равна нескольким электрон-вольт. В энергетической зоне число разрешенных уровней равно числу атомов в кристалле. Каждая разрешенная зона занимает определенную область энергии и характеризуется минимальным и максимальным уровнями энергии, которые называются соответственно дном и потолком зоны.

Разрешенные зоны, в которых электроны отсутствуют, называются свободными (I). Свободная зона, в которой при температуре 0 К электронов нет, а при более высокой температуре они могут в ней находиться, называется зоной проводимости.

Она находится выше валентной зоны (III) - верхней из заполненных зон, в которых все энергетические уровни заняты электронами при температуре 0 К.

В зонной теории подразделение твердых тел на металлы, полупроводники и диэлектрики основано на ширине запрещенной зоны между валентной зоной и зоной проводимости и степени заполнения разрешенных энергетических зон (рис. 16.4). Ширина запрещенной зоны ΔWa называется энергией активации собственной электропроводности. Для металла ΔWa = 0 (рис. 16.4, а); условно при ΔWa ≤ 2 эВ кристалл является полупроводником (рис. 16.4,6), при ΔWa ≥ 2 эВ - диэлектриком (рис. 16.4, в). Так как у полупроводников значение ΔWa сравнительно невелико, то достаточно сообщить электрону энергию, сравнимую с энергией теплового движения, чтобы он перешел из валентной зоны в зону проводимости. Этим объясняется особенность полупроводников - увеличение электропроводности при повышении температуры.

Электропроводность полупроводников. Собственная электропроводность. Для того чтобы вещество обладало электропроводностью, оно должно содержать свободные носители заряда. Такими носителями заряда в металлах являются электроны. В полупроводниках - электроны и дырки.

Рассмотрим электропроводность собственных полупроводников (i-тип), т. е. таких веществ, в которых не содержатся примеси и нет структурных дефектов кристаллической решетки (пустых узлов, сдвигов решетки и др.) При температуре 0 К в таком полупроводнике свободных носителей заряда нет. Однако с повышением температуры (или при другом энергетическом воздействии, например освещении) часть ковалентных связей может быть разорвана и валентные электроны, став свободными, могут уйти от своего атома (рис. 16.5). Потеря электрона превращает атом в положительный ион. В связях на том месте, где раньше был электрон, появляется свободное ("вакантное") место - дырка. Заряд дырки положительный и по абсолютному значению равен заряду электрона.

Свободное место - дырку - может заполнить валентный электрон соседнего атома, на месте которого в ковалентной связи образуется новая дырка, и т. д. Таким образом, одновременно с перемещением валентных электронов будут перемещаться и дырки. При этом следует иметь в виду, что в кристаллической решетке атомы "жестко" закреплены в узлах. Уход электрона из атома приводит к ионизации, а последующее перемещение дырки означает поочередную ионизацию "неподвижных" атомов. Если электрическое поле отсутствует, электроны проводимости совершают хаотическое тепловое движение. Если полупроводник поместить во внешнее электрическое поле, то электроны и дырки, продолжая участвовать в хаотическом тепловом движении, начнут перемещаться (дрейфовать) под действием поля, что и создаст электрический ток. При этом электроны перемещаются против направления электрического поля, а дырки, как положительные заряды,- по направлению поля. Электропроводность полупроводника, возникающая за счет нарушения ковалентных связей, называется собственной электропроводностью.

Электропроводность полупроводников может быть объяснена и с помощью зонной теории. В соответствии с ней все энергетические уровни валентной зоны при температуре 0 К заняты электронами. Если электронам сообщить извне энергию, превышающую энергию активации ΔWa, то часть валентных электронов перейдет в зону проводимости, где они станут свободными, или электронами проводимости. Вследствие ухода электронов из валентной зоны в ней образуются дырки, число которых, естественно, равно числу ушедших электронов. Дырки могут быть заняты электронами, энергия которых соответствует энергии уровней валентной зоны. Следовательно, в валентной зоне перемещение электронов вызывает перемещение в противоположном направлении дырок. Хотя в валентной зоне перемещаются электроны, обычно удобнее рассматривать движение дырок.

Процесс образования пары "электрон проводимости - дырка проводимости" называется генерацией пары носителей заряда (1 на рис. 16.6). Можно сказать, что собственная электропроводность полупроводника - это электропроводность, вызванная генерацией пар "электрон проводимости - дырка проводимости". Образовавшиеся электронно-дырочные пары могут исчезнуть, если дырка заполняется электроном: электрон станет несвободным и потеряет возможность перемещения, а избыточный положительный заряд иона атома окажется нейтрализованным. При этом одновременно исчезают и дырка, и электрон. Процесс воссоединения электрона и дырки называется рекомбинацией (2 на рис. 16.6). Рекомбинацию в соответствии с зонной теорией можно рассматривать как переход электронов из зоны проводимости на свободные места в валентную зону. Отметим, что переход электронов с более высокого энергетического уровня на более низкий сопровождается высвобождением энергии, которая либо излучается в виде квантов света (фотоны), либо передается кристаллической решетке в виде тепловых колебаний (фононы). Среднее время существования пары носителей заряда называется временем жизни носителей заряда. Среднее расстояние, которое проходит носитель заряда за время жизни, называется диффузионной длиной носителя заряда (Lр, - для дырок, Ln - для электронов).

При постоянной температуре (и в отсутствие других внешних воздействий) кристалл находится в состоянии равновесия: число генерированных пар носителей заряда равно числу рекомбинированных пар. Число носителей заряда в единице объема, т. е. их концентрация, определяет значение удельной электрической проводимости. Для собственного полупроводника концентрация электронов ni равна концентрации дырок pi (ni = pi).

Примесная электропроводность. Если в полупроводник внести примесь, он будет обладать помимо собственной электропроводности еще и примесной. Примесная электропроводность может быть электронной или дырочной. В качестве примера рассмотрим случай, когда в чистый германий (четырехвалентный элемент) вводится примесь пятивалентного элемента, например мышьяка (рис. 16.7, а). Атом мышьяка связывается в кристаллической решетке германия ковалентными связями. Но в связи могут участвовать только четыре валентных электрона мышьяка, а пятый электрон оказывается "лишним", менее сильно связанным с атомом мышьяка. Для того чтобы этот электрон оторвать от атома, нужно значительно меньше энергии, поэтому уже при комнатной температуре он может стать электроном проводимости, не оставляя при этом в ковалентной связи дырки. Таким образом, в узле кристаллической решетки появляется положительно заряженный ион примеси, а в кристалле - свободный электрон. Примеси, атомы которых отдают свободные электроны, называются донорными (донорами).

На рис. 16.7,б показана диаграмма энергетических зон полупроводника с донорной примесью. В запрещенной зоне вблизи дна зоны проводимости создается разрешенный энергетический уровень (примесный, донорный), на котором при температуре, близкой к 0 К, располагаются "лишние" электроны. Для перевода электрона с примесного уровня в зону проводимости требуется меньше энергии, чем для перевода электрона из валентной зоны. Расстояние от донорного уровня до дна зоны проводимости называется энергией ионизации (активации) доноров ΔWиd.

Внесение в полупроводник донорной примеси существенно увеличивает концентрацию свободных электронов, а концентрация дырок остается такой же, какой она была в собственном полупроводнике. В таком примесном полупроводнике электропроводность обусловлена в основном электронами, ее называют электронной, а полупроводники - полупроводниками n-типа. Электроны в полупроводниках n-типа являются основными носителями заряда (их концентрация высока), а дырки - неосновными.

Если в германий ввести примесь трехвалентного элемента (например, индия), то для образования восьмиэлектронной ковалентной связи с германием индию не хватит одного электрона. Одна связь останется незаполненной. При незначительном повышении температуры в незаполненную валентную связь может перейти электрон соседнего атома германия, оставив на своем месте дырку (рис. 16.8, а), которая может быть также заполнена электроном и т. д. Таким образом, дырка как бы перемещается в полупроводнике. Примесный атом превращается в отрицательный ион. Примеси, атомы которых способны при возбуждении принять валентные электроны соседних атомов, создав в них дырку, называют акцепторными или акцепторами.

На рис. 16.8,б показана диаграмма энергетических зон полупроводника с акцепторной примесью. В запрещенной зоне вблизи потолка валентной зоны создается примесный энергетический уровень (акцепторный). При температурах, близких к 0 К, этот уровень свободен, при повышении температуры он может быть занят электроном валентной зоны, в которой после ухода электрона образуется дырка. Расстояние от потолка валентной зоны до акцепторного уровня называется энергией ионизации (активации) акцепторов ΔWиa. Внесение в полупроводник акцепторной примеси существенно увеличивает концентрацию дырок, а концентрация электронов остается такой же, какой она была в собственном полупроводнике. В этом примесном полупроводнике электропроводность обусловлена в основном дырками, ее называют дырочной, а полупроводники - полупроводниками р-типа. Дырки для полупроводника р-типа - основные носители заряда, а электроны - неосновные.

В примесных полупроводниках наряду с примесной электропроводностью существует и собственная, обусловленная наличием неосновных носителей. Концентрация неосновных носителей в примесном полупроводнике уменьшается во столько раз, во сколько увеличивается концентрация основных носителей, поэтому для полупроводников n-типа справедливо соотношение nnpn = nipi = ni2 = pi2 , а для полупроводников р-типа - соотношение ppnp = ni2 = pi2 , где nn и pn - концентрация основных, a pp и np - концентрация неосновных носителей заряда соответственно в полупроводнике n и р-типа.

Удельная электрическая проводимость примесного полупроводника определяется концентрацией основных носителей и тем выше, чем больше их концентрация. На практике часто встречается случай, когда полупроводник содержит и донорные, и акцепторные примеси. Тогда тип электропроводности будет определяться примесью, концентрация которой выше. Полупроводник, у которого концентрации доноров Nd и акцепторов Na равны (Nd = Na)), называют скомпенсированным.

Какие у него особенности? Какова физика полупроводников? Как они построены? Что такое проводимость полупроводников? Какими физическими показателями они обладают?

Что называют полупроводниками?

Так обозначают кристаллические материалы, которые не проводят электричество столь хорошо, как это делают металлы. Но всё же этот показатель лучше, чем имеют изоляторы. Такие характеристики обусловлены количеством подвижных носителей. Если рассматривать в общем, то здесь существует крепкая привязанность к ядрам. Но при введении в проводник нескольких атомов, допустим, сурьмы, которая обладает избытком электронов, это положение будет исправляться. При использовании индия получают элементы с позитивным зарядом. Все эти свойства широко применяются в транзисторах - специальных устройствах, которые могут усиливать, блокировать или пропускать ток только в одном направлении. Если рассматривать элемент NPN-типа, то можно отметить значительную усиливающую роль, что особенно бывает важным при передаче слабых сигналов.

Конструктивные особенности, которыми обладают электрические полупроводники

Проводники имеют много свободных электронов. Изоляторы ими вообще практически не обладают. Полупроводники же содержат и определённое количество свободных электронов, и пропуски с позитивным зарядом, которые готовы принять освободившиеся частицы. И что самое главное - они все проводят Рассмотренный ранее тип NPN-транзистора - не единый возможный полупроводниковый элемент. Так, существуют ещё PNP-транзисторы, а также диоды.

Если говорить про последний кратко, то это такой элемент, что может передавать сигналы только в одном направлении. Также диод может превратить переменный ток в постоянный. Каков механизм такого превращения? И почему он двигается только в одном направлении? Зависимо от того, откуда идёт ток, электроны и пропуски могут или расходиться, или идти навстречу. В первом случает из-за увеличения расстояния происходит прерывание подачи снабжения, поэтому и осуществляется передача носителей негативного напряжения только в одну сторону, то есть проводимость полупроводников является односторонней. Ведь ток может передаваться исключительно в случае, если составляющие частицы находятся рядом. А это возможно только при подаче тока с одной стороны. Вот такие типы полупроводников существуют и используются на данный момент.

Зонная структура

Электрические и оптические свойства проводников связаны с тем, что при заполнении электронами уровней энергии они отделены от возможных состояний запрещенной зоной. Какие у неё особенности? Дело в том, что в запрещенной зоне отсутствуют уровни энергии. При помощи примесей и дефектов структуры это можно изменить. Высшая полностью заполненная зона называется валентной. Затем следует разрешенная, но пустая. Она называется зоной проводимости. Физика полупроводников - довольно интересная тема, и в рамках статьи она будет хорошо освещена.

Состояние электронов

Для этого используются такие понятия, как номер разрешенной зоны и квазиимпульс. Структура первой определяется законом дисперсии. Он говорит о том, что на неё влияет зависимость энергии от квазиимпульса. Так, если валентная зона является целиком заполненной электронами (которые переносят заряд в полупроводниках), то говорят, что в ней отсутствуют элементарные возбуждения. Если по какой-то причине частицы нет, то это значит, что здесь появилась положительно заряженная квазичастица - пропуск или дыра. Они являются носителями заряда в полупроводниках в валентной зоне.

Вырожденные зоны

Валентная зона в типичном проводнике является шестикратно вырожденной. Это без учета спин-орбитального взаимодействия и только когда квазиимпульс равен нулю. Она может расщепляться при этом же условии на двукратно и четырехкратно вырожденные зоны. Энергетическое расстояние между ними называется энергией спин-орбитального расщепления.

Примеси и дефекты в полупроводниках

Они могут быть электрически неактивными или активными. Использование первых позволяет получать в полупроводниках плюсовой или минусовой заряд, который может быть компенсирован появлением дыры в валентной зоне или электрона в проводимой зоне. Неактивные примеси являются нейтральными, и они относительно слабо влияют на электронные свойства. Причем часто может иметь значение то, какую валентность имеют атомы, которые берут участие в процессе передачи заряда, и строение

Зависимо от вида и количества примесей может меняться и соотношение между количеством дыр и электронов. Поэтому материалы полупроводников должны всегда тщательно подбираться, чтобы получить желаемый результат. Этому предшествует значительное количество расчетов, а в последующем и экспериментов. Частицы, которые большинство называют основными носителями заряда, являются неосновными.

Дозированное введение примесей в полупроводники позволяет получать устройства с требуемыми свойствами. Дефекты в полупроводниках также могут быть в неактивном либо активном электрическом состоянии. Важными здесь являются дислокация, межузельный атом и вакансия. Жидкие и некристаллические проводники реагируют на примеси по-другому, чем кристаллические. Отсутствие жесткой структуры в конечном итоге выливается в то, что перемещенный атом получает другую валентность. Она будет отличаться от той, с которой он первоначально насыщает свои связи. Атому становится невыгодно отдавать или присоединять электрон. В таком случае он становится неактивным, и поэтому примесные полупроводники имеют большие шансы на выход из строя. Это приводит к тому, что нельзя менять тип проводимости с помощью легирования и создать, к примеру, р-n-переход.

Некоторые аморфные полупроводники могут изменять свои электронные свойства под воздействием легирования. Но это относится к ним в значительно меньшей степени, чем к кристаллическим. Чувствительность аморфных элементов к легированию можно повысить с помощью технологической обработки. В конечном итоге хочется отметить, что благодаря длительной и упорной работе примесные полупроводники все же представлены целым рядом результатов с хорошими характеристиками.

Статистика электронов в полупроводнике

Когда существует то количество дыр и электронов определяется исключительно температурой, параметрами зонной структуры и концентрацией электрически активных примесей. Когда рассчитывается соотношение, то считается, что часть частиц будет находиться в зоне проводимости (на акцепторном или донорном уровне). Также принимается во внимание тот факт, что часть может уйти с валентной территории, и там образуются пропуски.

Электропроводность

В полупроводниках, кроме электронов, в качестве носителей зарядов могут выступить и ионы. Но их электропроводность в большинстве случае пренебрежительно мала. В качестве исключения можно привести только ионные суперпроводники. В полупроводниках действует три главных механизма электронного переноса:

  1. Основной зонный. В этом случает электрон приходит в движение благодаря изменению его энергии в пределах одной разрешенной территории.
  2. Прыжковый перенос по локализованным состояниям.
  3. Поляронный.

Экситон

Дыра и электрон могут образовывать связанное состояние. Оно называется экситоном Ванье-Мотта. При этом которая соответствует краю поглощения, понижается на размер величины связи. При достаточной в полупроводниках может образоваться значительное количество экситонов. При увеличении их концентрации происходит конденсация, и образовывается электронно-дырочная жидкость.

Поверхность полупроводника

Такими словами обозначают несколько атомных слоев, что расположены около границы устройства. Поверхностные свойства отличаются от объемных. Наличие данных слоев нарушает трансляционную симметрию кристалла. Это приводит к так называемым поверхностным состояниям и поляритонам. Развивая тему последних, следует ещё сообщить и про спиновые и колебательные волны. Из-за своей химической активности поверхность укрывается микроскопичным слоем сторонних молекул или атомов, которые были адсорбированы из окружающей среды. Они-то и определяют свойства тех нескольких атомных слоев. На счастье, создание технологии сверхвысокого вакуума, при котором создаются полупроводниковые элементы, позволяет получить и сохранить на протяжении нескольких часов чистую поверхность, что позитивно сказывается на качестве получаемой продукции.

Полупроводник. Температура влияет на сопротивление

Когда температура металлов возрастает, то растёт и их сопротивление. С полупроводниками всё наоборот - при таких же условиях этот параметр у них уменьшится. Дело тут в том, что электропроводность у любого материала (а данная характеристика обратно пропорциональна сопротивлению) зависит от того, какой заряд тока имеют носители, от скорости их передвижения в электрическом поле и от их численности в одной единице объема материала.

В полупроводниковых элементах при росте температуры возрастает концентрация частиц, благодаря этому увеличивается теплопроводность, и уменьшается сопротивление. Проверить это можно при наличии нехитрого набора юного физика и необходимого материала - кремния или германия, также можно взять и сделанный из них полупроводник. Повышение температуры снизит их сопротивление. Чтобы удостовериться в этом, необходимо запастись измерительными приборами, которые позволят увидеть все изменения. Это в общем случае. Давайте рассмотрим пару частных вариантов.

Сопротивление и электростатическая ионизация

Это связано с туннелированием электронов, проходящих через очень узкий барьер, который поставляет примерно одну сотую микрометра. Находится он между краями энергетических зон. Его появление возможно только при наклоне энергетических зон, который происходит только под влиянием сильного электрического поля. Когда происходит туннелирование (что являет собой квантовомеханический эффект), то электроны проходят через узкий потенциальный барьер, и при этом не меняется их энергия. Это влечёт за собой увеличение концентрации носителей заряда, причем в обеих зонах: и проводимости, и валентной. Если развивать процесс электростатической ионизации, то может возникнуть туннельный пробой полупроводника. Во время этого процесса поменяется сопротивление полупроводников. Оно является обратимым, и как только будет выключено электрической поле, то все процессы восстановятся.

Сопротивление и ударная ионизация

В данном случае дыры и электроны ускоряются, пока проходят длину свободного пробега под воздействием сильного электрического поля до значений, которые способствуют ионизации атомов и разрыва одной из ковалентных связей (основного атома или примеси). Ударная ионизация происходит лавинообразно, и в ней лавинообразно размножаются носители заряда. При этом только что созданные дыры и электроны ускоряются электрическим током. Значение тока в конечном результате умножается на коэффициент ударной ионизации, который равен числу электронно-дырочных пар, что образовываются носителем заряда на одном отрезке пути. Развитие данного процесса в конечном итоге приводит к лавинному пробою полупроводника. Сопротивление полупроводников также меняется, но, как и в случае с туннельным пробоем, обратимо.

Применение полупроводников на практике

Особенную важность этих элементов следует отметить в компьютерных технологиях. Почти не сомневаемся, что вас бы не интересовал вопрос о том, что такое полупроводники, если бы не желание самостоятельно собрать предмет с их использованием. Невозможно представить работу современных холодильников, телевизоров, компьютерных мониторов без полупроводников. Не обходятся без них и передовые автомобильные разработки. Также они применяются в авиа- и космической технике. Понимаете, что такое полупроводники, насколько они важны? Конечно, нельзя сказать, что это единственные незаменимые элементы для нашей цивилизации, но и недооценивать их тоже не стоит.

Применение полупроводников на практике обусловлено ещё и целым рядом факторов, среди которых и широкая распространённость материалов, из которых они изготавливаются, и легкость обработки и получения желаемого результата, и другие технические особенности, благодаря которым выбор ученых, разрабатывавших электронную технику, остановился на них.

Заключение

Мы подробно рассмотрели, что такое полупроводники, как они работают. В основе их сопротивления заложены сложные физико-химические процессы. И можем вас уведомить, что описанные в рамках статьи факты не дадут в полной мере понять, что такое полупроводники, по той простой причине, что даже наука не изучила особенности их работы до конца. Но нам известны их основные свойства и характеристики, которые и позволяют нам применять их на практике. Поэтому можно поискать материалы полупроводников и самому поэкспериментировать с ними, соблюдая осторожность. Кто знает, возможно, в вас дремлет великий исследователь?!

В этой статье ну нет ничего экстраординарно важного и интересного, только ответ на простой вопрос для "чайников", какие основные свойства отличают полупроводники от металлов и диэлектриков?

Полупроводники - материалы (кристаллы, поликристаллические и аморфные материалы, элементы или соединения) с существованием запрещенной зоны (между зоной проводимости и валентной зоной).

Электронными полупроводниками называют кристаллы и аморфные вещества, которые по величине электропроводности занимают промежуточное положение между металлами (σ = 10 4 ÷10 6 Ом -1 ·см -1) и диэлектриками (σ = 10 -10 ÷10 -20 Ом -1 ·см -1). Однако приведённые граничные значения проводимости весьма условны.

Зонная теория позволяет сформулировать критерий, который даёт возможность разделить твёрдые тела на два класса - металлы и полупроводники (изоляторы). Металлы характеризуются наличием в валентной зоне свободных уровней, на которые могут переходить электроны, получающие дополнительную энергию, например, вследствие ускорения в электрическом поле. Отличительная особенность металлов заключается в том, что у них в основном, невозбуждённом состоянии (при 0 К) имеются электроны проводимости, т.е. электроны, которые участвуют в упорядоченном движении по действием внешнего электрического поля.

У полупроводников и изоляторов при 0 К валентная зона заселена полностью, а зона проводимости отделена от неё запрещённой зоной и не содержит носителей. Поэтому не слишком сильное электрическое поле не в состоянии усилить электроны, расположенные в валентной зоне, и перевести их в зону проводимости. Иными словами, такие кристаллы при 0 К должны быть идеальными изоляторами. При повышении температуры или облучении подобного кристалла электроны могут поглотить кванты тепловой или лучистой энергии, достаточные для перехода в зону проводимости. В валентной зоне при этом переходе появляются дырки, которые также могут участвовать в переносе электричества. Вероятность перехода электрона из валентной зоны в зону проводимости пропорциональна ( g / kT ), где Е g - ширина запрещённой зоны. При большой величине Е g (2-3 эВ) эта вероятность оказывается очень малой.

Таким образом, подразделение веществ на металлы и неметаллы имеет вполне определённую основу. В отличие от этого деление неметаллов на полупроводники и диэлектрики такой основы не имеет и является чисто условным.

Ранее считали, что к диэлектрикам можно отнести вещества с величиной запрещённой зоны Е g ≈ 2÷3 эВ, однако позже выяснилось, что многие из них являются типичными полупроводниками. Более того, было показано, что в зависимости от концентрации примесей или избыточных (сверх стехиометрического состава) атомов одного из компонентов один и тот же кристалл может быть и полупроводником, и изолятором. Это относится, например, к кристаллам алмаза, оксида цинка, нитрида галлия и т.д. Даже такие типичные диэлектрики как титанаты бария и стронция, а также рутил при частичном восстановлении приобретают свойства полупроводников, что связано с появлением в них избыточных атомов металлов.

Деление неметаллов на полупроводники и диэлектрики также имеет определённый смысл, поскольку известен целый ряд кристаллов, электронную проводимость которых не удается заметно повысить ни путём введения примесей, ни путём освещения или нагрева. Это связано либо с очень малым временем жизни фотоэлектронов, либо с существованием в кристаллах глубоких ловушек, либо с очень малой подвижностью электронов, т.е. с чрезвычайно низкой скоростью их дрейфа в электрическом поле.

Электропроводность пропорциональна концентрации n, заряду e и подвижности носителей заряда. Поэтому температурная зависимость проводимости различных материалов определяется температурными зависимостями указанных параметров. Для всех электронных проводников заряд е постоянен и не зависит от температуры. В большинстве материалов величина подвижности обычно слабо уменьшается с ростом температуры из-за увеличения интенсивности столкновений между движущимися электронами и фононами, т.е. из-за рассеяния электронов на колебаниях кристаллической решётки. Поэтому различное поведение металлов, полупроводников и диэлектриков связано в основном с концентрацией носителе заряда и её температурной зависимостью:

1) в металлах концентрация носителей заряда n велика и слабо изменяется при изменении температуры. Переменной величиной, входящей в уравнение для электропроводности, является подвижность. А поскольку подвижность слабо уменьшается с температурой, то также уменьшается и электропроводность;

2) в полупроводниках и диэлектриках n обычно экспоненциально растёт с температурой. Этот стремительный рост n вносит наиболее существенный вклад в изменение проводимости, чем уменьшение подвижности. Следовательно, электропроводность быстро увеличивается с повышением температуры. В этом смысле диэлектрики можно рассматривать как некоторый предельный случай, так как при обычных температурах величина n в этих веществах крайне мала. При высоких температурах проводимость отдельных диэлектриков достигает полупроводникового уровня из-за роста n . Наблюдается и обратное - при низких температурах некоторые полупроводники становятся диэлектриками.

Список литературы

  1. Вест А. Химия твердого тела. Ч.2 Пер. с англ. - М.: Мир, 1988. - 336 с.
  2. Современная кристаллография. Т.4. Физические свойства кристаллов. - М.: Наука, 1981.

Студенты 501 группы химического факультета: Беззубов С.И., Воробьева Н.А., Ефимов А.А.