Болезни Военный билет Призыв

Категории сил в природе физика. Силы в природе. Гравитационные силы — Гипермаркет знаний

Тема: “Силы в природе. Гравитационные силы”

1. Выяснить какие типы сил встречаются в природе. Дать определение гравитационной силы. Сформулировать закон всемирного тяготения.
2. Развивать мышление учащихся, интерес к изучению физики.
3. Воспитывать положительное отношение к труду.

Ход урока:

1. Оргмомент.

Здравствуйте ребята. Тема нашего урока “Силы в природе. Гравитационные силы”. Откройте тетради и запишите число и тему урока. Сегодня на уроке мы выясним какие типы сил встречаются в природе. Дадим определение гравитационной силы и сформулируем закон всемирного тяготения. Но сначала давайте повторим пройденный материал.

2. Фронтальный опрос учащихся.

1)Что такое динамика?

2)Сформулируйте первый закон Ньютона.

3)Какие системы отсчета называются инерциальными?

4)Сформулируйте второй закон Ньютона.

5)Сформулируйте третий закон Ньютона.

6)Что такое сила?

3. Объяснение новой темы сопровождается презентацией

Приложение 1 .

1). Типы сил в природе:

Гравитационные – все тела притягиваются друг к другу.

Электромагнитные – действуют между частицами, имеющими электрические заряды (в атомах, молекулах, твердых, жидких и газообразных телах, живых организмах).

Ядерные – внутри атомных ядер (сказываются только на расстоянии 10 -12 см).

Слабые взаимодействия – проявляются на еще меньших расстояниях. Они вызывают превращение элементарных частиц друг в друга.

2). Гравитационная сила.

Попытки объяснить строение Солнечной системы, занимали умы многих людей. Особенно волновал вопрос о том, что связывает планеты и Солнце в единую систему? Он встал, после того как Коперник “поместил” Солнце в центр, а все планеты заставил обращаться вокруг него. Именно Солнце естественно считать причиной обращения вокруг него Земли и планет. Но не только планеты притягиваются к Солнцу. Солнце тоже притягивается к планетам. Это доказал И. Ньютон. Выражение для силы тяготения Ньютон получил в 1666 году, когда ему было 24 года. Изучая в течение многих лет движение тел, в частности движение Луны вокруг Земли и планет вокруг Солнца, Ньютон пришел к смелой мысли о том, что все тела во Вселенной притягивают друг друга.

Взаимное притяжение между всеми телами было названо всемирным тяготением . (Определение записать в тетрадь)

Силы всемирного тяготения иначе называют гравитационными . (Определение записать в тетрадь)

3). Закон всемирного тяготения

Ньютон установил, как зависит от расстояния ускорение свободного падения. Вблизи поверхности Земли, на расстоянии 6400 км от центра оно составляет 9,8 м/с 2 . А на расстоянии в 60 раз больше, то есть у Луны это ускорение в 3600 раз меньше, чем на Земле. Вывод: ускорение убывает обратно пропорционально квадрату расстояния от центра Земли. По второму закону динамики, ускорение прямо пропорционально силе, а сила в свою очередь прямо пропорциональна массам. Обобщив все это, Ньютон сформулировал закон всемирного тяготения :

Два любых тела притягиваются друг к другу с силой прямо пропорциональной массе каждого из них и обратно пропорциональной квадрату расстояния между ними:

F=(G m 1 m 2) /r 2

F –модуль вектора силы гравитационного притяжения между телами с массами m 1 и m 2 , находящимися на расстоянии r друг от друга.

G –гравитационная постоянная (закон и формулу закона записать в тетрадь)

Если m 1= m 2 =1кг, то G численно равна силе F.

G=6,67*10 -11 (Н*м 2)/кг 2 (записать в тетрадь)

Это величайшее открытие английский поэт Байрон описывает так в своем произведении “Дон Жуан”:

Так человека яблоко сгубило,
Но яблоко его же и спасло,
Ведь Ньютона открытие разбило
Неведения мучительное зло
Дорогу к новым звездам проложило
И новый выход страждущим дано.
Уж скоро мы, природы властелины
И на Луну пошлем свои машины.

Взаимное притяжение между материальными телами было обнаружено впервые “на небе”. Но закон Ньютона относится ко всем материальным частицам, независимо от их местонахождения, и потому притяжение должно существовать и между земными телами. Такое притяжение было обнаружено в XVII веке, через 50 лет после открытия Ньютона, французскими учеными Бугером и Кондамином в результате эксперимента. Более точные опыты провел в 1798 году английский ученый Кавендиш.

4). Опыт Кавендиша (учебник страница 83, рисунок 81 и рисунок на экране)

Два шарика 1, имеющие одинаковую массу m 1, укреплены на концах легкого коромысла 2, подвешенного на упругой нити 3. Шарики находятся на расстоянии r от более массивных шаров 4 массой m 2. Под действием силы притяжения малых шаров к большим, коромысло поворачивается. По углу закручивания нити определяется сила гравитационного притяжения F 12 шариков массами m 1 и m 2 . Кавендиш нашел числовое значение гравитационной постоянной.

5). Применение формулы закона для расчетов (записать в тетрадь)

Формула закона всемирного тяготения дает точный результат при расчете:

а) если размеры тел пренебрежимо малы по сравнению с расстоянием между ними;
б) если оба тела однородны и имеют шарообразную форму;
в) если одно из взаимодействующих тел – шар, размеры и масса которого, значительно больше, чем у второго тела.

4. Закрепление.

Тест. Букву, под которой находится правильный ответ записать в таблицу. В результате получится ключевое слово.

1. Кто открыл закон всемирного тяготения?

З Ньютон;
В Кавендиш;
Р Коперник.

2. Формула, определяющая силу всемирного притяжения между двумя телами.

Е F=(m 1 m 2) /r 2 ;
A F=(Gm 1 m 2)/r 2 ;
O F=(Gm 1 m 2)/r.

3. Как изменится сила притяжения между двумя шарами, если один из них заменить другим масса которого вдвое больше?

Н не изменится;
К увеличится в два раза;
З уменьшится в два раза.

4. Чему равна гравитационная постоянная?

О 6,67*10 -11 Н*м 2 /кг 2 ;
Е 6,67*10 -11 Н*м/кг;
И 6,67*10 -1 Н*м 2 /кг 2 .

5. Как изменится сила притяжения между двумя шарами, если расстояние между ними увеличить вдвое?

К уменьшится в два раза;
Т увеличится в четыре раза;
Н уменьшится в четыре раза.

5. Расслабление глаз

(музыка).

Сесть спокойно и устойчиво. Закрыть глаза и расслабить веки. Мысленно погладить глаза теплыми мягкими пальцами. Почувствовать, как глазные яблоки совершенно пассивно лежат в глазницах. Лицо и тело расслаблены. Чувства тепла и тяжести сменяются легкостью, а в дальнейшем – полной потерей ощущения глаз.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное

учреждение высшего образования

"Национальный исследовательский Томский политехнический университет"

Институт Кибернетики

Направление подготовки: Мехатроника и робототехника

Кафедра: Интегрированных компьютерных систем управления

Реферат

на тему: " Силы в природе "

Выполнил: Сергеев А.С.

Принял: доцент каф. ЭФ Кравченко Н.С.

Томск - 2016

Введение

Современные достижения физики высоких энергий все больше укрепляют представление, что многообразие свойств Природы обусловлено взаимодействующими элементарными частицами. Дать неформальное определение элементарной частицы, по-видимому, невозможно, поскольку речь идет о самых первичных элементах материи. На качественном уровне можно говорить, что истинно элементарными частицами называются физические объекты, которые не имеют составных частей.

Очевидно, что вопрос об элементарности физических объектов - это в первую очередь вопрос экспериментальный. Например, экспериментально установлено, что молекулы, атомы, атомные ядра имеют внутреннюю структуру, указывающую на наличие составных частей. Поэтому их нельзя считать элементарными частицами. Сравнительно недавно открыто, что такие частицы, как мезоны и барионы, также обладают внутренней структурой и, следовательно, не являются элементарными. В то же время у электрона внутренняя структура никогда не наблюдалась, и, значит, его можно отнести к элементарным частицам. Другим примером элементарной частицы является квант света - фотон.

Современные экспериментальные данные свидетельствуют, что существует только четыре качественно различных вида взаимодействий, в которых участвуют элементарные частицы. Эти взаимодействия называются фундаментальными, то есть самыми основными, исходными, первичными. Если принять во внимание все многообразие свойств окружающего нас Мира, то кажется совершенно удивительным, что в Природе есть только четыре фундаментальных взаимодействия, ответственных за все явления Природы.

Помимо качественных различий, фундаментальные взаимодействия отличаются в количественном отношении по силе воздействия, которая характеризуется термином интенсивность. По мере увеличения интенсивности фундаментальные взаимодействия располагаются в следующем порядке: гравитационное, слабое, электромагнитное и сильное. Каждое из этих взаимодействий характеризуется соответствующим параметром, называемым константой связи, численное значение которого определяет интенсивность взаимодействия.

Каким образом физические объекты осуществляют фундаментальные взаимодействия между собой? На качественном уровне ответ на этот вопрос выглядит следующим образом. Фундаментальные взаимодействия переносятся квантами.

При этом в квантовой области фундаментальным взаимодействиям отвечают соответствующие элементарные частицы, называемые элементарными частицами - переносчиками взаимодействий. В процессе взаимодействия физический объект испускает частицы - переносчики взаимодействия, которые поглощаются другим физическим объектом. Это ведет к тому, что объекты как бы чувствуют друг друга, их энергия, характер движения, состояние изменяются, то есть они испытывают взаимное влияние.

В современной физике высоких энергий все большее значение приобретает идея объединения фундаментальных взаимодействий. Согласно идеям объединения, в Природе существует только одно единое фундаментальное взаимодействие, проявляющее себя в конкретных ситуациях как гравитационное, или как слабое, или как электромагнитное, или как сильное, или как их некоторая комбинация. Успешной реализацией идей объединения послужило создание ставшей уже стандартной объединенной теории электромагнитных и слабых взаимодействий. Идет работа по развитию единой теории электромагнитных, слабых и сильных взаимодействий, получившей название теории великого объединения. Предпринимаются попытки найти принцип объединения всех четырех фундаментальных взаимодействий.

C ила

Скорость тела относительно Земли изменяется, когда на него действуют другие тела. К примеру:

Человек, когда толкает вагонетку, приводит её в движение. В этом случае скорость вагонетки будет изменяться под действием силы руки человека.

Рассмотрим другой пример:

Когда взаимодействует рука с шаром мы наблюдаем, что витки пружины начинают двигаться, и пружина сжимается. Отпустив ее, мы увидим, как пружина, распрямляясь, приводит в движение шар. Сначала действующим телом здесь была рука человека. Затем стала пружина.

Во всех вышеприведенных примерах причиной изменения скорости тела было действие, оказываемое на него другими телами. Мерой этого действия является векторная физическая величина, называемая силой .

Сила векторная величина, как и другие векторные величины. Сила характеризуется не только числовым значением, но и своим направлением.

Силу обычно обозначают буквой F .

Если сила к телу не приложена (F = 0), то это означает, что никакого действия на него не оказывается, и потому скорость такого тела относительно Земли не изменяется. Если же, наоборот, сила F ? 0, то тело испытывает некоторое воздействие, и его скорость изменяется. При этом, чем больше сила F, тем значительнее изменяется скорость тела относительно Земли.

Единицей силы в СИ является ньютон . H - это сила, которая за 1 секунду изменяет скорость тела массой 1 килограмм на 1 м/с. Эта единица названа в честь великого ученого И. Hьютона.

Рассмотрим наиболее известные силы.

Равнодействующая сила

Обычно на любое движущееся тело действует не одно, а сразу несколько окружающих его тел.

Например: Когда тело падает, на него действует не только Земля, но и воздух.

Когда на материальную точку действует несколько тел, их общее действие характеризуется равнодействующей силой.

Для нахождения равнодействующей силы есть несколько правил.

1) Если к телу приложены две силы F(1) и F(2), направленные по одной прямой в одну сторону, то их равнодействующая F находится по формуле

При этом направление равнодействующей силы совпадает с направлением приложенных сил

2) Если к телу приложены две силы F(1) и F(2), направленные по одной прямой в противоположные стороны, то при F

F(1) > F(2) их равнодействующая F находится по формуле

F = F(1) - F(2).

Направление равнодействующей силы в этом случае совпадает с направлением большей из приложенных сил. Если при этом F(1) = F(2), то их равнодействующая F окажется равной нулю. В этом случае покоящееся тело так и будет покоиться, а движущееся тело будет совершать равномерное и прямолинейное движение с той скоростью, которая у него была.

Про две силы, равные по величине и направленные вдоль одной прямой в противоположные стороны, говорят, что они уравновешивают или компенсируют друг друга. Равнодействующая F таких сил всегда равна нулю и потому изменить скорость тела не может.

Для изменения скорости тела относительно Земли необходимо, чтобы равнодействующая всех приложенных к телу сил была отлична от нуля. В том случае, когда тело движется в направлении равнодействующей силы, его скорость возрастает; при движении в противоположном направлении скорость тела убывает.

Сила тяжести

Почему тело, брошенное в горизонтальном направлении, через несколько секунд оказывается на земле?

Почему тело, выпущенное из рук, падает вниз?

У этих явлений одна причина - притяжение Земли.

Сила притяжения к Земле называется силой тяжести . Сила тяжести направлена вертикально вниз. Когда тело под действием притяжения к Земле падает вниз, на него действует не только Земля, но и другие воздействия. В тех случаях, когда сила сопротивления воздуха пренебрежимо мала по сравнению с силой тяжести, падение тела называют свободным .

Чтобы определить силу тяжести, надо массу этого тела умножить на ускорение свободного падения:

Из этой формулы следует, что g = F(T)/m. Но F(T) измеряется в ньютонах, a m - в килограммах. Поэтому величину g можно измерять в ньютонах на килограмм:

g = 9,8 Н/кг?10 Н/кг.

С увеличением высоты над Землей ускорение свободного падения постепенно уменьшается. Уменьшение ускорения свободного падения означает, что и сила тяжести по мере увеличения высоты над Землей также уменьшается. Чем дальше тело находится от Земли, тем слабее она его притягивает.

Сила упругости

На все тела, находящиеся вблизи Земли, действует ее притяжение. Под действием силы тяжести падают на Землю капли дождя, снежинки.

Но когда капли лежат на крыше, его притягивает Земля, однако он не проходит и не проваливается сквозь крышу, а остается в покое. Что препятствует его падению? Крыша. Она действует на капли с силой, равной силе тяжести, но направленной в противоположную сторону.

Рассмотрим один пример. Изображена доска, лежащая на двух подставках. Если на ее середину поместить тело, то под действием силы тяжести тело начнет продавливать доску, но через несколько минут, остановится. При этом сила тяжести станет уравновешенной силой, действующей на тело со стороны изогнутой доски и направленной вертикально вверх. Эта сила называется силой упругости.

Сила упругости возникает при деформации. Деформация - это изменение формы или размеров тела. Одним из видов деформации является изгиб. Чем больше прогибается опора, тем больше сила упругости, действующая со стороны этой опоры на тело. Перед тем как тело (гирю) положили на доску, эта сила отсутствовала. По мере движения гири, которая все сильнее и сильнее прогибала свою опору, возрастала и сила упругости. В момент остановки гири сила упругости достигла силы тяжести, и их равнодействующая стала равной нулю.

Если на опору поместить достаточно легкий предмет, то ее деформация может оказаться столь незначительной, что никакого изменения формы опоры мы не заметим. Но деформация все равно будет! А вместе с ней будет действовать и сила упругости, препятствующая падению тела, находящегося на данной опоре. В подобных случаях (когда деформация тела незаметна и изменением размеров опоры можно пренебречь) силу упругости называют силой реакции опоры.

Если вместо опоры использовать какой-либо подвес (нить, веревку, проволоку, стержень и т. д.), то прикрепленный к нему предмет также может удерживаться в покое. Сила тяжести и здесь будет уравновешена противоположно направленной силой упругости. Сила упругости при этом возникает из-за того, что подвес под действием прикрепленного к нему груза растягивается. Растяжение еще один вид деформации.

Большой вклад внес в изучение силы упругости ученый Р. Гук. Закон Гука гласит:

Сила упругости , возникающая при растяжении или сжатии тела, пропорциональна его удлинению.

Если удлинение тела, т.е. изменение его длины, обозначить через х, а силу упругости - через F(упр), то по закону Гука можно придать следующую математическую форму:

где k - коэффициент пропорциональности, называемый жесткостью тела. У каждого тела своя жесткость. Чем больше жесткость тела (пружины, проволоки, стержня и т. д.), тем меньше оно изменяет свою длину под действием данной силы.

Единицей жесткости в СИ является ньютон на метр (1 Н/м).

Вес тела

Постоянно мы говорим: "весит 50 килограмм" и т.д. Но мы не знаем, что допускаем ошибку. Масса это мера инертности тела, каким образом тело реагирует на приложенное к нему воздействие, либо же само воздействует на другие тела. А вес тела это сила, с которой тело действует на горизонтальную опору или вертикальный подвес под влиянием притяжения Земли.

Масса измеряется в килограммах, а вес тела, как и любая другая сила в ньютонах. Вес тела имеет направление, как и любая сила, и является величиной векторной. А масса не имеет никакого направления и является величиной скалярной.

Вес тела как и сила тяжести направлена вниз.

Вес тела обычно обозначают буквой P .

Формула веса тела в физике записывается следующим образом:

где m - масса тела

Но, несмотря на совпадение с формулой и направлением силы тяжести, есть серьезное различие между силой тяжести и весом тела. Сила тяжести приложена к телу, то есть, грубо говоря, это она давит на тело, а вес тела приложен к опоре или подвесу, то есть, здесь уже тело давит на подвес или опору.

Но природа существования силы тяжести и веса тела одинакова притяжение Земли. Собственно говоря, вес тела является следствием приложенной к телу силы тяжести. И, так же как и сила тяжести, вес тела уменьшается с увеличением высоты.

Сила трения

Если вы попытаетесь сдвинуть с места шкаф, то сразу убедитесь, что это не так-то просто сделать. Его движению будет мешать взаимодействие ножек с полом, на котором он стоит.

Взаимодействие, возникающее в месте соприкосновения тел и препятствующее их относительному движению, называют трением , а характеризующую это взаимодействие силу - силой трения .

Различают три вида трения: трение покоя, трение скольжения и трение качения.

1) Трение покоя . Положим тело на наклонную плоскость. При небольшом угле наклона плоскости тело может остаться на месте. Что будет удерживать его от соскальзывания вниз? Трение покоя. Сила трения покоя может быть любой.

Она изменяется вместе с силой, стремящейся сдвинуть тело с места. Но для любых двух взаимодействующих тел она имеет некоторое максимальное значение, больше которого быть не может.

Приложив к телу силу, превышающую максимальную силу трения покоя, мы сдвинем его с места, и тело начнет двигаться. Трение покоя при этом сменится трением скольжения. трение сила тяготение

2) Трение скольжения. Из-за чего постепенно останавливаются санки? Из-за трения скольжения. Сила трения скольжения направлена всегда в сторону, противоположную направлению движения тела.

3) Трение качения . Если тело не скользит по поверхности другого тела, а как колесо или цилиндр, катится, то возникающее в месте их контакта трение называют трением качения.

Катящееся колесо несколько вдавливается в полотно дороги, и потому перед ним все время оказывается небольшой бугорок, который необходимо преодолевать. Именно тем, что катящемуся колесу постоянно приходится взбираться на появляющийся впереди бугорок, и обусловлено трение качения. При этом, чем дорога тверже, тем трение качения меньше.

Заключение

Итак, мы сделали обзор наиболее известных сил. Кратко описали каждую из сил, рассмотрели примеры из жизни.

Подведем итоги в виде таблицы:

Список литературы

1. http://phscs.ru/

2. http://bcoreanda.com/

3. http://bibliofond.ru

5. http://dic.academic.ru

6. http://interneturok.ru

7. https://ru.wikipedia.org

8. https://www.google.com/imghp?hl=ru

9. http://ru.solverbook.com/

10. http://www.fizika.ru

11. http://foxford.ru

12. http://infofiz.ru

13. http://multiurok.ru

Размещено на Allbest.ru

...

Подобные документы

    Движение тела по эллиптической орбите вокруг планеты. Движение тела под действием силы тяжести в вертикальной плоскости, в среде с сопротивлением. Применение законов движения тела под действием силы тяжести с учетом сопротивления среды в баллистике.

    курсовая работа , добавлен 17.06.2011

    Анализ зависимости веса тела от ускорения опоры, на которой оно стоит, изменения взаимного положения частиц тела, связанного с их перемещением друг относительно друга. Исследование основных видов деформации: кручения, сдвига, изгиба, растяжения и сжатия.

    презентация , добавлен 04.12.2011

    Изучение понятия "вес тела" - силы, с которой это тело действует на опору или подвес, вследствие действия на него силы тяжести. Обозначение и направление веса тела. Характеристика принципа работы и видов динамометров – приборов для измерения силы (веса).

    презентация , добавлен 13.12.2010

    Гравитационные, электромагнитные и ядерные силы. Взаимодействие элементарных частиц. Понятие силы тяжести и тяготения. Определение силы упругости и основные виды деформации. Особенности сил трения и силы покоя. Проявления трения в природе и в технике.

    презентация , добавлен 24.01.2012

    Механическое движение. Относительность движения. Взаимодействие тел. Сила. Второй закон Ньютона. Импульс тела. Закон сохранения импульса в природе и технике. Закон всемирного тяготения. Сила тяжести. Вес тела. Невесомость.

    шпаргалка , добавлен 12.06.2006

    Явление тяготения и масса тела, гравитационное притяжение Земли. Измерение массы при помощи рычажных весов. История открытия "Закона всемирного тяготения", его формулировка и границы применимости. Расчет силы тяжести и ускорения свободного падения.

    конспект урока , добавлен 27.09.2010

    Запись второго закона Ньютона в векторной и скалярной форме. Определение пути прохождения тела до остановки при заданной начальной скорости. Расчет времени движения данного тела, если под действием силы равной 149 Н тело прошло путь равный 200 м.

    презентация , добавлен 04.10.2011

    Различие силы тяжести и веса. Момент инерции относительно оси вращения. Уравнение моментов для материальной точки. Абсолютно твердое тело. Условия равновесия, инерция в природе. Механика поступательного и вращательно движения относительно неподвижной оси.

    презентация , добавлен 29.09.2013

    Сущность закона определения максимальной силы трения покоя. Зависимость модуля силы трения скольжения от модуля относительной скорости тел. Уменьшение силы трения скольжения тела с помощью смазки. Явление уменьшения силы трения при появлении скольжения.

    презентация , добавлен 19.12.2013

    Законы движения планет Кеплера, их краткая характеристика. История открытия Закона всемирного тяготения И. Ньютоном. Попытки создания модели Вселенной. Движение тел под действием силы тяжести. Гравитационные силы притяжения. Искусственные спутники Земли.

Сила - мера механического взаимодействия тел. Сила является причиной изменения скорости тела или возникновения в нём деформаций (изменение формы или объема). Сила − векторная величина, характеризующаяся модулем (величиной), направлением и точкой приложения силы. Линия действия силы - прямая, проходящая через точку приложения силы, и продолжающая направление вектора силы. Единицей измерения силы в системе СИ является Ньютон [Н]. Все силы в природе основаны на четырех типах фундаментальных взаимодействий:

  • электромагнитные силы, действующие между электрически заряженными телами,
  • гравитационные силы, действующие между массивными объектами,
  • сильное ядерное взаимодействие, действующее в масштабах порядка размера атомного ядра и меньше (отвечает за связь между кварками в адронах и за притяжение между нуклонами в ядрах).
  • слабое ядерное взаимодействие, проявляющееся на расстояниях, значительно меньших размера атомного ядра.

Интенсивность сильного и слабого взаимодействия измеряется в единицах энергии (электрон-вольтах), а не единицах силы, и потому применение к ним термина «сила» условно. Действие силы может место как при непосредственном контакте (трение, давление те друг на друга при непосредственном контакте), так и посредством создаваемых телами полей (поле тяготения, электромагнитное поле). Интересный и познавательный сайт http://mistermigell.ru для вас.
С точки зрения действия сил на систему, рассматривают:

  • внутренние силы - силы взаимодействия между точками (телами) данной системы;
  • внешние силы - силы, действующие на точки (тела) данной системы со стороны точек (тел), не принадлежащих данной системе. Внешние силы называют нагрузками.

Силы можно разделить на:

  • реактивные силы − реакции связи. Если движение тела в пространстве ограничивается другими тела (связями, опорами), силы, с которыми эти тела действуют на данное тело, называют реакциями связи (опоры).
  • активные силы - силы, характеризующие действие других тел на данное и изменяющее его кинематическое состояние. Активны силы, в зависимости от вида контакта, подразделяются на
  • объемные - силы, действующие на каждую частицу тела, например, вес тела;
  • поверхностные - силы, действующие на участок тела и характеризующие непосредственный контакт тел. Поверхностные силы бывают:
  • сосредоточенными - действующими на площадках, которые малы по сравнению с телом, например, давление колеса на дорогу;
  • распределенными - действующими на площадках, которые не малы по сравнению с телом, например, давление гусеницы трактора на дорогу.

Наиболее известные силы:
Силы упругости − силы, возникающие при деформации тела и противодействующие этой деформации, имеет электромагнитную природу, являясь проявлением межмолекулярного взаимодействия. Вектор силы упругости направлен противоположно перемещению, перпендикулярно поверхности. Например, если сжать резинку, после снятия нагрузки она восстановит свою форму под действием силы упругости.
Силы трения − сила, возникающие при относительном движении твёрдых тел и противодействующие этому движению, имеют электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Вектор силы трения направлен противоположно вектору скорости. Например, сила трения возникает при скольжении санок по снегу, между подошвой ног и землей.
Силы сопротивления среды — силы, возникающие при движении твёрдого тела в жидкой или газообразной среде, имеют электромагнитную природу, являясь проявлением межмолекулярного взаимодействия. Вектор силы сопротивления направлен противоположно вектору скорости. Например, при движении самолета в воздухе.
Силы поверхностного натяжения − силы, возникающие на поверхности фазового раздела, имеют электромагнитную природу, являясь проявлением межмолекулярного взаимодействия. Сила натяжения направлена по касательной к поверхности раздела фаз. Например, монетка может лежать на поверхности жидкости, насекомые бегают по воде.
Сила всемирного тяготения − сила, с которой любые тела Вселенной притягивают друг друга, она прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними. Например, Земля притягивается к Солнцу, и, в то же время, Земля притягивает Луну и Солнце.
Сила тяжести − сила, действующая на тело со стороны Земли, которая сообщает ему ускорение свободного падения. Сила тяжести - это сумма сил гравитационного притяжения и центробежной силы вращения Земли. Например, под действием силы тяжести тела падают Земли.
Сила инерции − фиктивная сила (не является мерой механического взаимодействия), вводимая при рассмотрении относительного движения в неинерциальных системах отсчёта (движущихся с ускорением) для того, чтобы в них выполнялся второй закон Ньютона. В системе отсчёта, связанной с равноускоренно движущимся телом, сила инерции направлена противоположно ускорению. Из полной силы инерции могут быть для удобства выделены центробежная сила, направленная от оси вращение тела, и сила Кориолиса, возникающая при движении тела относительно вращающейся системы отсчета.
Существуют и другие силы.

Денис, 6 класс, ХФМЛ % 27

Которая характеризует меру, с которой на тело воздействуют другие тела либо поля, называется силой. Согласно второму ускорение, которое получает тело, прямо пропорционально действующей на него силе. Соответственно, чтобы изменить скорость тела, необходимо воздействовать на него силой. Поэтому верным является утверждение о том, что силы в природе служат источником любого движения.

Инерциальные системы отсчета

Силы в природе являются векторными величинами, то есть они имеют модуль и направление. Две силы могут считаться одинаковыми лишь тогда, когда равны их модули, а их направления совпадают.

Если на тело не действуют силы, а также в том случае, когда геометрическая сумма сил, воздействующих на данное тело (эта сумма часто называется равнодействующей всех сил), равна нулю, то тело либо остается в состоянии покоя, либо продолжает движение в одном направлении с постоянной скоростью (то есть движется по инерции). Это выражение справедливо для инерциальных систем отсчета. Существование таких систем постулируется первым законом Ньютона. В природе таких систем нет, но они являются удобной Тем не менее, часто при решении практических задач систему отсчета, связанную с Землей, можно считать инерциальной.

Земля - инерциальная и неинерциальная система отсчета

В частности при строительных работах, при расчете движения автомобилей и плавательного транспорта предположения о том, что Земля - инерциальная система отсчета, вполне достаточно, чтобы с необходимой для практического решения задач точностью описать действующие силы.

В природе также существуют задачи, не допускающие такого предположения. В частности, это относится к космическим проектам. При старте ракеты строго вверх она вследствие вращения Земли осуществляет видимое движение не только вдоль вертикали, но и в горизонтальном направлении против вращения Земли. В этом движении проявляется неинерциальность системы отсчета, связанной с нашей планетой.

Физически на ракету не действуют силы, отклоняющие ее. Тем не менее, для описания движения ракеты удобно использовать Эти силы не существуют физически, но предположение об их существовании позволяет представить неинерциальную систему инерциальной. Другими словами, при расчетах траектории ракеты считают, что система отсчета «Земля» является инерциальной, но при этом на ракету действует некоторая сила в горизонтальном направлении. Эта сила называется сила Кориолиса. В природе ее действие становится заметным, когда речь идет о телах, движущихся на некоторой высоте относительно нашей планеты в течение довольно большого времени либо с большой скоростью. Так, ее учитывают, не только описывая движение ракет и спутников, но и при расчетах движения артиллерийских снарядов, самолетов и т.д.

Природа взаимодействий

Все силы в природе по характеру своего происхождения относятся к четырем фундаментальным гравитационное, слабое и сильное). В макромире заметным является лишь воздействие гравитации и электромагнитных сил. Слабые и сильные взаимодействия влияют на процессы, происходящие внутри атомных ядер и субатомных частиц.

Самым распространенным примером гравитационного взаимодействия является Это сила, с которой Земля действует на окружающие ее тела.

Электромагнитные силы, помимо очевидных примеров, включают в себя все упругие, связанные с давлением взаимодействия, которые тела оказывают друг на друга. Соответственно, такая сила природы, как вес (сила, с которой тело действует на подвес либо опору), имеет электромагнитную природу.

До сих пор использовалось общее понятие силы, и не рассматривался вопрос о том, какие бывают силы и что они собой представляют. Несмотря на многообразие сил, встречающихся в природе, все их можно свести к четырем видам фундаментальных сил: 1) гравитационные; 2) электромагнитные; 3) ядерные; 4) слабые.

Гравитационные силы возникают между любыми телами. Их действие надо учитывать лишь в мире больших тел.

Электромагнитные силы действуют на заряды как неподвижные, так и движущиеся. Поскольку вещество построено из атомов, которые, в свою очередь состоят из электронов и протонов, то большинство сил, с которыми мы встречаемся в жизни - это электромагнитные силы. Ими являются, например, силы упругости, возникающие при деформации тел, силы трения.

Ядерные и слабые силы проявляют себя на расстояниях, не превышающих м, поэтому эти силы заметны лишь в микромире. Вся классическая физика, а вместе с ней и понятие силы, неприменимы к элементарным частицам. Характеризовать точным образом взаимодействие этих частиц с помощью сил нельзя. Единственно возможным здесь становится энергетическое описание. Тем не менее, и в атомной физике часто говорят о силах. В этом случае терминсила становится синонимом слова взаимодействие .

Таким образом, в современной науке слово сила употребляется в двух смыслах: во-первых, в смысле механической силы – точной количественной меры взаимодействия; во-вторых, сила означает наличие взаимодействия определенного типа, точной количественной мерой которого может быть только энергия .

В механике рассматриваются три типа сил: гравитационные, упругие и силы трения. Кратко остановимся на них.

1. Гравитационные силы . Все тела в природе притягиваются друг к другу. Эти силы получили название гравитационных. Ньютон установил закон, названный законом всемирного тяготения : силы, с которыми притягиваются материальные точки, пропорциональны произведению их масс, обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой, соединяющих их, т.е.

, (2.16)

где М и т – массы тел; r – расстояние между телами;   гравитационная постоянная. Знак «» указывает на то, что это сила притяжения.

Из формулы (2.16) следует, что при т = М = 1 кг и r = 1 м,  = F , т.е. гравитационная постоянная равна модулю силы притяжения материальных точек единичной массы, находящихся на единичном расстоянии друг от друга. Впервые опытное доказательство закона всемирного тяготения проведено Кавендишем. Он сумел определить величину гравитационной постоянной:
. Очень малая величина указывает на то, что сила гравитационного взаимодействия значительна только в случае тел с большими массами.

2. Силы упругости . При упругих деформациях возникают силы упругости. Согласно закону Гука , модуль упругой силы
пропорционален величине деформациих , т.е.

, (2.17)

где k  коэффициент упругости. Знак «» определяет тот факт, что направление силы и деформации противоположны.

3. Силы трения . При перемещении соприкасающихся тел или их частей относительно друг друга возникают силы трения . Различают внутреннее (вязкое) и внешнее (сухое) трение.

Вязким трением называют трение между твердым телом и жидкой или газообразной средой, а также между слоями такой среды.

Внешним трением называют явление возникновения в месте контакта соприкасающихся твердых тел сил, препятствующих их взаимному перемещению. Если соприкасающиеся тела неподвижны, то между ними возникает сила при попытке сдвинуть одно тело относительно другого. Она называется силой трения покоя . Сила трения покоя не является однозначно определенной величиной. Она меняется от нуля до максимального значения силы, приложенной параллельно плоскости соприкосновения, при которой тело начинает двигаться (рис. 2.3).

Обычно силой трения покоя и называют эту максимальную силу трения. Модуль силы трения покоя
пропорционален модулю силы нормального давления, который по третьему закону Ньютона равен модулю силы реакции опорыN , т.е.
, где
 коэффициент трения покоя.

При движении тела по поверхности другого тела возникает сила трения скольжения . Установлено, что модуль силы трения скольжения
так же пропорционален модулю силы нормального давленияN

, (2.19)

где   коэффициент трения скольжения. Установлено, что
, однако при решении многих задач их считают равными.

При решении задач учитывают следующие виды сил:

1. Сила тяжести
 сила, с которой гравитационное поле Земли действует на тело (приложена эта сила к центру масс тела).