Болезни Военный билет Призыв

Кинетика физическая. Физическая кинетика

Ранее этот государственный стандарт имел номер 010800 (согласно Классификатору направлений и специальностей высшего профессионального образования)
4. Требования к содержанию основной образовательной программы

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

УТВЕРЖДАЮ

Заместитель Министра

образования Российской

Федерации

___________________В.Д.Шадриков

“__17___”__03_____________2000г.

Номер государственной регистрации

173ен/сп___________

ГОСУДАРСТВЕННЫЙ ОБРАЗОВАТЕЛЬНЫЙ

СТАНДАРТ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Специальность

0108

Квалификация - физик

Вводится с момента утверждения

МОСКВА 2000

1.ОБЩАЯ ХАРАКТЕРИСТИКА СПЕЦИАЛЬНОСТИ

010800 ФИЗИКА КИНЕТИЧЕСКИХ ЯВЛЕНИЙ

  1. Специальность утверждена приказом Министерства образования Российской Федерации от
  2. 02. 03. 2000 № 686.
  3. Квалификация выпускника -
  4. физик.

Нормативный срок освоения основной образовательной программы подготовки физика по специальности 010800 Физика кинетических явлений при очной форме обучения - 5 лет.

1.3 Квалификационная характеристика выпускника по специальности 010800 Физика кинетических явлений.

Деятельность специалиста направлена на исследование и изучение структуры и свойств природы на различных уровнях ее организации от элементарных частиц до Вселенной, полей и явлений, лежащих в основе физики, на освоение новых методов исследований основных закономерностей природы.

Специалист подготовлен к деятельности, требующей углубленной фундаментальной и профессиональной подготовки, в том числе к научно-исследовательской работе, а при условии освоения дополнительной образовательной программы педагогического профиля - к педагогической деятельности.

Виды профессиональной деятельности специалиста:

  • научно-исследовательская: экспериментальная, теоретическая и расчетная;
  • педагогическая.

Специалист подготовлен к решению следующих задач:

а) научно-исследовательская (экспериментальная, теоретическая и расчетная деятельность):

  • научные исследования поставленных проблем;
  • формулировка новых задач, возникающих в ходе научных исследований;
  • разработка новых методов исследований;
  • выбор необходимых методов исследования;
  • освоение новых методов научных исследований;
  • освоение новых теорий и моделей;
  • обработка полученных результатов научных исследований на современном уровне и их анализ;
  • работа с научной литературой с использованием новых информационных технологий, слежение за научной периодикой;
  • написание и оформление научных статей;
  • составление отчетов и докладов о научно-исследовательской работе, участие в научных конференциях.

б) педагогическая деятельность:

  • подготовка и чтение курсов лекций;
  • подготовка и ведение семинарских занятий;
  • ведение занятий в учебных лабораториях;
  • руководство научной работой студентов;
  • руководство дипломными работами студентов.

Сферами профессиональной деятельности являются высшие учебные заведения, научно-исследовательские институты, лаборатории, конструкторские и проектные бюро и фирмы, производственные предприятия и объединения, учреждения системы высшего и среднего специального образования.

Специалистможет работать в должностях, предусмотренных законодательством РФ для лиц, имеющих высшее профессиональное образование (старшим лаборантом, младшим научным сотрудником, инженером в НИИ).

В соответствии с полученной за время обучения дополнительной квалификацией “Преподаватель” - может быть преподавателем средней школы и среднего профессионального учреждения, в соответствии с дополнительной квалификацией “Преподаватель высшей школы” - может быть также преподавателем вуза.

1.4 Возможности продолжения образования выпускника

Физик, освоивший основную образовательную программу высшего профессионального образования по специальности

010800 Физика кинетических явлений , подготовлен для продолжения образования в аспирантуре преимущественно по научным специальностям в следующих научных областях: физико-математических наук, биологических наук, геолого-минералогических наук и по другим, близким по профилю, научным специальностям.

2.ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ АБИТУРИЕНТА

  • Предшествующий уровень образования абитуриента - среднее (полное) общее образование.
    1. Абитуриент должен иметь документ государственного образца о среднем (полном) общем образовании или среднем профессиональном образовании, или начальном профессиональном образовании, если в нем есть запись о получении предъявителем среднего (полного) общего образования, или высшем профессиональном образовании.
    1. Общие Требования к основной образовательной программе подготовки выпускника по специальности
    00 Физика кинетических явлений

    3.1 Основная образовательная программа подготовки физика разрабатывается на основании настоящего государственного образовательного стандарта и включает в себя учебный план, программы учебных дисциплин, программы учебных и производственных практик.

    3.2 Требования к обязательному минимуму содержания основной образовательной программы подготовки физика , к условиям ее реализации и срокам ее освоения определяются настоящим государственным образовательным стандартом.

    3.3 Основная образовательная программа подготовки физика

    состоит из дисциплин федерального компонента, дисциплин национально-регионального (вузовского) компонента, дисциплин по выбору студента, а также факультативных дисциплин. Дисциплины и курсы по выбору студента в каждом цикле должны содержательно дополнять дисциплины, указанные в федеральном компоненте цикла.

    3.4 Основная образовательная программа подготовки физика должна предусматривать изучение студентом следующих циклов дисциплин и итоговую государственную аттестацию:

    цикл ГСЭ - общие гуманитарные и социально-экономические дисциплины;

    цикл ЕН - общие математические и естественнонаучные дисциплины;

    цикл ОПД - общепрофессиональные дисциплины;

    цикл ДС - дисциплины специализации;

    цикл ФТД - факультативы.

    1. ТРЕБОВАНИЯ К ОБЯЗАТЕЛЬНОМУ МИНИМУМУ СОДЕРЖАНИЯ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ПОДГОТОВКИ ФИЗИКА ПО СПЕЦИАЛЬНОСТИ
    00 Физика кинетических явлений

    Общие гуманитарные и социально-экономические дисциплины

    Федеральный компонент:

    Иностранный язык.

    Специфика артикуляции звуков, интонации, акцентуации и ритма нейтральной речи в изучаемом языке; основные особенности полного стиля произношения, характерные для сферы профессиональной коммуникации; чтение транскри ции. Лексический минимум в объеме 4000 учебных лексических диниц общего и терминологического характера. Понятие дифференциации лексики по сферам применения (бытовая, терминологическая, общенаучная, официальная и другая). Понятие о свободных и устойчивых словосочетаниях, фразеологических единицах. П онятие об основных способах словообразования. Грамматические навыки, обеспечивающие коммуникацию без искажения смысла при письменном и устном общении общего характера; основные грамматические явления, характерные для профессиональной речи. Понятие об обиходно -литературном, официально-деловом, науч ном стилях , стиле художественной литературы. Основные особенности научного стиля. К ультура и традиции стран изучаемого языка, правила ре евого этикета. Говорение. Диалогическая и монологическая речь с использованием наи олее употребительных и относительно простых лекси ко -г а матических средств в осно н х коммуникативных ситуациях неофициального и официального об ения. Основы публичной речи (устное сообщение, доклад). Аудирование. Понимание диалогической и монологической речи в сфере бытовой и профессиональной коммуникации. Ч тение. Виды текстов: несложные прагматические тексты и тексты по широкому и узкому профилю специальности. П сьмо. Виды реч вы произведений: аннотация, реф ерат , те исы, сообщения, частное письмо, деловое письмо, биография.

    Физическая культура

    .
    развития России. Эволюция форм собственности на землю. Структура феодального землевладения. Крепостное право в России. Мануфактурно-промышленное производство. Становление индустриального общества в России: общее и особенное. Общественная мысль и особенности общественного движения России Х1Х в. Реформы и реформаторы в России. Русская культура Х1Х века и ее вклад в мировую культуру. Роль ХХ столетия в мировой истории. Глобализация общественных процессов. Проблема экономического роста и модернизации. Революции и реформы. Социальная трансформация общества. Столкновение тенденций интернационализма и национализма, интеграции и сепаратизма, демократии и авторитаризма. Россия в начале ХХ в. Объективная потребность индустриальной модернизации России. Российские реформы в контексте общемирового развития в начале века. Политические партии России: генезис, классификация, программы, тактика. Россия в условиях мировой войны и общенационального кризиса. Революция 1917г. Гражданская война и интервенция, их результаты и последствия. Российская эмиграция. Социально-экономическое развитие страны в 20-е гг. НЭП. Формирование однопартийного политического режима. Образование СССР. Культурная жизнь страны в 20-е гг. Внешняя политика. Курс на строительство социализма в одной стране и его последствия. Социально-экономические преобразования в 30-е гг. Усиление режима личной власти Сталина. Сопротивление сталинизму. СССР накануне и в начальный период второй мировой войны. Великая Отечественная война. Социально-экономическое развитие, общественно-политическая жизнь, культура, внешняя политика СССР в послевоенные годы. Холодная война. Попытки осуществления политических и экономических реформ. НТР и ее влияние на ход общественного развития. СССР в середине 60-80-х гг.: нарастание кризисных явлений. Советский Союз в 1985-1991 гг. Перестройка. Попытка государственного переворота 1991 г. и ее провал. Распад СССР. Беловежские соглашения. Октябрьские события 1993 г. Становление новой российской государственности (1993-1999 гг .). Россия на пути радикальной социально-экономической модернизации. Культура в современной России. Внешнеполитическая деятельность в условиях новой геополитической ситуации.

    Культурология.

    Структура и состав современного культурологического знания. Культурология и философия культуры, социология культуры, культурная антропология. Культурология и история культуры. Теоретическая и прикладная культурология. Методы культурологических исследований. Основные понятия культурологии: культура, цивилизация, морфология культуры Функции культуры, субъект культуры, культурогенез, динамика культуры, язык и символы культуры, культурные коды, межкультурные коммуникации, культурные ценности и нормы, культурные традиции, культурная картина мира, социальные институты культуры, культурная самоидентичность, культурная модернизация. Ти ология культур. Этническая и национальная, элита ная и массовая культуры. Восточные и западные ти ы культур. Специфические и "серединные" культуры. Локальные культуры.

    Место и роль России в мировой культуре. Тенденции культурной универсали ации в мировом современном процессе. К ультура и природа. Культура и общество. Культура и глобальные проблемы современнос и. Культура и личность. Инкультурация и социализация.
    .05

    Политология.

    Объект, предмет и метод олитической науки. Функции политологии. Политическая жизнь и властные отношения. Роль и место политики в жизни современных обществ. Социальные функции политики. И стория политических учений. Российская политическая традиция: истоки, социокультурные основания, историческая динамика. Современные политологические школы. Гражданское общество, его происхождение и особенности. Осо бенности становления гражданского общества в России. И нституциональные аспекты политики. Политическая власть. По литическая система. Политические режимы, политические партии, электоральные системы. Политические отношения и процессы. Политические конфликты и способы их ра решения. Политические технологии. Политический менеджмент. Политическая модернизация. Политические органи ации и д ижения. Политические элиты. Политическое лидерство. Социокультурные аспекты политики. Мировая политика и международные отношения. Особенности ми рового политического процесса. Национально-государственные интересы России в новой геополитической ситуации. Методология по нания олитической реальности. Парадигмы олитического знания. Экспертное политическое нание; олитическая аналити а и п огност ка.

    Правоведение.

    Государство и право. Их роль в жизни общества. Норма права и нормативно-правовые акты. Основные правовые системы современности. Международное право как особая система прав акон и подзаконные акты. Система российского права. Отрасли права.

    Правонарушение и юридическая ответственность. Значение законности и пра опорядка в современном обществе. Правовое государст о. Конституция Российской Федерации - осно ной закон государства. Осо енности федеративного устройства России. Система органов государственной власти в Российской Федерации. Понятие гражданского правоотношения. Физические и юридические лица. Право собственности. Обязательства в гражданском праве и ответственность за их нарушение. Наследственное право. Брачно-семейные отношения. Взаимные права и обязанности супруго , родителей и детей. Ответственность по семейному праву. Трудовой дого ор (контракт). Трудовая дисциплина и ответственность а ее нарушение. Административные правонарушения и административная ответственность. Понятие преступления. головная ответственность за со ершение преступлений. Экологическое право. Особенности правового регулирования будущей профессиональной деятельности. Пра о ые основы защиты государственной тайны. Законодательные и нормативно-правовые акты в области защиты информации и государственной тайны.

    Психология и педагогика.

    Русский язык и культура речи.

    Стили современного русского литературного языка. Языковая норма, ее роль в становлении и функционировании литературного языка. Речевое взаимодействие. Основные единицы общения. Устная и письменная разновидности литературного языка. Нормативные, коммуникативные, этические аспекты устной и письменной речи. Функциональные стили современного русского языка. Взаимодействие функциональных стилей. Научный стиль. Специфика использования элементов различных языковых уровней в научной речи. Речевые нормы учебной и научной сфер деятельности. Официально-деловой стиль, сфера его функционирования, жанровое разнообразие. Языковые формулы официальных документов. Приемы унификации языка служебных документов. Интернациональные свойства русской официально-деловой письменной речи. Язык и стиль распорядительных документов. Язык и стиль коммерческой корреспонденции. Язык и стиль инструктивно-методических документов. Реклама в деловой речи. Правила оформления документов. Речевой этикет в документе. Жанровая дифференциация и отбор языковых средств в публицистическом стиле. Особенности устной публичной речи. Оратор и его аудитория. Основные виды аргументов. Подготовка речи: выбор темы, цель речи, поиск материала, начало, развертывание и завершение речи. Основные приемы поиска материала и виды вспомогательных материалов. Словесное оформление публичного выступления. Понятливость, информативность и выразительность публичной речи. Разговорная речь в системе функциональных разновидностей русского литературного языка. Условия функционирования разговорной речи, роль внеязыковых факторов. Культура речи. Основные направления совершенствования навыков грамотного письма и говорения.

    Социология.

    Предыстория и социально-философские предпосылки социологии как науки. Социологический проект О. Конта. Классические социологические теории. Современные социологические теории. Русская социологическая мысль. Общество и социальные институты мировая система и процессы глобализации. Социальные группы и общности. Виды общностей. Общность и личность. Малые группы и коллективы. Социальная органи ация. Социальные движения. Социальное неравенство, стратификация и социальная мобильность. Понятие социального статуса. Социальное взаимодействие и социальные отношения. Общественное мнение как институт гражданского общества. Культура как

    фактор социальных изменений. Взаимодействие экономики, социальных отношений и культуры. Личность как социальный тип. Социальный контроль и девиация. Личность как деятельный субъект. Социальные и менения. Социальные революции и реформы. Концепция социального прогресса. Формирование мировой системы. Место России в мировом сообществе. Методы социологического исследован я.

    Философия.

    Предмет философии. Место и роль философии в культуре. Становление философии. Основные направления, школы философии и этапы ее исторического развития. Структура философского знания. Учение о бытии. Монистические и плюралистические концепции бытия, самоорганизация бытия. Понятия материального и идеального. Пространство, время. Движение и развитие, диалектика. Детерминизм и индетерминизм. Динамические и статистические закономерности. Научные, философские и религиозные картины мира. Человек, общество, культура. Человек и природа. Общество и его структура. Гражданское общество и государство. Человек в системе социальных связей. Человек и исторический процесс; личность и массы, свобода и необходимость. Формационная и цивилизационная концепции общественного развития. Смысл человеческого бытия. Насилие и ненасилие. Свобода и ответственность. Мораль, справедливость, право. Нравственные ценности. Представления о совершенном человеке в различных культурах. Эстетические ценности и их роль в человеческой жизни. Религиозные ценности и свобода совести. Сознание и познание. Сознание, самосознание и личность. Познание, творчество, практика. Вера и знание. Понимание и объяснение. Рациональное и иррациональное в познавательной деятельности. Проблема истины. Действительность, мышление, логика и язык. Научное и вненаучное знание. Критерии научности. Структура научного познания, его методы и формы. Рост научного знания. Научные революции и смены типов рациональности. Наука и техника. Будущее человечества. Глобальные проблемы современности. Взаимодействие цивилизаций и сценарии будущего.

    Экономика.

    Введение в экономическую теорию. Блага. Потребности, ресурсы. Экономический выбор. Экономические отношения. Экономические системы. Основные этапы развития экономической теории. Методы экономической теории. Микроэкономика. Рынок. Спрос и предложение. Потребительские предпочтения и предельная полезность. Факторы спроса. Индивидуальный и рыночный спрос. Эффект дохода и эффект замещения. Эластичность. Предложение и его факторы. Закон убывающей предельной производительности. Эффект масштаба. Виды издержек. Фирма. Выручка и прибыль. Принцип максимизации прибыли. Предложение совершенно конкурентной фирмы и отрасли. Эффективность конкурентных рынков. Рыночная власть. Монополия. Монополистическая конкуренция. Олигополия. Антимонопольное регулирование. Спрос на факторы производства. Рынок труда. Спрос и предложение труда. Заработная плата и занятость. Рынок капитала. Процентная ставка и инвестиции. Рынок земли. Рента. Общее равновесие и благосостояние. Распределение доходов. Неравенство. Внешние эффекты и общественные блага. Роль государства. Макроэкономика. Национальная экономика как целое. Кругооборот доходов и продуктов. ВВП и способы его измерения. Национальный доход. Располагаемый личный доход. Индексы цен. Безработица и ее формы. Инфляция и ее виды. Экономические циклы. Макроэкономическое равновесие. Совокупный спрос и совокупное предложение. Стабилизационная политика. Равновесие на товарном рынке. Потребление и сбережения. Инвестиции. Государственные расходы и налоги. Эффект мультипликатора. Бюджетно-налоговая политика. Деньги и

    их функции. Равновесие на денежном рынке. Денежный мультипликатор. Банковская система. Денежно-кредитная политика. Экономический рост и развитие. Международные экономические отношения. Внешняя торговля и торговая политика. Платежный баланс. Валютный курс. Особенности переходной экономики России. Приватизация. Формы собственности. Предпринимательство. Теневая экономика. Рынок труда. Распределение и доходы. Преобразования в социальной сфере. Структурные сдвиги в экономике. Формирование открытой экономики.

    Общие математические и естественнонаучные дисциплины

    Федеральный компонент

    Общая физика.

    Механика.

    Пространство и время. Кинематика материальной точки. Преобразования Галилея. Динамика материальной точки. Законы сохранения. Основы специальной теории относительности. Неинерциальные системы отсчета. Кинематика абсолютно твердого тела. Динамика абсолютно твердого тела. Колебательное движение. Деформации и напряжения в твердых телах. Механика жидкостей и газов. Волны в сплошной среде и элементы акустики.

    Молекулярная физика.

    Идеальный газ. Понятие температуры. Распределение молекул газа по скоростям. Идеальный газ во внешнем потенциальном поле. Броуновское движение. Термодинамический подход к описанию молекулярных явлений. Первое начало термодинамики. Циклические процессы. Второе начало термодинамики. Понятие энтропии термодинамической системы. Реальные газы и жидкости. Поверхностные явления в жидкостях. Твердые тела. Фазовые переходы первого и второго рода. Явления переноса.

    Электричество и магнетизм.

    Электростатика. Проводники в электростатическом поле. Диэлектрики в электростатическом поле. Постоянный электрический ток. Механизмы электропроводности. Контактные явления. Магнетики. Объяснение диамагнетизма. Объяснение парамагнетизма по Ланжевену. Ферромагнетики и их основные свойства. Электромагнитная индукция. Энергия магнитного поля. Электромагнитные колебания. Переменный ток. Технические применения переменного тока. Уравнения Максвелла в интегральной и дифференциальной форме. Излучение электромагнитных волн.

    Основы электромагнитной теории света. Модулированные волны. Явление интерференции. Когерентность волн. Многолучевая интерференция. Явление дифракции. Понятие о теории дифракции Кирхгофа. Дифракция и спектральный анализ. Дифракция волновых пучков. Дифракция на многомерных структурах. Поляризация света. Отражение и преломление света на границе раздела изотропных диэлектриков. Световые волны в анизотропных средах. Интерференция поляризованных волн. Индуцированная анизотропия оптических свойств. Дисперсия света. Основы оптики металлов. Рассеяние света в мелкодисперсных и мутных средах. Нелинейные оптические явления. Классические модели излучения разреженных сред. Тепловое излучение конденсированных сред. Основные представления о квантовой теории излучения света атомами и молекулами. Усиление и генерация света.

    Физика атомов и атомных явлений.

    Микромир. Волны и кванты. Частицы и волны. Основные экспериментальные данные о строении атома. Основы квантово-механических представлений о строении атома. Одноэлектронный атом. Многоэлектронные атомы. Электромагнитные переходы в атомах. Рентгеновские спектры. Атом в поле внешних сил. Молекула. Макроскопические квантовые явления. Статистические распределения Ферми -Дирака и Бозе - Эйнштейна. Энергия Ферми. Сверхпроводимость и сверхтекучесть и их квантовая природа.

    Физика атомного ядра и частиц.

    Свойства атомных ядер. Радиоактивность. Нуклон-нуклонное взаимодействие и свойства ядерных сил. Модели атомных ядер. Ядерные реакции. Взаимодействие ядерного излучения с веществом. Частицы и взаимодействия. Эксперименты в физике высоких энергий. Электромагнитные взаимодействия. Сильные взаимодействия. Слабые взаимодействия. Дискретные симметрии. Объединение взаимодействий. Современные астрофизические представления.

    Общий физический практикум.

    03

    Математика.

    Математический анализ.

    Предмет математики. Физические явления как источник математических понятий. Пределы и непрерывность функции. Производная функции. Основные теоремы о непрерывных и дифференцируемых функциях. Исследование поведения функций и построение их графиков. Неопределенный и определенный интегралы. Функции нескольких переменных. Геометрические приложения дифференциального исчисления. Кратные интегралы. Криволинейные и поверхностные интегралы. Ряды. Несобственные интегралы, интегралы, зависящие от параметра. Ряд и интеграл Фурье. Элементы теории обобщенных функций.

    Аналитическая геометрия.

    Определители второго и третьего порядка. Векторы и координаты на плоскости и в пространстве. Прямые на плоскости и в пространстве. Кривые и поверхности второго порядка.

    Линейная алгебра.

    Матрицы и определители. Линейные пространства. Системы линейных уравнений. Евклидовы и унитарные пространства. Линейные операторы в конечномерном пространстве. Билинейные и квадратичные формы.

    Векторный и тензорный анализ.

    Тензоры и операции над ними. Скалярное и векторное поле. Основные операции векторного анализа. Формулы Грина, Гаусса-Остроградского, Стокса. Элементы теории групп.

    Теория функций комплексного переменного.

    Комплексные числа. Аналитические функции и их свойства. Интеграл по комплексной переменной. Интеграл Коши. Ряды аналитических функций. Основные понятия теории конформных отображений. Преобразование Лапласа.

    Дифференциальные уравнения.

    Понятие обыкновенного дифференциального уравнения. Уравнения первого порядка. Уравнения высших порядков. Системы обыкновенных дифференциальных уравнений. Теория устойчивости. Краевые задачи для линейных уравнений второго порядка. Численные методы решения дифференциальных уравнений. Уравнения в частных производных первого порядка..

    Интегральные уравнения и вариационное исчисление.

    Линейные операторы в гильбертовом пространстве. Однородное и неоднородное уравнения Фредгольма второго рода. Задача Штурма-Лиувилля. Принцип сжатых отображений. Уравнение Вольтерра. Понятие о корректно и некорректно поставленных задачах. Необходимое и достаточные условия экстремума функционала, задачи на условный экстремум, задачи с закрепленными границами и с подвижной границей.

    Теория вероятностей и математическая статистика.

    Основные понятия теории вероятностей. Аксиоматическое определение вероятности. Условная вероятность и независимость. Последовательность независимых испытаний. Случайные величины и их характеристики. Законы больших чисел. Характеристическая функция. Центральные предельные теоремы. Конечные однородные цепи Маркова. Случайные процессы. Распределения Гаусса, Пирсона, Фишера, Стъюдента. Интервальные и точечные оценки. Задача проверки статистических гипотез. Метод максимального правдоподобия. Регрессионный анализ. Статистический анализ модели и статистические задачи решения.

    Информатика.

    Программирование.

    Влияние новых физических идей на развитие компьютерной техники. Компьютерный эксперимент в физике.

    1. Операционные системы и операционные оболочки. Типовые операционные системы. Файлы и файловая система. Операционные оболочки. Пользовательский интерфейс, основные команды. Системные утилиты. Локальные и глобальные сети. Архитектура сетей. Internet. Электронная почта и электронные конференции. World Wide Web.

    2. Программирование (язык Ñ,C++/Pascal): Характеристики языка. Структура программы. Принципы структурного программирования. Алгоритмы. Типы данных. Переменные и константы. Описание переменных. Массивы. Основные арифметические операции. Циклы. Условные операторы. Стандартные функции ввода/вывода. Передача параметров при вызове функций. Глобальные и локальные переменные. Строки. Указатели. Структуры. Работа с файлами. Интерактивная графика. Компьютерная анимация. Современные методы программирования. Понятие об объектном программировании.

    3. Компьютер в лаборатории : Текстовые редакторы. Элементы издательских систем. Подготовка научной статьи к печати. Обработка данных. Электронные таблицы. Системы управления базами данных (СУБД). Языки программирования СУБД . Аналитические вычисления на компьютере. Автоматизация физического эксперимента.

    Вычислительная физика (Практикум на ЭВМ).

    Предмет вычислительной физики. Элементы численных методов: вычисление определенных интегралов, решение трансцендентных уравнений, задачи линейной алгебры, задача Коши для системы обыкновенных дифференциальных уравнений. Компьютерное моделирование в физике: численный эксперимент в задачах механики, электричества и статистической физики (задача преследования, движение в центральном поле, негармонические колебания, фазовые портреты, визуализация полей системы электрических зарядов, кинематическая модель газа и др.).

    Численные методы и математическое моделирование.

    Приближенные числа, погрешности. Вычисление значений простейших функций. Интерполяция и приближение функций. Интерполяционные полиномы. Наилучшее приближение. Среднеквадратичное приближение. Равномерное приближение. Ортогональные многочлены. Сплайн интерполяция. Быстрое преобразование Фурье. Поиск корней нелинейных уравнений. Итерационные методы. Метод Ньютона. Отделение корней. Комплексные корни. Решение систем уравнений. Вычислительные методы линейной алгебры. Прямые и итерационные процессы. Задачи на собственные значения. Численное дифференцирование. Численное интегрирование. Численное интегрирование быстро осциллирующих функций. Многомерные интегралы. Методы Монте-Карло. Задача Коши для обыкновенных дифференциальных уравнений. Интегрирование уравнений второго и высших порядков. Численные методы решения краевой задачи и задач на собственные значения для обыкновенных дифференциальных уравнений. Вычислительные методы решения краевых задач математической физики. Разностные схемы. Аппроксимация. Устойчивость. Сходимость. Вариационно-разностные методы, метод конечных элементов. Численные методы решения интегральных уравнений. Поиск экстремума, одномерная и многомерная оптимизация. Методы математического программирования. Вычисление псевдообратных матриц и псевдорешений. Сингулярное разложение. Обработка экспериментальных данных.

    Строение атомов и периодическая система элементов Д.И.Менделеева. Химические связи и строение молекул. Стереохимия. Конформационный анализ.Модель Гиллеспи-Найхолма. Химия координационных соединений. Бионеорганическая химия. Топохимия. Растворы. Окислительно-восстановительные реакции и электрохимия. Химическая кинетика. Катализ. Поверхностные явления и коллоидная химия. Пространственно-временная самоорганизация в открытых физико-химических системах.

    Экология.

    Биосфера и человек: структура биосферы, экосистемы, взаимоотношения организма и среды, экология и здоровье человека. Глобальные проблемы окружающей среды, экологические принципы рационального использования природных ресурсов и охраны природы. Основы экономики природопользования. Экозащитная техника и технологии. Основы экологического права, профессиональная ответственность. Международное сотрудничество в области окружающей среды.

    Национально-региональный (вузовский) компонент

    Дисциплины и курсы по выбору студента, устанавливаемые вузом

    Общепрофессиональные дисциплины

    Федеральный компонент

    Теоретическая физика.

    Механика.

    Частица и материальная точка. Теория относительности Галилея и Эйнштейна. Нерелятивистские и релятивистские уравнения движения частицы. Взаимодействия частиц, поля. Законы сохранения. Общие свойства одномерного движения. Колебания. Движение в центральном поле. Система многих взаимодействующих частиц. Рассеяние частиц. Механика частиц со связями, уравнения Лагранжа. Принцип наименьшего действия. Движение твердого тела. Движение относительно неинерциальных систем отсчета. Колебания систем со многими степенями свободы. Нелинейные колебания. Канонический формализм, уравнения Гамильтона, канонические преобразования, теорема Лиувилля. Метод Гамильтона-Якоби, адиабатические инварианты.

    Основы механики сплошных сред.

    Система многих частиц как континуум. Скалярные, векторные и тензорные поля. Явления переноса. Континуальные уравнения сохранения, уравнение состояния, замкнутая система уравнений гидродинамики. Течения в идеальной жидкости. Вязкость, турбулентность, закон подобия. Звуковые волны. Ударные волны. Сверхзвуковые течения.

    Электродинамика.

    Микроскопические уравнения Максвелла. Сохранение заряда, энергии, импульса, момента импульса. Потенциалы электромагнитного поля; калибровочная инвариантность. Мультипольные разложения потенциалов. Решения уравнений для потенциалов (запаздывающие потенциалы). Электромагнитные волны в вакууме. Излучение и рассеяние, радиационное трение.

    Принцип относительности. Релятивистская кинематика и динамика, четырехмерный формализм. Преобразования Лоренца. Тензор электромагнитного поля. Тензор энергии-импульса электромагнитного поля. Ковариантная запись уравнений и законов сохранения для электромагнитного поля и для частиц. Законы преобразования для напряженностей полей, для частоты и волнового вектора электромагнитной волны.

    Электродинамика сплошных сред.

    Усреднение уравнений Максвелла в среде, поляризация и намагниченность среды, векторы индукции и напряженностей полей. Граничные условия. Электростатика проводников и диэлектриков. Пондеромоторные силы. Постоянное магнитное поле. Ферромагнетизм. Сверхпроводимость. Квазистационарное электромагнитное поле, скин-эффект. Магнитная гидродинамика. Уравнения электромагнитных волн. Дисперсия диэлектрической проницаемости, поглощение, формулы Крамерса-Кронига. Фазовая и групповая скорости в диспергирующей среде. Отражение и преломление. Распространение в неоднородной среде. Электромагнитные волны в анизотропных средах. Электромагнитные флуктуации (флуктуационно-диссипативная теорема).Элементы нелинейной электродинамики.

    Квантовая теория.

    Дуализм явлений микромира, дискретные свойства волн, волновые свойства частиц. Принцип неопределенностей. Принцип суперпозиции Наблюдаемые и состояния. Чистые и смешанные состояния. Эволюция состояний и физических величин. Соотношения между классической и квантовой механикой. Теория представлений. Общие свойства одномерного движения гармонического осциллятора. Туннельный эффект. Квазиклассическое движение. Теория возмущений. Теория момента. Движение в центрально-симметричном поле. Спин. Принцип тождественности одинаковых частиц. Релятивистская квантовая механика. Атом. Периодическая система элементов Менделеева. Химическая связь, молекулы. Квантование электромагнитного поля. Общая теория переходов. Вторичное квантование, системы с неопределенным числом частиц. Теория рассеяния.

    Физика конденсированного состояния .

    Адиабатический принцип Борна-Эренфеста. Состояния электронов в кристаллической решетке. Зоны Бриллюэна, энергетические зоны. Примеси и примесные уровни. Дефекты. Статистика носителей заряда. Неравновесные электроны и дырки. Рассеяния носителей заряда, проводимость, и кинетические свойства диэлектриков, металлов и полупроводников. Квазичастицы. Акустические и оптические фононы, плазмоны, экситоны Френкеля и Ванье. Конденсация бозонов. Сверхтекучесть. Электрон-фононные взаимодействия. Полярон Фрелиха.

    Взаимодействие света с кристаллической решеткой, поляритоны. Оптические свойства диэлектриков, металлов и полупроводников. Поверхностные состояния электронов. Состояния электронов в структурах с пониженной размерностью.

    Термодинамика.

    Основные законы и методы термодинамики, начала термодинамики, термодинамические потенциалы, уравнения и неравенства. Условия устойчивости и равновесия, фазовые переходы. Основы термодинамики необратимых процессов, соотношения Онсагера, принцип Ле-Шателье.

    Статистическая физика.

    Основные представления, квантовые и классические функции распределения. Общие методы равновесной статистической механики, канонические распределения. Теория идеальных систем. Статистическая теория неидеальных систем. Теория флуктуаций. Броуновское движение и случайные процессы.

    Физическая кинетика.

    Общая структура кинетического уравнения для одночастичной функции распределения. Диффузионное приближение, уравнение Фоккера-Планка. Цепочка уравнений Боголюбова. Приближение самосогласованного поля, уравнение Власова, плазменные колебания, затухание Ландау. Уравнение Больцмана, Н-теорема. Столкновения в плазме, интегралы столкновений, кинетические коэффициенты. Локальное распределение Максвелла, построение уравнений гидродинамического приближения. Кинетическое уравнение для легкой компоненты. Уравнение кинетического баланса.

    Методы математической физики.

    Линейные и нелинейные уравнения физики.

    Физические задачи, приводящие к уравнениям в частных производных. Классификация уравнений в частных производных второго порядка. Общая схема метода разделения переменных. Специальные функции математической физики. Краевые задачи для уравнения Лапласа. Уравнения параболического типа. Уравнения гиперболического типа. Краевые задачи для уравнения Гельмгольца. Понятие о нелинейных уравнениях математической физики. Метод конечных разностей.

    Национально-региональный (вузовский) компонент

    Дисциплины и курсы по выбору студента, устанавливаемые вузом

    Дисциплины специализации

    Специальные главы атомной, молекулярной и ядерной физики

    Взаимодействие атомов и молекул. Гидродинамика несжимаемой жидкости. Газовая динамика. Вязкость, диффузия, теплопроводность в жидкости, закон подобия для теплопередачи, поверхности разрыва, ударная адиабата, взрывные процессы. Неравновесные процессы в движущемся газе. Ионизационные процессы. Взаимодействие нейтральных и заряженных частиц. Поведение нейтральных и заряженных частиц в полях. Уравнения магнитной гидродинамики. Динамика ядерных превращений. Сильное, электромагнитное и слабое взаимодействия. Условиястабильности и неустойчивости ядер. Правила отбора. Генерация ядерных излучений

    Кинетика физико-химических явлений и процессов

    Кинетическая теория газов, функции распределения и корреляционные функции,уравнение Лиувилля, принципзатухания корреляций Боголюбова, уравнение Больцмана, кинетическое уравнение для слабо неоднородного газа, теплопроводность, вязкость, молекулярно-селективные явления и процессы в смесях, диффузия, термо-бародиффузия, многофотонная диссоциация, фотоионизация, диффузия, кинетические явления в газе во внешнем поле, кинетические явления в разреженном газе, флуктуации функции распределения в разреженном газе, диффузионное приближение, уравнение Фоккера-Планка, случайные процессы, уравнения Ланжевена, диэлектрики, взаимодействие фононов, кинетическое уравнение для фононов в диэлектрике, кинетика фазовых переходов,кинетика неравновесной системы газ-адсорбат-твердое тело, теория элементарного химического акта, сложные и цепные реакции, фотохимия, реакциив плазме, радиохимия, реакции возбужденных частиц, кинетика неравновесных состояний физико-химических систем, горение, взрыв, лазерные процессы, неравновесные фазовые переходы,

    кинетика неравновесных фазовых переходов в физико-химических системах. Диффузия.в твердых телах. Кинетика переноса и взаимодействие ядерных излучений с веществом. Кинетика возникновения радиационных дефектов в конденсированных средах под действием непосредственно и косвенно ионизирующих излучений.

    Прикладная ядерная физика

    Физика ядра и элементарных частиц; свойства атомных ядер, радиоактивность, ядерные реакции, механизмы их,свойства ядерных сил, элементарные частицы и их взаимодействия. Ядерные излучения, образующиеся в ядерных реакциях. Использование ядерных реакций и ядерных излучений в науке и технике. в получении радионуклидов. Методы радиометрии. Создание и получение материалов с заранее заданными свойствами ядерно-физическими технологиями. Применение ядерно-физических методов в науке и технике. Разработка и создание наукоемких технологий на основе достижений ядерной физики.

    Методы и средства изучения физико-кинетических явлений

    Общие принципы исследования веществ и физических процессов. Способы и средства преобразования физических величин в электрические. Обобщенная структурная схема измерения и регистрации физических параметров. Измерительные преобразователи. Статические идинамические характеристики преобразователя. Датчики физических величин. Преобразователи: механические упругие, резистивные, пьезоэлектрические, электростатические, электромагнитные, тепловые, оптические, электрохимические, ионизирующего излучения. Методы измерения различных физических величин. Спектроскопия: микроволновая, инфракрасная, комбинационного рассеяния, электронных переходов, спин-резонансная, мессбауэровская. Лазерная спектроскопия высокого разрешения. Методы селективного возбуждения и изучения физико-химических процессв. Голографическая и спекл-интерферометрия. Хроматографические и масс-спектрометрические методы анализа. Ядерные методы изучения кинетических явлений.

    Автоматизация физических исследований

    Основы применения микропроцессорной и компъютерной техники для автоматизации физического эксперимента. Математическое моделирование кинетических процессов и использование для этого компъютерных средств. Структурирование эксперимента и выбор интерфейсныхсредств для его реализации. Аналого-цифровые и цифро-аналоговые преобразователи и

    их связующие функции между физическими датчиками и компъютерными системами.

    Аппаратные средства реализации физических методов исследования. Метрологические вопросы качества измерений.

    Современные проблемы физики кинетических явлений

    Эргодическая проблема и ее связь с обоснованием статистической механики и физической кинетики. Гамильтоновы системы. Интегралы движения, траектории, фазовое пространство, его локальная и глобальная структуры. Теорема Колмогорова-Арнольда-Мозера. Понятие меры. Теорема о незаполнении. Диссипативные системы. Несохранение меры. Понятие аттрактора. Странный аттрактор. Фракталы. Неравновесные фазовые переходы. Модели турбулентности. Модель многомодового лазера. Фазовые переходы, индуцированные шумом. Образование новой фазы при фазовых переходах первого рода. Современное состояние науки о материалах. Общие представления о магнитных, электрических, сегнетоэлектрических, полупроводниковых, упругих, пластических, ударноволновых свойствах материалов. Роль этих материалов в науке и технике. Новые типы материалов: наноматериалы, квазикристаллы, фуллерены, аморфы, полимерные пленки и др.

    Спецпрактикум

    Курсовая работа

    Дисциплины, устанавливаемые вузом

    Факультативы

    Военная подготовка

    Всего часов теоретического обучения

    Практики

    5. СРОКИ ОСВОЕНИЯ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВЫПУСКНИКА ПО СПЕЦИАЛЬНОСТИ

    00 Физика кинетических явлений

    5.1 Срок освоения основной образовательной программы подготовки физика

    при очной форме обучения составляет

    260 недель, в том числе:

    теоретическое обучение, включая научно-исследовательскую работу студентов, практикумы, в том числе лабораторные,

    -

    экзаменационные сессии

    -

    158 недель

    28 недель

    практики (научно-производственные) -

    12 недель

    итоговая государственная аттестация, включая подготовку и защиту выпускной квалификационной работы и сдачу государственного экзамена

    -

    20 недель

    каникулы (включая последипломный отпуск) -

    42 недели

  • Для лиц, имеющих среднее (полное) общее образование, сроки освоения основной образовательной программы подготовки специалиста физика при очно-заочной (вечерней) форме обучения, а также в случае сочетания различных форм обучения увеличиваются вузом до одного года относительно нормативного срока, установленного в п.1.2 настоящего образовательного стандарта
  • Для более углубленного освоения основной образовательной программы подготовки специалиста физика сроки подготовки при очной форме обучения могут быть увеличены (в особых случаях) на один год относительно нормативного срока, установленного в п.1.2 настоящего образовательного стандарта, по согласованию с Министерством образования РФ.

  • Максимальный объем учебной нагрузки студента устанавливается 54 часа в неделю, включая все виды его аудиторной и внеаудиторной (самостоятельной) учебной работы.
  • Объем аудиторных занятий студента при очной форме обучения не должен превышать в среднем за период теоретического обучения 32 часа в неделю. При этом в указанный объем не входят обязательные практические занятия по физической культуре и занятия по факультативным дисциплинам, а также относимые к категории самостоятельной работы студента общий физический практикум, компьютерный практикум, лаборатории специализации
  • и спецпрактикум.
  • При очно-заочной (вечерней) форме обучения объем аудиторных занятий должен быть не менее 10 часов в неделю.
  • Общий объем каникулярного времени в учебном году должен составлять 7 - 10 недель, в том числе не менее двух недель в зимний период.
    1. ТРЕБОВАНИЯ К РАЗРАБОТКЕ И УСЛОВИЯМ РЕАЛИЗАЦИИ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ПОДГОТОВКИ ВЫПУСКНИКА

    ПО СПЕЦИАЛЬНОСТИ

    00 Физика кинетических явлений
  • Требования к разработке основной образовательной
  • программы подготовки физика

    1. Высшее учебное заведение самостоятельно разрабатывает и утверждает основную образовательную программу вуза для подготовки физика на основе настоящего государственного образовательного стандарта.

    Дисциплины “по выбору студента” являются обязательными, а факультативные дисциплины, предусматриваемые учебным планом высшего учебного заведения, не являются обязательными для изучения студентом.

    Курсовые работы (проекты) рассматриваются как вид учебной работы по дисциплине и выполняются в пределах часов, отводимых на ее изучение.

    По всем дисциплинам и практикам, включенным в учебный план высшего учебного заведения, должна выставляться итоговая оценка (отлично, хорошо, удовлетворительно, неудовлетворительно или зачтено, не зачтено).

    Специализации являются частью специальности, в рамках которой они создаются, и предполагают получение более углубленных профессиональных знаний, умений и навыков в различных областях деятельности по профилю данной специальности.

    6.1.2 При реализации основной образовательной программы высшее учебное заведение имеет право:

    Изменять объем часов, отводимых на освоение учебного материала для циклов дисциплин - в пределах 10%, и для дисциплин, входящих в цикл, - в пределах 10% при сохранении минимального содержания, указанного в программе;

    Формировать цикл гуманитарных и социально-экономических дисциплин, который должен включать из одиннадцати базовых дисциплин, приведенных в настоящем государственном образовательном стандарте, в качестве обязательных следующие дисциплины: “Иностранный язык” (в объеме не менее 340 часов), “Физическая культура” (в объеме не менее 408 часов), “Отечественная история”, “Философия”, и в качестве рекомендованной УМС по физике УМО университетов России (далее УМО) “Психология и педагогика”. Остальные базовые дисциплины могут реализовываться по усмотрению вуза с учетом общего отведенного на цикл времени. При этом возможно их объединение в междисциплинарные курсы при сохранении обязательного минимума содержания;

    Занятия по дисциплине “Физическая культура” при очно-заочной (вечерней) форме обучения могут предусматриваться с учетом пожелания студентов;

    Формировать цикл дисциплин специализации, который должен включать не менее пяти обязательных дисциплин из восьми, приведенных в настоящем государственном образовательном стандарте. При этом в перечень выбранных дисциплин обязательно должны входить курсовая работа и спецпрактикум в объеме не менее 70 часов. Объем часов по каждой из трех выбранных дисциплин предусматривается не менее 36 часов. Остальные часы используются на специальные дисциплины и дисциплины специализации по выбору вуза;

    Осуществлять преподавание гуманитарных и социально-экономических дисциплин в форме авторских лекционных курсов и разнообразных видов коллективных и индивидуальных практических занятий, заданий и семинаров по программам, разработанным в самом вузе и учитывающим региональную, национально-этническую, профессиональную специфику, а также научно-исследовательские предпочтения преподавателей, обеспечивающих квалифицированное освещение тематики дисциплин цикла;

    Осуществлять преподавание естественнонаучных дисциплин в форме авторских курсов по программам, составленным на основе результатов исследований научных школ вуза, учитывающих региональную и профессиональную специфику, при условии реализации содержания дисциплин, определяемых настоящим стандартом;

    Устанавливать необходимую глубину преподавания отдельных разделов дисциплин, входящих в циклы гуманитарных и социально-экономических, математических и естественнонаучных дисциплин в соответствии с профилем цикла дисциплин специализации;

    Согласовывать наименование специализаций по специальностям высшего профессионального образования с Учебно-методическим объединением, устанавливать наименование дисциплин специализаций, их объем и содержание сверх указанного в настоящем государственном образовательном стандарте, а также форму контроля их усвоения студентами;

    Реализовывать основную образовательную программу подготовки физика в сокращенные сроки для студентов высшего учебного заведения, имеющих среднее профессиональное образование соответствующего профиля или высшее профессиональное образование. Сокращение сроков проводится на основе имеющихся знаний, умений и навыков студентов, полученных на предыдущем этапе профессионального образования. При этом продолжительность обучения должна составлять не менее трех лет. Обучение в сокращенные сроки допускается также для лиц, уровень образования или способности которых являются для этого достаточным основанием;

    Осуществлять подготовку специалистов физиков, с цельюполучения квалификации дополнительного образования на базе высшего профессионального образования. Наименования дополнительных квалификаций высшего профессионального образования, содержание программ и учебных планов подготовки устанавливаются УМО;

    Устанавливать вид практик (производственных, научно-исследовательских, практик по дополнительной квалификации) и заменять число часов(недель), отводимых на каждый вид практик, включая практику по дополнительной квалификации. При этом общая длительность всех видов практик должна соответствовать п.5.1.

    1. Требования к кадровому обеспечению учебного процесса

    Реализация основной образовательной программы подготовки специалиста должна обеспечиваться педагогическими кадрами, имеющими базовое образование, соответствующее профилю преподаваемой дисциплины, и соответствующую квалификацию (степень), систематически занимающимися научно-исследовательской и научно-методической деятельностью.

    По всем дисциплинам естественнонаучного, общепрофессионального циклов и дисциплинам специализации лекторами могут быть только профессора и доценты, имеющие научную степень доктора или кандидата наук по специальности дисциплины.

    К преподаванию на семинарских и лабораторных занятиях допускаются преподаватели, не имеющие ученой степени, но имеющие опыт работы со студентами по данной дисциплине (не более 50%).

    6.3 Требования к учебно-методическому обеспечению учебного процесса

    Учебно-методическое обеспечение учебного процесса при подготовке специалиста

    физика должно включать лабораторно-практическую и информационную базу, предусматриваемую основными разделами циклов естественнонаучных, общепрофессиональных и специальных дисциплин настоящего стандарта, обеспечивающую подготовку высококвалифицированного выпускника. Вуз должен располагать основными отечественными академическими и отраслевыми научными журналами специальности, сводным реферативным журналом “Физика”, иметь известные иностранные журналы. Вуз должен быть обеспечен научной литературой в области физики, а также иметь программы по всем курсам дисциплин, предусмотренным настоящим стандартом. Вуз должен иметь выход в INTERNET и предоставить студенту свободный доступ к информационным базам и сетевым источникам физической информации.

    Реализация основной образовательной программы подготовки специалиста физика должна обеспечиваться доступом каждого студента к библиотечным фондам и базам данных, по содержанию соответствующим полному перечню дисциплин основной образовательной программы специальности

    010800 Физика кинетических явлений , наличием методических пособий и рекомендаций по теоретическим и практическим разделам всех дисциплин и по всем видам занятий – практикумам, курсовому и дипломному проектированию, практикам. Вуз должен обладать наглядными пособиями, а также мультимедийными, аудио-, видеоматериалами. Лабораторные работы должны быть обеспечены методическими разработками к задачам в количестве, достаточном для проведения групповых занятий. Библиотека вуза должна располагать учебниками и учебными пособиями, включенными в основной список литературы, приводимый в программах естественнонаучных, общепрофессиональных и специальных дисциплин, утвержденных НМС и УМО. К моменту аттестации специальности уровень обеспеченности учебно-методической литературой должен составлять не менее 0,5 экземпляра на 1 студента дневного отделения.
      1. Требования к материально-техническому обеспечению учебного

    процесса

    Высшее учебное заведение, реализующее основную образовательную программу подготовки специалиста физика , должно располагать соответствующей действующим санитарно-техническим нормам материально-технической базой, обеспечивающей проведение всех видов лабораторной, практической, дисциплинарной и междисциплинарной подготовки и научно-исследовательской работы студентов, предусмотренных примерным учебным планом. Учебный процесс должен быть обеспечен лабораторным оборудованием, вычислительной техникой, программными средствами в соответствии с содержанием основных естественнонаучных и общепрофессиональных дисциплин. Вуз должен обладать специальным оборудованием, техническими средствами и лабораторной базой (с учетом возможностей филиалов вуза и учебно-научных центров в академических и отраслевых физических институтах), позволяющими осуществлять профессиональную подготовку.

    Количество студентов в подгруппах лабораторных практикумов, связанных с работами высокочастотных установок, ультрафиолетовым, лазерным и ионизирующим излучениями, высоким напряжением, вакуумным оборудованием, а также занятиями в дисплейных классах, устанавливается в соответствии с правилами техники безопасности.

    6.5 Требования к организации практик

    Производственная практика предназначена для ознакомления студентов с реальным технологическим процессом и закрепления теоретических знаний, полученных в ходе обучения. Производственная практика проводится на предприятиях физического профиля, на полузаводских и макетных установках в лабораториях научно-исследовательских институтов. Научно-исследовательская практика проводится в научно-исследовательских лабораториях. Практика по дополнительной квалификации проводится в соответствии с ее спецификой в порядке, установленном вузом (факультетом). Сроки проведения практики утверждаются ректоратом (деканатом) в соответствии с требованиями к учебному плану. По окончании практики студент-практикант отчитывается о проделанной работе перед комиссией вуза и представителями принимающей организации. Форма оценки (зачет, дифференцированный зачет) предусматривается учебным планом.

    1. Требования к уровню подготовки выпускника по специальности
    00 Физика кинетических явлений
    1. Требования к профессиональной подготовленности специалиста

    Выпускник должен уметь решать задачи, соответствующие его степени, указанной в п.1.2 настоящего государственного образовательного стандарта, которая с учетом итоговой государственной аттестации обеспечивает выполнение должностных обязанностей в соответствии с квалификационной характеристикой, изложенной в п.1.3.

    Специалист должен знать и уметь использовать в объеме, предусмотренным настоящем стандартом, по

    общим гуманитарным и социально-экономическим, математическим, естественнонаучным и общепрофессиональным дисциплинам, дисциплинам специальностей и специализаций:

    Основные учения в области гуманитарных и социально-экономических наук, основные понятия, законы и модели механики,

    молекулярной физики, электричества и магнетизма, оптики, атомной физики, физики атомного ядра и частиц, колебаний и волн, квантовой механики, термодинамики и статистической физики, методы теоретических и экспериментальных исследований в физике;

    - современное состояние, теоретические работы и результаты экспериментов в избранной области исследований, явления и методы исследований в объеме дисциплин специализаций;

    Фундаментальные явления и эффекты в области физики, экспериментальные, теоретические и компьютерные методы исследований в этой области;

    Математический анализ, теорию функций комплексной переменной, аналитическую геометрию, векторный и тензорный анализ, дифференциальные и интегральные уравнения, вариационное исчисление, теорию вероятностей и математическую статистику;

    Основные положения теории информации, принципы построения систем обработки и передачи информации, основы подхода к анализу информационных процессов, современные аппаратные и программные средства вычислительной техники, принципы организации информационных систем, современные информационные технологии;

    - основы экологии и здоровья человека, структуру экосистем и биосферы, взаимодействие человека и среды, экологические принципы охраны природы и рационального природопользования.

    Дополнительные требования к специальной подготовке специалиста физика определяются высшим учебным заведением с учетом специализации.

      1. Требования к итоговой государственной аттестации специалиста
      2. физика
    1. Общие требования к государственной итоговой аттестации.

    Итоговая государственная аттестация физика по специальности 010800 Физика кинетических явлений включает защиту выпускной квалификационной работы и государственный экзамен.

    Итоговые аттестационные испытания предназначены для определения практической и теоретической подготовленности физика к выполнению профессиональных задач, установленных настоящим государственным образовательным стандартом, и продолжению образования в аспирантуре в соответствии с п. 1.4 настоящего стандарта.

    Аттестационные испытания, входящие в состав итоговой государственной аттестации выпускника, должны полностью соответствовать основной образовательной программе высшего профессионального образования, которую он освоил за время обучения.

    1. Требования к дипломной работе специалиста.

    Дипломная работа специалиста физика должна быть представлена в форме рукописи.

    Выпускная дипломная работа специалиста по специальности

    010800 Физика кинетических явлений является квалификационной; ее тематика и содержание должны соответствовать уровню знаний, полученных выпускником в объеме дисциплин специальности и специальных дисциплин (согласно учебному плану). Работа должна содержать реферативную часть, отражающую общую профессиональную эрудицию автора, а также самостоятельную исследовательскую часть, выполненную индивидуально или в составе творческого коллектива по материалам, собранным или полученным самостоятельно студентом в период прохождения научно-производственной практики. В их основе могут быть материалы научно-исследовательских или научно-производственных работ кафедры, факультета, научных или производственных физических организаций. Самостоятельная часть должна быть законченным исследованием, свидетельствующим об уровне профессиональной подготовки автора.

    Требования к содержанию, объему и структуре дипломной работы определяются высшим учебным заведением на основании Положения об итоговой государственной аттестации выпускников высших учебных заведений, утвержденного Министерством образования России, государственного образовательного стандарта по специальности физика и методических рекомендаций УМО. Время, отводимое на подготовку квалификационной работы специалиста, составляет не менее 16 недель.

    1. Требования к государственному экзамену по специальности

    010800 Физика кинетических явлений

    В качестве государственного экзамена проводится экзамен, оценивающий

    общепрофессиональную подготовку и квалификацию специалиста по специальности 010800 Физика кинетических явлений .

    Государственный экзамен по специальности имеет целью определение степени соответствия уровня подготовленности выпускников требованиям данного образовательного стандарта.

    Порядок проведения и программа государственного экзамена по специальности

    010800 Физика кинетических явлений определяются вузом на основании методических рекомендаций и соответствующей примерной программы, разработанных УМО, Положения об итоговой государственной аттестации выпускников высших учебных заведений, утвержденного Министерством образования России, и данного государственного образовательного стандарта.

    СОСТАВИТЕЛИ:

    Учебно-методическое объединение университетов, Отделение физики.

    Государственный образовательный стандарт высшего профессионального образования одобрен на заседании Президиума отделения физики УМО университетов России 23-24 ноября 1999г. (г.Тверь).

    Председатель Отделения физики

    УМО университетов России В.И.Трухин

    Зам. председателя Отделения физики

    УМО университетов России Б.С.Ишханов

    СОГЛАСОВАНО:

    Начальник Управления образовательных программ и

    стандартов высшего и среднего

    профессионального образования Г.К.Шестаков

    Зам. начальника Управления В.С.Сенашенко

    Советник Управления С.П.Крекотень


    Все книги и пособия вы можете скачать абсолютно бесплатно и без регистрации.

    NEW. Гуров К.П. Основания кинетической теории. Метод Н. Н. Боголюбова. 1966 год. 353 стр. djvu. 3.7 Mб.
    В книге изложена общая кинетическая теория газовых систем (идеальные газы, электронный газ в металлах и т. д.). Подробно описан вывод кинетических уравнений методом академика Н. Н. Боголюбова, дан анализ этих уравнений и указаны способы их решения. Описан метод нахождения явного вида кинетических коэффициентов (вязкость, теплопроводность и т. д.). Очень подробно изложен математический аппарат теории для квантовых систем. В заключение рассмотрены конкретные вопросы металлооптики и атомной диффузии в металлах и сплавах.
    Книга рассчитана на научных работников, а также может быть полезна аспирантам и студентам старших курсов вузов, специализирующимся в области теоретической физики, теплофизики, физики твёрдого тела и металлофизики.

    скачать

    NEW. Н.М. Кузнецов. Кинетика мономолекулярных реакций. 1982 год. 223 стр. djvu. 3.2 Mб.
    В монографии излагается современное состояние теории диссоциации двухатомных и многоатомных молекул в газах. Подробно рассматриваются вопросы вычисления плотности состояний, удельной константы скорости спонтанного распада многоатомных молекул, механизмы и модели активации. Особое внимание уделяется изучению роли различных видов внутримолекулярного движения в кинетике диссоциации и реакциям в экстремальных условиях (высокие температуры, быстрое изменение температуры и плотности в ударных волнах, неравновесное состояние среды или неравновесная заселенность разных подгрупп степеней свободы реагирующих молекул, лазерная и химическая активация, мономолекулярный распад в газовой фазе при активации на стенке сосуда). Для широкого круга научных сотрудников, инженеров, аспирантов и студентов, специализирующихся в области теоретической и прикладной физико-химической кинетики.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .скачать

    В.И. Белиничер. Физическая кинетика. Уч. пособие. 1995 год. 178 стр. djvu. 3.6 Мб.
    Учебное пособие содержит конспективное изложение курса физической кинетики, который читается на физическом факультете НГУ. Основное внимание уделяется кинетике физических систем с непрерывным спектром энергий и слабым взаимодействием, которые описываются кинетическим уравнением Больцмана. Рассмотрены также квантовые системы с дискретным спектром энергий.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .скачать

    Веденяпин В. В. Кинетические уравнения Больцмана и Власова. 2001 год. 112 стр. djvu. 910 Кб.
    Уравнение Больцмана описывает разреженный газ, его линейные варианты - перенос излучения и нейтронов. Уравнение Власова описывает плазму, электронный газ, галактики, крупномасштабную Вселенную. Изучаются вывод этих уравнений, связь с гидродинамикой, химической кинетикой, квантовой оптикой. Рассматриваются частные решения и дискретные модели этих уравнений, различные приложения. Для специалистов по математической и теоретической физике, приклад- прикладной и вычислительной математике, кинетическим уравнениям и квантовой оптике, физической и химической кинетике. Может быть использована как учебное пособие для студентов и аспирантов математических, физических и химических специальностей.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .скачать

    Галкин В.А. Уравнение Смолуховского. 2001 год. 236 стр. djvu. 1.9 Mб.
    Изложена теория корректности задач для уравнения Смолуховского, моделирующего процессы коагуляции (слияния) частиц в дисперсных сисистемах. Рассмотрены пространственно однородные и неоднородные задачи. Доказаны теоремы глобальной разрешимости и корректности задачи Коши. Описываются эффекты перехода соотношения сохранения в соотношение диссипации и выявляется их связь с возникновением негладких особенностей решений. Предложены приближенные методы решения задач и приведено их обоснование. В классах функциональных решений описан подход к выделению условий корректности задач для уравнений больцмановского типа, включающих в себя классические уравнения Больцмана кинетической теории газов и Смолуховского кинетической теории коагуляции. Для научных работников, преподавателей, аспирантов и студентов, занимающихся математическими исследованиями моделей в физической кинетике, коллоидной химии, биологии.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .скачать

    Б.Н. Горелкин, В.П. Минеев. Избранные главы физической кинетики. Уч. пособие. 1990 год. 85 стр. djvu. 1.2 Мб.
    Пособив представляет продолжение (2 часть) пособия Б.Н. Горелкина и В.П. Минеева "Введение в физическую кинетику" и, как и первая часть, является расширенным вариантом лекций, читавшихся в МФТИ, в рамках курса "Статистическая физика и кинетика". Пособие предназначено для студентов старших курсов, изучающих теоретическую физику.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .скачать

    Л.Э. Гуревич. Основы физической кинетики. 1940 год. 246 стр. djvu. 5.3 Мб.
    Предлагаемая книга, являясь первым в литературе общим обзором физической кинетики, не претендует на охват всей области и ограничивается лишь самыми основными вопросами. Кинетические свойства тел исследуются лишь в общем виде. Численное решение кинетических уравнений; теория теплопроводности газов, состоящих из сложных молекул; зависимость коэфициента диффузии и других в смеси газов от ее состава; теория одноатомных газов по Чэпмену и Энскогу -все такие вопросы опущены.
    Предполагается, что читатель знаком с классической и квантовой статистикой, основами квантовой механики, с понятием и простейшими свойствами тензоров и с основными понятиями теории упругости и гидродинамики.
    В книге отсутствует сопоставление выводов теории с экспериментальными данными. Такое ограничение ее содержания и может быть чрезмерная сжатость, представляя несомненный ее недостаток, диктовались в основном отсутствием места.
    Автор надеется, что, несмотря на это, книга окажется небесполезной.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .скачать

    В.П. Крайнов. Качественные методы в физической кинетике и гидрогазодинамике. 1989 год. 224 стр, djvu. 1.5 Мб.
    Пособие предназначено для изучения курса, в нем изложены качественные методы решения основных задач физической кинетики и гидрогазодниамнки, позволяющие правильно оценить порядки физических величин в различных неравновесных статистических процессах. Еще одна цель пособия - научить начинающих физиков приближенным подходам к постановке задач физической кинетики.

    cкачать

    А.П. Крюков. Элементы физической кинетики. Уч. пособие. 1995 год. 84 стр. djvu. 680 Кб.
    Имеются примеры решения задач.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .скачать

    С.А. Решетняк, Л.А. Шелепин. Квазистационарные распределения в кинетике. 1996 год. 298 стр. djvu. 2.4 Мб,
    Книга посвящена систематическому изложению общего универсального подхода к различным разделам кинетики, основанного на последовательном обобщении равновесной статистической теории на неравновесные процессы и применении функций Грина. Построенный аппарат позволяет формализовать анализ кинетических явлений. С единой точки зрения рассмотрен ряд областей кинетики: процессы в газах и плазме, химические процессы, фазовые переходы, статистическая радиофизика, когерентные явления. По своей эффективности и простоте подхода представленный материал не имеет аналогов в монографической литературе.
    Кннга предназначена для научных работников и студентов старших курсов, специализирующихся в области физической и химической кинетики, статистической физики и радиофизики, физики лазеров и самых разных смежных областях.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .cкачать

    Силин В.П. Введение в кинетическую теорию газов. 1998 год. 337 стр. djvu. 4.5 Мб.
    Монография посвящена широкому кругу вопросов кинетической теории гаэов. Изложены основные положения теории и описано ее применение к наиболее типичным задачам. Большое внимание уделено кинетике разреженной плазмы. Дано общее обоснованно теории, позволившее ныйти за рамки больцмановскоя кинетики газов. Физическая общность изложения и рассмотрепие большого числа конкретных физических задач позволяют этой книге служить пособием для всех изучающих физическую кинетику.
    Пусть книга будет памятью о многих годах чтения лекций Виктором Павловичем в МИФИ для студентов-теоретиков.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .скачать

    Ферцигер, Капер. Математическая теория прцессов переноса в газах. 1976 год. 550 стр. djvu. 9.2 Мб.
    Книга посвящена теоретическим методам определения свойств переноса газов на основе чисто механических характеристик молекулярного движения - потенциала межмолекулярного взаимодействия и масс молекул. В ней последовательно изложены как классические, так и новейшие разделы кинетической теории, а также рассмотрены конкретные результаты и современные расчетные методы. Приложение в конце книги содержит справочный материал.
    Книга предназначена для специалистов в области кинетической теории, физической химии, аэродинамики, вакуумной техники, теории плазмы, а также для студентов-старшекурсников и аспирантов соответствующих специальностей.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .скачать

    NEW. К. Черчиньяни. Теория и приложения уравнения Больцмана. 1973 год. 246 стр. djvu. 2.8 Mб.
    Исследования течений разреженного газа при помощи уравнения Больцмана приобретают все большее значение в связи с новыми задачами космической и ракетной техники. Книга посвящена аналитическим решениям этого уравнения, его свойствам, вопросам построения модельных кинетических уравнений и т. д. В разработку этих проблем автор внес существенный вклад, и в книге дано наиболее полное освещение современного состояния соответствующих аспектов кинетической теории газов.
    Книга представляет интерес для научных работников, специализирующихся в области аэродинамики, кинетической теории газов, ракетно-космической техники, а также для инженеров. Она будет полезна преподавателям высшей школы, аспирантам и студентам соответствующих специальностей.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .скачать

    К. Черчиньяни. Теория и приложения уравнения Больцмана. 1978 год. 496 стр. djvu. 9.0 Mб.
    Уравнение Больцмана лежит в основе кинетической теории газов и находит широкое применение при изучении таких математически родственных явлений, как перенос электронов в твердых телах и плазме, перенос нейтронов в ядерных реакторах, перенос фононов в сверхтекучих жидкостях, перенос излучения. В новой книге К. Черчиньяни, известного читателям по переводу его монографии "Математические методы в кинетической теории газов", осуществляется единый подход к указанным проблемам. Излагаются основы кинетической теории, рассматриваются граничные условия, линейная теория переноса, решение модельных уравнений, асимптотические методы для нелинейных задач, переходный режим, различные приложения к решению конкретных задач.
    Книгу целесообразно использовать в качестве учебного пособия по углубленном курсу кинетической теории, а также как справочное руководство для специалистов по прикладной математике, физике и аэродинамике.

    КИНЕТИКА ФИЗИЧЕСКАЯ

    - микроскопич. теория процессов в неравновесных средах. В К. ф. методами квантовой или классич. статистической физики изучают процессы переноса энергии, импульса, заряда и вещества в разл. физ. системах (газах, плазме, жидкостях, твёрдых телах) и влияние на них внеш. полей.

    В отличие от термодинамики неравновесных процессов и электродинамики сплошных сред, К. ф. исходит из представления о молекулярном строении рассматриваемых сред, что позволяет вычислить из первых принципов кинетические коэффициенты, диэлектрич. и магн. проницаемости и др. характеристики сплошных сред.

    К. ф. включает в себя кинетическую теорию газов из нейтральных атомов или молекул, статистич. теорию неравновесных процессов в плазме, теорию явлений переноса в твёрдых телах (диэлектриках, металлах и полупроводниках) и жидкостях, кинетику магн. процессов и теорию кинетич. явлений, связанных с прохождением быстрых частиц через вещество. К ней же относятся теория процессов переноса в квантовых жидкостях и сверхпроводниках и кинетика фазовых переходов.

    Если известна ф-ция распределения всех частиц системы по их координатам и импульсам в зависимости от времени (в квантовом случае - статистич. оператор), то можно вычислить все характеристики неравновесной системы. Вычисление полной ф-ции распределения является практически неразрешимой задачей, но для определения мн. свойств физ. систем, напр. потока энергии или импульса, достаточно знать ф-цию распределения небольшого числа частиц, а для газов малой плотности - одной частицы.

    В К. ф. используется существ. различие времён релаксации в неравновесных процессах (иерархия времён релаксации), напр. для газа из частиц или квазичастиц время свободного пробега значительно больше времени столкновения между частицами. Это позволяет перейти от полного описания неравновесного состояния ф-цией распределения по всем координатам и импульсам к сокращённому описанию при помощи ф-ции распределения одной частицы по её координатам и импульсам.

    Кинетическое уравнение. Осн. метод К. ф. - решение кинетического уравнения Больцмана для одночастичной ф-ции распределения f (x , р , t ) молекул в фазовом пространстве их координат x и импульсов р . Ф-ция распределения удовлетворяет кинетич. ур-нию

    где Stf - интеграл столкновений, определяющий разность числа частиц, приходящих в элемент объёма вследствие прямых столкновений и убывающих из него вследствие обратных столкновений. Для одноатомных молекул или для многоатомных, но без учёта их внутр. степеней свободы

    где - вероятность столкновения, связанная с диф-ференц. эфф. сечением рассеяния da:

    где р , р 1 - импульсы молекул до столкновения, v ,v 1 - соответств. скорости, - их импульсы после столкновения, f , f 1 - ф-ции распределения молекул до столкновения, - их ф-ции распределения после столкновения. Для газа из сложных молекул, обладающих внутр. степенями свободы, их следует учитывать в ф-ции распределения. Напр., для двухатомных молекул с собств. моментом вращения М ф-ции распределения будут зависеть также от М.

    Из кинетич. ур-ния следует Больцмана Н-теорема - убывание со временем Я-функции Больцмана (ср. логарифма ф-ции распределения) или возрастание энтропии, т. к. она равна Я-функции Больцмана с обратным знаком.

    Уравнения переноса. К. ф. позволяет получить ур-ния баланса ср. плотностей вещества, импульса и энергии. Напр., для простого газа плотность , гидро-динамич. скорость V и ср. энергия удовлетворяют ур-ниям баланса:

    тензор плотности потока импульса, п - плотность числа частиц, - плотность потока энергии.

    Если состояние газа мало отличается от равновесного, то в малых элементах объёма устанавливается распределение, близкое к локально равновесному Максвелла распределению,

    с темп-рой, плотностью и гидродинамич. скоростью, соответствующими рассматриваемой точке газа. В этом случае неравновесная ф-ция распределения мало отличается от локально равновесной и решение кинетич.

    ур-ния даёт малую поправку к последней, пропорциональную градиентам темп-ры и гидродинамич. скорости , т. к. .С помощью неравновесной ф-ции распределения можно найти поток энергии (в неподвижной жидкости) , где - коэф. теплопроводности, и тензор плотности потока импульса

    тензор вязких напряжении, - коэф. сдвиговой вязкости, Р- давление. Для газов с внутр. степенями свободы содержит также член , где - коэф. "второй", объёмной вязкости, проявляющейся лишь при движениях, в к-рых . Для кинетич. коэффициентов получаются выражения через эфф. сечения столкновений и, следовательно, через константы молекулярных взаимодействий. В бинарной смеси поток вещества состоит из диффуз. потока, пропорционального градиенту концентрации вещества в смеси с коэф. диффузии, и термодиффузионного потока, пропорционального градиенту темп-ры с коэф. термодиффузии, а поток тепла, кроме обычного члена теплопроводности, пропорционального градиенту темп-ры, содержит дополнит. член, пропорциональный градиенту концентрации и описывающий Дюфура эффект. К. ф. даёт выражения для этих кинетич. коэффициентов через эфф. сечения столкновений. Кинетич. коэффициенты для перекрёстных явлений, напр. термодиффузии и эффекта Дюфура, оказываются равными (Онсагера теорема). Эти соотношения являются следствием микро-скопич. обратимости ур-ний движения частиц системы, т. е. инвариантности их относительно обращения времени.

    Ур-ние баланса импульса с учётом выражения для плотности потока импульса через градиент скорости даёт Навье-Стокса уравнения, ур-ние баланса энергии с учётом выражения для плотности потока тепла даёт теплопроводности ур-ние, ур-ние баланса числа частиц определ. сорта с учётом выражения для диффуз. потока даёт диффузии уравнение. Такой гидродинамич. подход справедлив, если длина свободного пробега l значительно меньше характерных размеров областей неоднородности.

    Газы и плазма. К. ф. позволяет исследовать явления переноса в разреж. газах, когда отношение длины свободного пробега l к характерным размерам задачи L (т. е. Кнудсена число l/L )уже не очень мало и имеет смысл рассматривать поправки порядка l/L (слабо разреж. газы). В этом случае К. ф. объясняет явления температурного скачка и течения газов вблизи твёрдых поверхностей.

    Для сильно разреж. газов, когда l/L> 1, гидродинамич. ур-ния и обычное ур-ние теплопроводности уже не применимы и для исследования процессов переноса необходимо решать кинетич. ур-ние с определ. граничными условиями на поверхностях, ограничивающих газ. Эти условия выражаются через ф-цию распределения молекул, рассеянных из-за взаимодействия со стенкой. Рассеянный поток частиц может приходить в тепловое равновесие со стенкой, но в реальных случаях это не достигается. Для сильно разреж. газов роль коэф. теплопроводности играют коэф. теплопередачи. Напр., кол-во тепла Q, отнесённое к единице площади параллельных пластинок, между к-рыми находится разреж. газ, равно , где Т 1 и Т 2 - теми-ры пластинок, L - расстояние между ними, - коэф. теплопередачи.

    Теория явлений переноса в плотных газах и жидкостях значительно сложнее, т. к. для описания неравновесного состояния уже недостаточно одночастичной ф-ции распределения, а нужно учитывать ф-ции рас-

    пределения более высокого порядка Частичные ф-ции распределения удовлетворяют цепочке зацепляющихся ур-ний ( Боголюбова уравнений, наз. также цепочкой ББГКИ, т. е. ур-ний Боголюбова-Борна-Грина- Кирквуда-Ивона). С помощью этих ур-ний можно уточнить кинетич. ур-ние для газов ср. плотности и исследовать для них явления переноса.

    К. ф. двухкомпонентной плазмы описыпается двумя ф-циями распределения (для электронов , для ионов f i ) удовлетворяющими системе двух кинетич. ур-ний. На частицы плазмы действуют силы

    где Ze - заряд иона, Е - напряжённость электрич. поля, В - магн. индукция, удовлетворяющие Максвелла уравнениям. Ур-ния Максвелла содержат ср. плотности тока и заряда , определяемые с помощью ф-ций распределения:

    Т. о., кинетич. ур-ния и yp-ния Максвелла образуют связанную систему ур-ний, определяющих все неравновесные явления в плазме. Такой подход наз. приближением самосогласованного поля. При этом столкновения между электронами учитываются не явно, а лишь через создаваемое ими самосогласованное поле (см. Кинетические уравнения для плазмы). При учёте столкновений электронов возникает кинетич.. ур-ние, в к-ром эфф. сечение столкновений очень медленно убывает с ростом прицельного расстояния, становятся существенными столкновения с малой передачей импульса, в интеграле столкновений появляется логарифмич. расходимость. Учёт эффектов экранирования позволяет избежать этой трудности.

    Конденсированные среды. К. ф. неравновесных процессов в диэлектриках основана на решении кинетич. ур-ния Больцмана для фононов решётки (ур-ние Пайерлса). Взаимодействие между фононами вызвано членами гамильтониана решётки, ангармоническими относительно смещения атомов на положения равновесия. При простейших столкновениях один фонон распадается на два или происходит слияние двух фононов в один, причём сумма их квазиимпульсов либо сохраняется (нормальные процессы столкновений), либо меняется на вектор обратной решётки (процессы переброса). Конечная теплопроводность возникает при учёте процессов переброса. При низких темп-рах, когда длина свободного пробега больше размеров образца L, роль длины свободного пробега играет L. Кинетич. ур-ние для фононов позволяет исследовать теплопроводность и поглощение звука в диэлектриках. Если длина свободного пробега для нормальных процессов значительно меньше длины свободного пробега для процессов переброса, то система фопонов в кристалле при низких темп-pax подобна обычному газу. Нормальные столкновения устанавливают внутр. равновесие в каждом элементе объёма газа, к-рый может двигаться со скоростью V, мало меняющейся на длине свободного пробега для нормальных столкновении. Поэтому можно построить ур-ния гидродинамики фононного газа в диэлектрике. К. ф. м е т а л л о в основана на решении кинетич. ур-ния для электронов, взаимодействующих с колебаниями кристаллич. решётки. Электроны рассеиваются на колебаниях атомов решётки, примесях и дефектах, нарушающих её периодичность, причём возможны как нормальные столкновения, так и процессы переброса. Электрич. сопротивление возникает в результате этих столкновений. К. ф. объясняет термоэле-ктрич., гальваномагн, и термомагн. явления, скин-эффект, циклотронный резонанс в ВЧ-полях и др. кинетич. эффекты в металлах. Для сверхпроводников она объясняет особенности их ВЧ-поведения.

    К. ф. явлений при прохождении быстрых частиц через вещество основана на решении системы кинетич. ур-ний для быстрых частиц и вторичных частиц, возникающих при столкновениях, напр, для -лучей (фотонов) с учётом разл. процессов в среде (фотоэффекта, комптоновского рассеяния, образования пар). В этом случае К. ф. позволяет вычислить коэф. поглощения и рассеяния быстрых частиц.

    Фазовые переходы. К. Фоккера-Планка уравнению:

    где а - радиус зародыша, D - "коэф. диффузии зародышей по размерам", А пропорционально мин. работе, к-рую нужно затратить на создание зародыша данного размера. К. ф. фазовых переходов 2-го рода в наиб. простом приближении основана на ур-нии релаксации параметра порядка , характеризующего степень упорядоченности, возникающей при фазовом переходе:

    где - постоянный коэф., - термодинамич. потенциал в переменных Т и ( - хим. потенциал), вблизи точки фазового перехода зависящий от . Для этой зависимости используется разложение по степеням и Т-Т с, где Т с - темп-pa фазового перехода. (См. также Кинетика фазовых переходов. )

    Явления переноса в жидкостях. Теорию явлений переноса в жидкостях также можно отнести к К. ф., хотя для жидкостей метод кинетич. ур-ний непригоден, но для них возможен более общий подход, основанный также на иерархии времён релаксации. Для жидкости время установления равновесия в макроскопически малых (но содержащих ещё большое число молекул) элементарных объёмах значительно больше, чем время релаксации во всей системе, вследствие чего в малых элементах объёма приближённо устанавливается статистич. равновесие. Поэтому в качестве исходного приближения при решении Лиувилля уравнения можно принять локально равновесное Гиббса распределение с темп-рой Т (x, t), хим. потенциалом и гидродинамич. скоростью F(x , t), соответствующими рассматриваемой точке жидкости. Напр., для однокомпонентной жидкости локально равновесная ф-ция распределения (или статистич. оператор) имеет вид

    Плотность энергии в системе координат, движущейся вместе с элементом жидкости, Н (х )- плотность энергии в неподвижной системе координат, р (х) - плотность импульса, n(x) - плотность числа частиц, рассматриваемые как фазовые ф-ции, т. е. ф-ции от координат и импульсов всех частиц, напр.

    Приближённое решение ур-ния Лиувилля для состояний, близких к статистически равновесному, позволяет вывести ур-ния теплопроводности и Навье-Стокса для жидкости и получить микроскопич. выражения для кинетич. коэф. теплопроводности и вязкости через пространственно-временные корреляц. ф-ции плотностей потоков энергии и импульсов всех частиц системы ( Грина-Кубо формулы). Этот же подход возможен и для смеси жидкостей. Подобное решение ур-ния Лиувилля есть его частное решение, зависящее от времени лишь через параметры , , V(x, t), соответствующие сокращённому гидродинамич. описанию неравновесного состояния системы, к-рое справедливо, когда все гидродинамич. параметры мало меняются на расстояниях порядка длины свободного пробега (для газов) или длины корреляций потоков энергии или импульса (для жидкостей). [В квантовом случае Я (ж), р (x), п(x) - операторы в представлении вторичного квантования. ]

    К задачам К. ф. относится также вычисление обобщённой восприимчивости, выражающей линейную реакцию физ. системы на включение внеш. поля. Её можно выразить через Грина функции с усреднением по состоянию, к-рое может быть и неравновесным.

    В К. ф. исследуют также кинетич. свойства квантовых систем, что требует применения метода матрицы плотности (см., напр., Кинетическое уравнение основное).

    Лит.: Гуревич Л. Э., Основы физической кинетики, Л.- М., 1940; Боголюбов Н. Н., Проблемы динамической теории в статистической физике, М.- Л., 1946; Ч е п-мен С., К а у л и н г Т.", Математическая теория неоднородных газов, пер. с англ., М., 1960; Зубарев Д. Н., Неравновесная статистическая термодинамика, М., 1971; К л и-монтович Ю. Л., Кинетическая теория неидеального газа и неидеальной плазмы, М., 1975; Ферцигер Д ж., К а-п е р Г., Математическая теория процессов переноса в газах, пер. с англ., М., 1976; В а л е с к у Р., Равновесная и неравновесная статистическая механика, пер. с англ., т. 2, М., 1978; Л и ф ш и ц Е. М., Питаевский Л. П., Физическая кинетика, М., 1979. Д. Н. Зубарев.

    • - , раздел механики, в к-ром исследуется механич. состояние тела в связи с физ. причинами, его определяющими...

      Физическая энциклопедия

    • - микроскопич. теория процессов в статистически неравновесных системах. Она изучает методами квант. или классич...

      Физическая энциклопедия

    • - раздел классической механики, объединяющий статику и динамику...

      Начала современного Естествознания

    • - в физике - один из разделов ДИНАМИКИ. В химии раздел физической химии, рассматривающий скорость химических реакций...

      Научно-технический энциклопедический словарь

    • - раздел статистич. физики, в к-ром изучаются на основе мол.-кинетич...

      Естествознание. Энциклопедический словарь

    • - учение о механизме и скоростях физических и химических процессов. Физическая кинетика - теория неравновесных макро-скопических процессов в системах, выведенных из состояния теплового равновесия...

      Энциклопедический словарь по металлургии

    • - наука, изучающая зависимость между кинематическим состоянием материи, обладающей предполагаемыми свойствами и причинами, обусловливающими это состояние...

      Энциклопедический словарь Брокгауза и Евфрона

    • - основная часть механики, включающая динамику - учение о движении тел под действием сил и статики - учение о равновесии тел пол действием...
    • - теория неравновесных макроскопических процессов, то есть процессов, возникающих в системах, выведенных из состояния теплового равновесия...

      Большая Советская энциклопедия

    • - раздел механики, объединяющий статику и динамику...
    • - раздел статистической физики, в котором изучаются на основе молекулярно-кинетической теории неравновесные процессы в веществе, напр. процессы выравнивания концентраций в смесях, температур и т....

      Большой энциклопедический словарь

    • - язык жестов...

      Толковый переводоведческий словарь

    • - ...

      Орфографический словарь русского языка

    • - КИНЕ́ТИКА, -и, жен. Раздел механики, объединяющий в себе статику и динамику...

      Физическая деградация

      Из книги Фриланс: перезагрузка [Пошаговое руководство для удаленного сотрудника по заработку от 200 000 руб. в месяц] автора Масленников Роман Михайлович

      Физическая деградация Эта проблема не имеет особо прямого отношения к фрилансу, но это очень сильно влияет на вашу продуктивность. Почему многие фрилансеры чувствуют усталость, нет мотивации, нет сил, подавленность?Не верьте красивым картинкам под пальмами, которые вам

      Физическая активность

      Из книги Быстрые результаты. 10-дневная программа повышения личной эффективности автора Парабеллум Андрей Алексеевич

      Физическая активность Первое - обязательно начните день с какой-либо физической активности.Неважно, что это будет, выберите сами, - важно, чтобы это заставило вас вспотеть.Это может быть то, что вы любите, - бег, плавание в бассейне, прыжки на батуте, ролики, велосипед и

      Мотивация и кинетика поведения

      Из книги Результативность. Секреты эффективного поведения автора Стюарт-Котце Робин

      Мотивация и кинетика поведения Начнем с предположения о том, что поведение человека, чаше всего демонстрируемое, является отражением его мотивации, т. е. то, что вы делаете, заставляет вас быть довольным собой. Если принять это как гипотезу, это будет означать, что мы имеем

      Физическая расправа

      Из книги Самая очаровательная и привлекательная автора Шереметева Галина Борисовна

      Физическая расправа Слабый пол в последнее время все больше прибегает к побоям мужа, привыкнув к мысли о равноправии и о том, что мальчиков и девочек воспитывают с одинаковыми требованиями.В ход идут сковородки, палки, швабры, попытки утопить мужа в ванной, зарезать ножом,

      ЛЕКЦИЯ № 6. Химическая кинетика

      автора Березовчук А В

      ЛЕКЦИЯ № 6. Химическая кинетика 1. Понятие химической кинетики Кинетика – наука о скоростях химических реакций.Скорость химической реакции – число элементарных актов химического взаимодействия, протекающих в единицу времени в единицу объема (гомогенные) или на единице

      ЛЕКЦИЯ № 13. Электрохимическая кинетика

      Из книги Физическая химия: конспект лекций автора Березовчук А В

      ЛЕКЦИЯ № 13. Электрохимическая кинетика 1. Основные кинетические характеристики и методы их расчетов i0 – ток обмена – кинетическая характеристика равновесия между электродом и раствором при равновесном значении электродного потенциала. Токи обмена относят к 1 см2

      Из книги Заболевания крови автора Дроздова М В

      Кинетика эозинофилов Начальные стадии созревания эозинофилов в костном мозге длятся 34 ч, после этого клетки выходят в кровоток. В кровотоке эозинофилы находятся недолго, после чего располагаются главным образом в покровных тканях (коже, слизистых оболочках

      Кинетика

      Из книги Типология в гомеопатии автора Ванье Леон

      Кинетика Мы должны учитывать движения передвигающегося субъекта, изучать его походку, жесты и даже голос, - все они раскрывают разные аспекты, соответствующие типу.ПозаЧеловек не может сесть или встать, не удерживая своё равновесие, используя подсознательные

    Кинетика физическая

    теория неравновесных макроскопических процессов, то есть процессов, возникающих в системах, выведенных из состояния теплового (термодинамического) равновесия. К К. ф. можно отнести термодинамику неравновесных процессов (См. Термодинамика неравновесных процессов), кинетическую теорию газов (См. Кинетическая теория газов) (в том числе плазмы), теорию процессов переноса в твёрдых телах, а также общую статистическую теорию неравновесных процессов, которая начала развиваться лишь в 50-е гг.

    Все неравновесные процессы в адиабатически изолированных системах (системах, не обменивающихся теплом с окружающими телами) являются необратимыми процессами (См. Необратимые процессы) - происходят с увеличением энтропии (См. Энтропия); в равновесном состоянии энтропия достигает максимума.

    Как и в случае равновесных состояний, в К. ф. возможны два способа описания систем: феноменологический, или термодинамический (термодинамика неравновесных процессов), и статистический.

    Термодинамический метод описания неравновесных процессов

    При термодинамическом описании неравновесных процессов рассматривается изменение в пространстве и времени таких макроскопических параметров состояния системы, как плотность массы i -го компонента ρ i (r, t ), плотность импульса ρu (r, t ), локальная температура T (r , t ), поток массы i-го компонента j i (r, t ), плотность потока внутренней энергии q (r, t ) [здесь r - координата, t - время, u - средняя массовая скорость, ρ - плотность массы]. В равновесном состоянии системы ρ , ρ i , Т постоянны, а потоки равны нулю.

    Термодинамическое описание неравновесных возможно лишь при достаточно медленном параметров состояния в пространстве и во времени для состояний, близких к равновесным. Для газов это означает, что все термодинамические параметры, характеризующие состояние системы, мало меняются на длине свободного пробега и за время, равное среднему времени свободного пробега молекул (среднему времени между двумя последовательными столкновениями молекул). Медленные процессы встречаются практически очень часто, так как установление равновесия происходит только после очень большого числа столкновений; к ним относятся: Диффузия , Теплопроводность , Электропроводность и т.д. Отклонения от состояния термодинамического равновесия характеризуются Градиент ами температуры, концентрации (ρ i /ρ ) и массовой скорости (так называемыми термодинамическими силами), а потоки энергии, массы i -го компонента и импульса связаны с термодинамическими силами линейными соотношениями. Коэффициенты в этих соотношениях называются кинетическими коэффициентами.

    Рассмотрим в качестве примера диффузию в бинарной смеси, то есть процесс выравнивания концентрации компонентов в результате хаотического теплового движения молекул. Феноменологическое уравнение, описывающее процесс диффузии, получают с помощью закона сохранения вещества и того опытного факта, что поток вещества одного из компонентов вследствие диффузии прямо пропорционален градиенту его концентрации (с обратным знаком). Коэффициент пропорциональности называется коэффициентом диффузии. Согласно уравнению диффузии, скорость изменения концентрации вещества со временем прямо пропорциональна дивергенции (См. Дивергенция) градиента концентрации с коэффициентом пропорциональности, равным коэффициенту диффузии.

    Решение уравнения диффузии позволяет определить время, в течение которого произойдёт выравнивание концентрации молекул в системе (например, в сосуде с газом) за счёт диффузии (время релаксации). Время релаксации τ р имеет порядок: τ р Кинетика физическая L 2 /D, где L - линейные размеры сосуда, a D - коэффициент диффузии. Это время тем больше, чем больше размеры сосуда и чем меньше коэффициент диффузии. Коэффициент диффузии пропорционален длине свободного пробега молекул λ и их средней тепловой скорости ν. Поэтому время релаксации оказывается пропорциональным: τ р Кинетика физическая L 2 / λν = (L/λ ) 2 λ/ν, где λ/ν = τ - среднее время свободного пробега. Очевидно, что τ р >> τ при L >> λ . Таким образом, условие L >> λ (размеры системы велики по сравнению с длиной свободного пробега молекул) является необходимым для того, чтобы процесс установления равновесного состояния можно было считать медленным. Аналогичным образом устанавливаются уравнения, описывающие теплопроводность, внутреннее трение, электропроводность и т.д. Коэффициент диффузии, теплопроводности и вязкости, а также удельная электропроводность в феноменологической теории должны быть определены экспериментально.

    Перечисленные процессы называются прямыми. Этим подчёркивается, что, например, при диффузии градиент концентрации данного вещества вызывает поток этого же вещества; градиент температуры вызывает поток внутренней энергии, которая при постоянной концентрации молекул меняется только с температурой; электрический ток вызывается градиентом потенциала и т.д. Кроме прямых процессов, существуют ещё так называемые перекрёстные процессы. Примером перекрёстного процесса может служить Термодиффузия - перенос вещества не вследствие градиента концентрации (это была бы обычная диффузия), а вследствие градиента температуры. Термодиффузия создаёт градиент концентрации, что приводит к появлению обычной диффузии. Если разность температур в системе поддерживается постоянной, то устанавливается стационарное состояние, при котором потоки вещества, вызванные градиентами температуры и концентрации, взаимно уравновешиваются. В смеси газов при этом концентрация молекул в местах повышенной температуры оказывается большей для молекул меньшей массы (данное явление используется для разделения изотопов (См. Изотопы)).

    Градиент концентрации в свою очередь создаёт поток внутренней энергии. В этом состоит процесс диффузионной теплопроводности. При наличии в теле заряженных частиц градиент температуры создаёт упорядоченное перемещение этих частиц - электрический ток, называемый термоэлектрическим (см. Термоэлектрические явления).

    В К. ф. важное значение имеет принцип симметрии кинетических коэффициентов, установленный Л. Онсагер ом. В равновесном состоянии термодинамические параметры a i (давление, температура и т.д.), характеризующие состояние макроскопической системы, постоянны во времени: da i /dt = 0. Важнейшая функция состояния системы - энтропия S , зависящая от a i , в состоянии равновесия имеет максимум и, следовательно, её частные производные ∂S/∂ aj = 0. При малом отклонении системы от равновесия производные ∂S/∂ aj и ∂a/∂t малы, но отличны от нуля, и между ними существуют приближённые линейные соотношения. Коэффициенты пропорциональности в этих соотношениях и есть кинетические коэффициенты. Если через γ ik обозначить коэффициент, определяющий скорость изменения параметра системы a i зависимости от = γ ki . Принцип Онсагера вытекает из свойства микроскопической обратимости, которая выражается в инвариантности уравнений движения частиц системы относительно замены знака времени: t → -t (см. Онсагера теорема). Из этого принципа, в частности, следует существование связи между коэффициентами, определяющим выделение током тепла из-за неравномерного нагрева проводника (Томсона эффект), и коэффициентами, определяющим выделение током тепла в спаях разнородных проводников или полупроводников (Пельтье эффект).

    Статистический метод описания неравновесных процессов.

    Статистическая теория неравновесных процессов является более детальной и глубокой, чем термодинамическая. В отличие от термодинамического метода, статистическая теория на основе определенных представлений о строении вещества и действующих между молекулами силах позволяет вычислить кинетические коэффициенты, определяющие интенсивность процессов диффузии, внутреннего трения (вязкости (См. Вязкость)), электропроводности и т.д. Однако эта теория весьма сложна.

    Статистический метод описания систем как в равновесном, так и неравновесном состоянии основан на вычислении функции распределения. Для равновесных состояний имеются универсальные функции распределения координат и импульсов (или скоростей) всех частиц, определяющие вероятность того, что эти величины принимают фиксированные значения. Для систем, находящихся в тепловом контакте с окружающей средой, температура которой постоянна, это - каноническое Гиббса распределение , а для изолированных систем - микроканоническое Гиббса распределение; оба распределения полностью определяются энергией системы.

    Неравновесные состояния в гораздо большей степени (чем равновесные) зависят от микроскопических свойств систем: свойств атомов и молекул и сил взаимодействия между ними. Лишь в 50-60-е гг. были разработаны общие методы построения функций распределения (по координатам и импульсам всех частиц системы), аналогичных каноническому распределению Гиббса, но описывающих неравновесные процессы.

    С помощью функций распределения можно определить любые макроскопические величины, характеризующие состояние системы, и проследить за их изменением в пространстве с течением времени. Это достигается вычислением статистических средних (см. Статистическая физика). Нахождение функции распределения, зависящей от координат и импульсов всех частиц, является в общем случае неразрешимой задачей, т.к. оно эквивалентно решению уравнений движения для всех частиц системы. Однако для практических целей нет необходимости в знании точного вида этой функции распределения: она содержит слишком подробную информацию о движении отдельных частиц, которая не существенна для определения поведения системы в целом. В связи с этим используется приближенное статистическое описание с помощью более простых функций распределения. Для описания состояния газов средней плотности достаточно знания так называемой одночастичной функции распределения f (p, r, t ), дающей среднее число частиц с определёнными значениями импульсов р (или скоростей ν ) и координат r. Для газов более высокой плотности необходимо знание двухчастичных (парных) функций распределения. Общий метод получения уравнений для одночастичных и более сложных функций (зависящих от координат и импульсов двух и более частиц) был разработан Н. Н. Боголюбов ым, М. Борн ом, М. Грином и др. Эти уравнения называются кинетическими. К их числу относится Кинетическое уравнение Больцмана для разреженных газов, полученное Л. Больцман ом из соображений, основанных на балансе частиц со скоростями в интервалах Δν x , Δν y , Δν z внутри объёма Δх Δy Δz (ν x , ν y , ν z - проекции скорости ν на координатные оси х, у, z ). Разновидностями уравнения Больцмана для ионизированного газа (плазмы) являются кинетические уравнения Л. Д. Ландау и А. А. Власов а (см. Плазма).

    Кинетические уравнения могут быть построены не только для газов, но и для малых возбуждений в конденсированных системах. Тепловое движение системы характеризуется различного рода возбуждениями. В газе это - поступательное движение составляющих его частиц и внутренние возбуждения атомов и молекул. В общем случае тепловое движение характеризуется возбуждениями более сложной природы. Так, в кристаллических телах тепловое возбуждение можно представить в виде упругих волн, распространяющихся вдоль кристалла, точнее - волн, соответствующих нормальным колебаниям кристаллической решётки (См. Колебания кристаллической решётки). В плазме коллективными возбуждениями являются колебания плотности электрического заряда, вызванные дальнодействующими кулоновскими силами. В металлах возможны электронные возбуждения (переходы электронов из состояний внутри Ферми поверхности (См. Ферми поверхность) в состояния вне её), а в полупроводниках - ещё и дырочные возбуждения (появление свободных от электронов состояний в валентной зоне при переходе электронов в зону проводимости; см. Полупроводники). При низких температурах, в слабовозбуждённом состоянии, энергию возбуждения всегда можно представить в виде суммы некоторых элементарных возбуждений, или, на квантовом языке, квазичастиц (См. Квазичастицы). Понятие о квазичастицах применимо не только для кристаллических тел, но и для жидких, газообразных и аморфных, если температура не слишком велика. Функции распределения для квазичастиц системы, находящейся в неравновесном состоянии, удовлетворяют кинетическому уравнению.

    В случае квантовых систем функция распределения зависит от Спин а частиц (или квазичастиц). В частности, для частиц с полуцелым спином равновесной функцией распределения служит распределение Ферми - Дирака, а для частиц (квазичастиц) с целым или нулевым спином - распределение Бозе - Эйнштейна (см. Статистическая физика).

    В кинетических уравнениях наряду с внешними воздействиями учитываются взаимодействия между частицами или квазичастицами, причем эти взаимодействия рассматриваются как парные столкновения. Именно эти взаимодействия приводят к установлению равновесных состояний. Во многих случаях функция распределения не зависит явно от времени. Такая функция называется стационарной, она описывает процессы, течение которых не претерпевает изменений со временем. При стационарных процессах изменение функции распределения вследствие внешних воздействий компенсируется её изменением в результате столкновений.

    В простых случаях можно грубо оценить изменение функции распределения f системы в результате столкновений, считая, что оно пропорционально величине отклонения от равновесной функции (так как только при отклонении от состояния равновесия столкновения меняют функцию распределения). Величина, обратная коэффициенту пропорциональности в этом соотношении, называется временем релаксации. В общем случае учесть взаимодействие таким простым способом невозможно, и в кинетическое уравнение входит так называемый интеграл столкновений, который более точно учитывает результат изменения функции распределения вследствие взаимодействия частиц (квазичастиц).

    Решая кинетическое уравнение, находят неравновесную функцию распределения и вычисляют потоки энергии, массы и импульса, что позволяет получить уравнения теплопроводности, диффузии и переноса импульса (уравнение Навье - Стокса) с кинетическими коэффициентами, выраженными через молекулярные постоянные. [Однако кинетическое уравнение можно построить лишь для газов (из частиц или квазичастиц)].

    Основные принципы теории неравновесных процессов надёжно установлены. Разработаны методы построения уравнений переноса энергии, массы и импульса в различных системах, не только в газах, а, например, и в жидкостях. При этом получают выражения для кинетических коэффициентов, входящих в эти уравнения, через корреляционные функции (функции, описывающие корреляцию в пространстве и во времени) потоков этих физических величин, то есть в конечном счете, через молекулярные постоянные. Эти выражения очень сложны и могут быть вычислены лишь средствами современной вычислительной математики.

    Лит.: Гуревич Л. Э., Основы физической кинетики, М.- Л., 1940; Боголюбов Н. Н., Проблемы динамической теории в статистической физике, М.-Л., 1946; Гуров К. П, Основания кинетической теории. Метод Н. Н. Боголюбова, М., 1966; Ландау Л. Д., Лифшиц Е. М., Статистическая физика, М., 1964 (Теоретическая физика, т. 5): Климонтович Ю. Л., Статистическая теория неравновесных процессов в плазме, М., 1964; Пригожин И. Р., Неравновесная статистическая механика, пер. с англ., М., 1964; Зубарев Д. Н., Неравновесная статистическая термодинамика, М., 1971; Гроот С., Мазур П., Неравновесная термодинамика, пер. с англ., М., 1964; Честер Дж., Теория необратимых процессов, пер. с англ., М., 1966; Хаазе Р., Термодинамика необратимых процессов, пер. с нем., М., 1967.

    Г. Я. Мякишев.


    Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

    Физическая кинетика - микроскопическая теория процессов в неравновесных средах. В кинетике методами квантовой или классической статистической физики изучают процессы переноса энергии, импульса, заряда и вещества в различных физических системах (газах, плазме, жидкостях, твёрдых телах) и влияние на них внешних полей. В отличие от термодинамики неравновесных процессов и электродинамики сплошных сред, кинетика исходит из представления о молекулярном строении рассматриваемых сред, что позволяет вычислить из первых принципов кинетические коэффициенты, диэлектрические и магнитные проницаемости и другие характеристики сплошных сред. Физическая кинетика включает в себя кинетическую теорию газов из нейтральных атомов или молекул, статистическую теорию неравновесных процессов в плазме, теорию явлений переноса в твёрдых телах (диэлектриках, металлах и полупроводниках) и жидкостях, кинетику магнитных процессов и теорию кинетических явлений, связанных с прохождением быстрых частиц через вещество. К ней же относятся теория процессов переноса в квантовых жидкостях и сверхпроводниках и кинетика фазовых переходов.

    В термодинамических неравновесных системах происходят особые необратимые процессы, называемые явлениями переноса , в результате которых осуществляется пространственный перенос массы, импульса, энергии. К явлениям переноса относятся теплопроводность (перенос энергии), диффузия (перенос массы) и внутреннее трение (перенос импульса).

    Диффузия. При происходит самопроизвольное проникновение и перемешивание частиц двух соприкасающихся газов, жидкостей и даже твердых тел; диффузия есть обмен масс частиц этих тел, при этом явление возникает и продолжается, пока существует градиент плотности. Во времена становления молекулярно-кинетической теории по вопросу явления диффузии возникли противоречия. Поскольку молекулы перемещаются в пространстве с огромными скоростями, то диффузия должна происходить очень быстро. Если же открыть в комнате крышку сосуда с пахучим веществом, то запах распространяется довольно медленно. Но здесь нет противоречия. При атмосферном давлении молекулы обладают малой длиной свободного пробега и, при столкновениях с другими молекулами, преимущественно «стоят» на месте.

    Явление диффузии для химически однородного газа подчиняется закону Фика:

    где jm - плотность потока массы - величина, определяемая массой вещества, диффундирующего в единицу времени через единичную площадку, перпендикулярную оси х, D - диффузия (коэффициент диффузии), dρ/dx - градиент плотности, который равен скорости изменения плотности на единицу длины х в направлении нормали к этой площадке. Знак минус говорит о том, что перенос массы происходит в направлении убывания плотности (поэтому знаки jm и dρ/dx противоположны). Диффузия D численно равна плотности потока массы при градиенте плотности, равном единице.