Болезни Военный билет Призыв

Касательная к графику функции в точке. Уравнение касательной. Геометрический смысл производной. Касательная к окружности. Полные уроки — Гипермаркет знаний

f\colon U(x_0) \subset \mathbb{R} \to \mathbb{R} определена в некоторой окрестности точки x_0\in \mathbb{R}, и дифференцируема в ней: f \in \mathcal{D}(x_0). Касательной прямой к графику функции f в точке x_0 называется график линейной функции , задаваемый уравнением y = f(x_0) + f"(x_0)(x-x_0),\quad x\in \mathbb{R}.

  • Если функция f имеет в точке x_0 бесконечную производную f"(x_0) = \pm \infty, то касательной прямой в этой точке называется вертикальная прямая, задаваемая уравнением x = x_0.
  • Замечание

    Прямо из определения следует, что график касательной прямой проходит через точку (x_0,f(x_0)). Угол \alpha между касательной к кривой и осью Ох удовлетворяет уравнению

    \operatorname{tg}\,\alpha = f"(x_0)= k,

    где \operatorname{tg} обозначает тангенс , а \operatorname {k} - коэффициент наклона касательной. Производная в точке x_0 равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке.

    Касательная как предельное положение секущей

    Пусть f\colon U(x_0) \to \R и x_1 \in U(x_0). Тогда прямая линия, проходящая через точки (x_0,f(x_0)) и (x_1,f(x_1)) задаётся уравнением

    y = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x-x_0).

    Эта прямая проходит через точку (x_0,f(x_0)) для любого x_1\in U(x_0), и её угол наклона \alpha(x_1) удовлетворяет уравнению

    \operatorname{tg}\,\alpha(x_1) = \frac{f(x_1) - f(x_0)}{x_1 - x_0}.

    В силу существования производной функции f в точке x_0, переходя к пределу при x_1 \to x_0, получаем, что существует предел

    \lim\limits_{x_1 \to x_0} \operatorname{tg}\,\alpha(x_1) = f"(x_0),

    а в силу непрерывности арктангенса и предельный угол

    \alpha = \operatorname{arctg}\,f"(x_0).

    Прямая, проходящая через точку (x_0,f(x_0)) и имеющая предельный угол наклона, удовлетворяющий \operatorname{tg}\,\alpha = f"(x_0), задаётся уравнением касательной:

    y = f(x_0) + f"(x_0)(x-x_0).

    Касательная к окружности

    Прямая , имеющая одну общую точку с окружностью и лежащая с ней в одной плоскости, называется касательной к окружности.

    Свойства

    1. Касательная к окружности перпендикулярна к радиусу , проведённому в точку касания.
    2. Отрезки касательных к окружности , проведённые из одной точки , равны и составляют равные углы с прямой , проходящей через эту точку и центр окружности.
    3. Длина отрезка касательной, проведённой к окружности единичного радиуса, взятого между точкой касания и точкой пересечения касательной с лучом, проведённым из центра окружности, является тангенсом угла между этим лучом и направлением от центра окружности на точку касания. «Тангенс» от лат. tangens - «касательная».

    Вариации и обобщения

    Односторонние полукасательные

    • Если существует правая производная f"_+(x_0) < \infty, то пра́вой полукаса́тельной к графику функции f в точке x_0 называется луч
    y = f(x_0) + f"_+(x_0)(x - x_0),\quad x \geqslant x_0.
    • Если существует левая производная f"_-(x_0) < \infty, то ле́вой полукаса́тельной к графику функции f в точке x_0 называется луч
    y = f(x_0) + f"_-(x_0)(x - x_0),\quad x \leqslant x_0.
    • Если существует бесконечная правая производная f"_+(x_0) = +\infty\; (-\infty), f в точке x_0 называется луч
    x = x_0, \; y \geqslant f(x_0)\; (y \leqslant f(x_0)).
    • Если существует бесконечная левая производная f"_-(x_0) = +\infty\; (-\infty), то правой полукасательной к графику функции f в точке x_0 называется луч
    x = x_0, \; y \leqslant f(x_0)\; (y \geqslant f(x_0)).

    См. также

    • Нормаль , бинормаль

    Напишите отзыв о статье "Касательная прямая"

    Литература

    • Топоногов В. А. Дифференциальная геометрия кривых и поверхностей. - Физматкнига, 2012. - ISBN 9785891552135 .
    • // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). - СПб. , 1890-1907.

    Отрывок, характеризующий Касательная прямая

    – По местам! – крикнул молоденький офицер на собравшихся вокруг Пьера солдат. Молоденький офицер этот, видимо, исполнял свою должность в первый или во второй раз и потому с особенной отчетливостью и форменностью обращался и с солдатами и с начальником.
    Перекатная пальба пушек и ружей усиливалась по всему полю, в особенности влево, там, где были флеши Багратиона, но из за дыма выстрелов с того места, где был Пьер, нельзя было почти ничего видеть. Притом, наблюдения за тем, как бы семейным (отделенным от всех других) кружком людей, находившихся на батарее, поглощали все внимание Пьера. Первое его бессознательно радостное возбуждение, произведенное видом и звуками поля сражения, заменилось теперь, в особенности после вида этого одиноко лежащего солдата на лугу, другим чувством. Сидя теперь на откосе канавы, он наблюдал окружавшие его лица.
    К десяти часам уже человек двадцать унесли с батареи; два орудия были разбиты, чаще и чаще на батарею попадали снаряды и залетали, жужжа и свистя, дальние пули. Но люди, бывшие на батарее, как будто не замечали этого; со всех сторон слышался веселый говор и шутки.
    – Чиненка! – кричал солдат на приближающуюся, летевшую со свистом гранату. – Не сюда! К пехотным! – с хохотом прибавлял другой, заметив, что граната перелетела и попала в ряды прикрытия.
    – Что, знакомая? – смеялся другой солдат на присевшего мужика под пролетевшим ядром.
    Несколько солдат собрались у вала, разглядывая то, что делалось впереди.
    – И цепь сняли, видишь, назад прошли, – говорили они, указывая через вал.
    – Свое дело гляди, – крикнул на них старый унтер офицер. – Назад прошли, значит, назади дело есть. – И унтер офицер, взяв за плечо одного из солдат, толкнул его коленкой. Послышался хохот.
    – К пятому орудию накатывай! – кричали с одной стороны.
    – Разом, дружнее, по бурлацки, – слышались веселые крики переменявших пушку.
    – Ай, нашему барину чуть шляпку не сбила, – показывая зубы, смеялся на Пьера краснорожий шутник. – Эх, нескладная, – укоризненно прибавил он на ядро, попавшее в колесо и ногу человека.
    – Ну вы, лисицы! – смеялся другой на изгибающихся ополченцев, входивших на батарею за раненым.
    – Аль не вкусна каша? Ах, вороны, заколянились! – кричали на ополченцев, замявшихся перед солдатом с оторванной ногой.
    – Тое кое, малый, – передразнивали мужиков. – Страсть не любят.
    Пьер замечал, как после каждого попавшего ядра, после каждой потери все более и более разгоралось общее оживление.
    Как из придвигающейся грозовой тучи, чаще и чаще, светлее и светлее вспыхивали на лицах всех этих людей (как бы в отпор совершающегося) молнии скрытого, разгорающегося огня.
    Пьер не смотрел вперед на поле сражения и не интересовался знать о том, что там делалось: он весь был поглощен в созерцание этого, все более и более разгорающегося огня, который точно так же (он чувствовал) разгорался и в его душе.
    В десять часов пехотные солдаты, бывшие впереди батареи в кустах и по речке Каменке, отступили. С батареи видно было, как они пробегали назад мимо нее, неся на ружьях раненых. Какой то генерал со свитой вошел на курган и, поговорив с полковником, сердито посмотрев на Пьера, сошел опять вниз, приказав прикрытию пехоты, стоявшему позади батареи, лечь, чтобы менее подвергаться выстрелам. Вслед за этим в рядах пехоты, правее батареи, послышался барабан, командные крики, и с батареи видно было, как ряды пехоты двинулись вперед.
    Пьер смотрел через вал. Одно лицо особенно бросилось ему в глаза. Это был офицер, который с бледным молодым лицом шел задом, неся опущенную шпагу, и беспокойно оглядывался.
    Ряды пехотных солдат скрылись в дыму, послышался их протяжный крик и частая стрельба ружей. Через несколько минут толпы раненых и носилок прошли оттуда. На батарею еще чаще стали попадать снаряды. Несколько человек лежали неубранные. Около пушек хлопотливее и оживленнее двигались солдаты. Никто уже не обращал внимания на Пьера. Раза два на него сердито крикнули за то, что он был на дороге. Старший офицер, с нахмуренным лицом, большими, быстрыми шагами переходил от одного орудия к другому. Молоденький офицерик, еще больше разрумянившись, еще старательнее командовал солдатами. Солдаты подавали заряды, поворачивались, заряжали и делали свое дело с напряженным щегольством. Они на ходу подпрыгивали, как на пружинах.

    Определение. Касательная к окружности — это прямая на плоскости, имеющая ровно одну общую точку с окружностью.

    Вот парочка примеров:

    Окружность с центром O касается прямой l в точке A Из любой точки M за пределами окружности можно провести ровно две касательных Различие между касательной l , секущей BC и прямой m , не имеющей общих точек с окружностью

    На этом можно было бы закончить, однако практика показывает, что недостаточно просто зазубрить определение — нужно научиться видеть касательные на чертежах, знать их свойства и вдобавок как следует попрактиковаться в применении этих свойств, решая реальные задачи. Всем этим всем мы сегодня и займёмся.

    Основные свойства касательных

    Для того, чтобы решать любые задачи, нужно знать четыре ключевых свойства. Два из них описаны в любом справочнике / учебнике, а вот последние два — про них как-то забывают, а зря.

    1. Отрезки касательных, проведённых из одной точки, равны

    Чуть выше мы уже говорили про две касательных, проведённых из одной точки M. Так вот:

    Отрезки касательных к окружности, проведённых из одной точки, равны.

    Отрезки AM и BM равны

    2. Касательная перпендикулярна радиусу, проведённому в точку касания

    Ещё раз посмотрим на картинку, представленную выше. Проведём радиусы OA и OB , после чего обнаружим, что углы OAM и OBM — прямые.

    Радиус, проведённый в точку касания, перпендикулярен касательной.

    Этот факт можно использовать без доказательства в любой задаче:

    Радиусы, проведённые в точку касания, перпендикулярны касательным

    Кстати, заметьте: если провести отрезок OM , то мы получим два равных треугольника: OAM и OBM .

    3. Соотношение между касательной и секущей

    А вот это уже факт посерьёзнее, и большинство школьников его не знают. Рассмотрим касательную и секущую, которые проходят через одну и ту же общую точку M . Естественно, секущая даст нам два отрезка: внутри окружности (отрезок BC — его ещё называют хордой) и снаружи (его так и называют — внешняя часть MC ).

    Произведение всей секущей на её внешнюю часть равно квадрату отрезка касательной

    Соотношение между секущей и касательной

    4. Угол между касательной и хордой

    Ещё более продвинутый факт, который часто используется для решения сложных задач. Очень рекомендую взять на вооружение.

    Угол между касательной и хордой равен вписанному углу, опирающемуся на эту хорду.

    Откуда берётся точка B ? В реальных задачах она обычно «всплывает» где-то в условии. Поэтому важно научиться распознавать данную конфигурацию на чертежах.


    Иногда всё-таки касается:)

    Прямая (MN ), имеющая с окружностью только одну общую точку (A ), называется касательной к окружности .

    Общая точка называется в этом случае точкой касания.

    Возможность существования касательной , и притом проведенной через любую точку окружности , как точку касания, доказывается следующей теоремой .

    Пусть требуется провести к окружности с центром O касательную через точку A . Для этого из точки A, как из центра, описываем дугу радиусом AO , а из точки O , как центра, пересекаем эту дугу в точках B и С раствором циркуля, равным диаметру данного круга.

    Проведя затем хорды OB и , соединим точку A с точками D и E , в которых эти хорды пересекаются с данной окружностью. Прямые AD и AE - касательные к окружности O . Действительно, из построения видно, что треугольники AOB и AOС равнобедренные (AO = AB =AС ) с основаниями OB и, равными диаметру круга O .

    Так как OD и OE - радиусы, то D - середина OB , а E - середина , значит AD и AE - медианы , проведенные к основаниям равнобедренных треугольников, и потому перпендикулярны к этим основаниям. Если же прямые DA и EA перпендикулярны к радиусам OD и OE , то они - касательные .

    Следствие.

    Две касательные, проведенные из одной точки к окружности, равны и образуют равные углы с прямой, соединяющей эту точку с центром .

    Так AD=AE и ∠OAD = ∠OAE потому, что прямоугольные треугольники AOD и AOE , имеющие общую гипотенузу AO и равные катеты OD и OE (как радиусы), равны. Заметим, что здесь под словом “касательная” подразумевается собственно “отрезок касательной ” от данной точки до точки касания.

    Цели урока

    • Образовательные – повторение, обобщение и проверка знаний по теме: “Касательная к окружности”; выработка основных навыков.
    • Развивающие – развить внимание учащихся, усидчивость, настойчивость, логическое мышление, математическую речь.
    • Воспитательные - посредством урока воспитывать внимательное отношение друг к другу, прививать умение слушать товарищей, взаимовыручке, самостоятельность.
    • Ввести понятие касательной, точки касания.
    • Рассмотреть свойство касательной и её признак и показать их применение при решении задач в природе и технике.

    Задачи урока

    • Формировать навыки в построении касательных с помощью масштабной линейки, транспортира и чертежного треугольника.
    • Проверить умение учащихся решать задачи.
    • Обеспечить овладение основными алгоритмическими приёмами построения касательной к окружности.
    • Сформировать умения применять теоретические знания к решению задач.
    • Развивать мышление и речь учащихся.
    • Работать над формированием умений наблюдать, подмечать закономерности, обобщать, проводить рассуждения по аналогии.
    • Привитие интереса к математике.

    План урока

    1. Появление понятия касательной.
    2. История появления касательной.
    3. Геометрические определения.
    4. Основные теоремы.
    5. Построение касательной к окружности.
    6. Закрепление.

    Появление понятия касательной

    Понятие касательной – одно из древнейших в математике. В геометрии касательную к окружности определяют как прямую, имеющую ровно одну точку пересечения с этой окружностью. Древние с помощью циркуля и линейки умели проводить касательные к окружности, а в последствии – к коническим сечениям: эллипсам, гиперболам и параболам.

    История появления касательной

    Интерес к касательным возродился в Новое время. Тогда были открыты кривые, которых не знали учёные древности. Например, Галилей ввёл циклоиду, а Декарт и Ферма построили к ней касательную. В первой трети XVII в. Начали понимать, что касательная – прямая, «наиболее тесно примыкающая» к кривой в малой окрестности заданной точки. Легко представить себе такую ситуацию, когда нельзя построить касательную к кривой в данной точке (рисунок).

    Геометрические определения

    Окружность - геометрическое место точек плоскости, равноудаленных от заданной точки, называемой её центром.

    окружность .

    Связанные определения

    • Отрезок, соединяющий центр окружности с какой-либо её точкой (а также длина этого отрезка), называется радиусом окружности.
    • Часть плоскости, ограниченная окружностью, называется кругом .
    • Отрезок, соединяющий две точки окружности, называется её хордой . Хорда, проходящая через центр окружности, называется диаметром .
    • Любые две несовпадающие точки окружности делят её на две части. Каждая из этих частей называется дугой окружности. Мерой дуги может служить мера соответствующего ей центрального угла. Дуга называется полуокружностью, если отрезок, соединяющий её концы, является диаметром.
    • Прямая, имеющая с окружностью ровно одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.
    • Прямая, проходящая через две точки окружности, называется секущей .
    • Центральным углом в окружности называется плоский угол с вершиной в её центре.
    • Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным углом .
    • Две окружности, имеющие общий центр, называются концентрическими .

    Касательная прямая - прямая, проходящая через точку кривой и совпадающая с ней в этой точке с точностью до первого порядка.

    Касательной к окружности называется прямая, имеющая с окружностью одну общую точку.

    Прямая, проходящая через точку окружности в той же плоскости перпендикулярно к радиусу, проведённому в эту точку, называется касательной . При этом данная точка окружности называется точкой касания.

    Где в нашем случаи "а" это прямая какая является касательной к данной окружности, точка "А" является точкой касания. При этом а⊥ОА (прямая а перпендикулярна радиусу ОА).

    Говорят, что две окружности касаются , если они имеют единственную общую точку. Эта точка называется точкой касания окружностей . Через точку касания можно провести касательную к одной из окружностей, которая является одновременно и касательной к другой окружности. Касание окружностей бывает внутренним и внешним.

    Касание называется внутренним, если центры окружностей лежат по одну сторону от касательной.

    Касание называется внешним, если центры окружностей лежат по разные стороны от касательной

    а – общая касательная к двум окружностям, К – точка касания.

    Основные теоремы

    Теорема о касательной и секущей

    Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть: MC 2 = MA MB.

    Теорема. Радиус, проведенный в точку касания окружности, перпендикулярен касательной.

    Теорема. Если радиус перпендикулярен прямой в точке пересечения ею окружности, то эта прямая - касательная к этой окружности.

    Доказательство.

    Для доказательства этих теорем нам нужно вспомнить, что такое перпендикуляр из точки на прямую. Это кратчайшее растояние от этой точки до этой прямой. Допустим, что ОА не перпендикулярен касательной, а есть прямая ОС перпендикулярная касательной. Длина ОС заключает в себе длину радиуса и еще некий отрезок ВС, что безусловно больше радиуса. Таким образом, можно доказывать для любой прямой. Заключаем, что радиус, радиус проведенный в точку касания, есть кратчайшее растояние до касательной из точки О, т.е. ОС перпендикулярен касательной. В доказательстве обратной теоремы будем исходить из того, что касательная имеет с окружностью только одну общую точку. Пусть данная прямая имеет еще одну общую точку В с окружностью. Треугольник АОВ прямоугольный и в нем две стороны равны как радиусы, чего быть не может. Таким образом получаем, что данная прямая не имеет больше общих точек с окружность кроме точки А, т.е. является касательной.

    Теорема. Отрезки касательных, проведенных из одной точки к окружности, равны, а прямая, соединяющая эту точку с центром окружности, делит угол между касательными попалам.

    Доказательство.

    Доказательство очень простое. Используя предыдущую теорему, утверждаем, что ОВ перпендикулярен АВ, а ОС - АС. Прямоугольные треугольники АВО и АСО равны по катету и гипотенузе (ОВ=ОС - радиусы, АО - общая). Поэтому равны и их катеты АВ=АС и углы ОАС и ОАВ.

    Теорема. Величина угла, образованного касательной и хордой, имеющими общую точку на окружности, равна половине угловой величины дуги, заключенной между его сторонами.

    Доказательство.

    Рассмотрим угол NАВ, образованный касательной и хордой. Проведем диаметр АС. Касательная перпендикулярна диаметру, проведенному в точку касания, следовательно, ∠CAN=90 о. Зная теорему, видим, что угол альфа (a) равен половинеполовине угловой величины дуги ВС или половине угла ВОС. ∠NAB=90 о -a, отсюда получаем ∠NAB=1/2(180 о -∠BOC)=1/2∠АОВ или = половине угловой величины дуги ВА. ч.т.д.

    Теорема. Если из точки к окружности проведены касательная и секущая, то квадрат отрезка касательной от данной точки до точки касания равен произведению длин отрезков секущей от данной точки до точек её пересечения с окружностью.

    Доказательство.

    На рисунке эта теорема выглядит так: МА 2 =МВ*МС. Докажем это. По предыдущей теореме угол МАС равен половине угловой величины дуги АС, но также и угол АВС равен половине угловой величины дуги АС по теореме, следовательно, эти углы равны между собой. Принимая во внимание то, что у треугольников АМС и ВМА угол при вершине М общий, констатируем подобие этих треугольников по двум углам (второй признак). Из подобия имеем: МА/MB=MC/MA, откуда получаем МА 2 =МВ*МС

    Построение касательных к окружности

    А теперь давайте попробуем разобраться и узнать, что нужно сделать, чтобы построить касательную к окружности.

    В этом случае, как правило, в задаче дается окружность и точка. А нам с вами необходимо построить касательную к окружности так, чтобы эта касательная проходила через заданную точку.

    В том случае, если нам неизвестно месторасположение точки, то давайте рассмотрим случаи возможного расположения точек.

    Во-первых, точка может находиться внутри круга, который ограничен данной окружностью. В этом случае касательную через эту окружность построить нет возможности.

    Во втором случае, точка находится на окружности, и мы можем строить касательную, проведя перпендикулярную прямую к радиусу, которой проведен к известной нам точке.

    В-третьих, припустим, точка находится за приделами круга, который ограничен окружностью. В этом случае перед тем, как построить касательную, необходимо найти точку на окружности, через которую должна пройти касательная.

    С первым случаем, я надеюсь вам все понятно, а вот для решения второго варианта нам необходимо на прямой, на которой лежит радиус, построить отрезок. Этот отрезок должен быть равен радиусу и отрезку, который лежит на окружности, на противоположной стороне.



    Здесь мы с вами видим, что точка на окружности является серединой отрезка, который равен удвоенному радиусу. Следующим этапом будет построение двух окружностей. Радиусы этих окружностей будут равняться удвоенному радиусу первоначальной окружности, с центрами в концах отрезка, который равен удвоенному радиусу. Теперь мы можем через любую точку пересечения этих окружностей и заданную точку провести прямую. Такая прямая является срединным перпендикуляром к радиусу окружности, которая была начерчена вначале. Таким образом, мы с вами видим, что эта прямая перпендикулярна окружности и из этого следует, что она является касательной к окружности.

    В третьем варианте у нас есть точка, лежащая за приделами круга, который ограничен окружностью. В этом случае мы вначале строим отрезок, который соединит центр предоставленной окружности и заданную точку. А дальше мы находим его середину. Но для этого необходимо построить серединный перпендикуляр. А как его построить вам уже известно. Потом нам нужно начертить окружность или хотя бы ее часть. Теперь мы видим, что точка пересечения заданной окружности и вновь построенной и есть та точка, через которую проходит касательная. Также она проходит и через точку, которая была задана по условию задачи. И наконец, уже через известные вам две точки вы можете провести касательную прямую.

    Ну и наконец, чтобы доказать, то, что построенная нами прямая является касательной, нужно обратить внимание на угол, который был образован радиусом окружности и отрезком, известным по условию и соединяющим точку пересечения окружностей с точкой, данной по условию задачи. Теперь мы видим, что образовавшийся угол опирается на полуокружность. А из этого следует, что этот угол прямой. Следовательно, радиус будет перпендикулярен вновь построенной прямой, а эта прямая и есть касательная.

    Построение касательной.

    Построение касательных – одна из тех задач, которые привели к рождению дифференциального исчисления. Первый опубликованный труд, относящийся к дифференциальному исчислению и принадлежащий перу Лейбница, имел название «Новый метод максимумов и минимумов, а также касательных, для которого не служат препятствием ни дробные, ни иррациональные величины, и особый для этого род исчисления».

    Геометрические познания древних египтян.

    Если не учитывать весьма скромный вклад древних обитателей долины между Тигром и Евфратом и Малой Азии, то геометрия зародилась в Древнем Египте до 1700 до н.э. Во время сезона тропических дождей Нил пополнял свои запасы воды и разливался. Вода покрывала участки обработанной земли, и в целях налогообложения нужно было установить, сколько земли потеряно. Землемеры использовали в качестве измерительного инструмента туго натянутую веревку. Еще одним стимулом накопления геометрических знаний египтянами стали такие виды их деятельности, как возведение пирамид и изобразительное искусство.

    Об уровне геометрических познаний можно судить из древних рукописей, которые специально посвящены математике и являются чем-то вроде учебников, или, вернее, задачников, где даны решения разных практических задач.

    Древнейшая математическая рукопись египтян переписана неким учеником между 1800 – 1600 г.г. до н.э. с более древнего текста. Папирус разыскал русский египтолог Владимир Семенович Голенищев. Он хранится в Москве - в Музее изобразительных искусств имени А.С. Пушкина, и называется Московским папирусом.

    Другой математический папирус, написанный лет на двести-триста позднее Московского, хранится в Лондоне. Он называется: „Наставление, как достигнуть знания всех тёмных вещей, всех тайн, которые скрывают в себе вещи… По старым памятникам писец Ахмес написал это". Рукопись так и называют „папирусом Ахмеса", или папирусом Райнда - по имени англичанина, который разыскал и купил этот папирус в Египте. В папирусе Ахмеса даётся решение 84 задач на различные вычисления, которые могут понадобиться на практике.