Болезни Военный билет Призыв

Лабораторная работа по физике измерение световой волны. Определение длины световой волны. Урок - исследование. Дополнительный материал к уроку

Лабораторная работа №2 (решеба, ответы) по физике 11 класс - Определение световой волны с помощью дифракционной решётки

2. Установите экран на расстоянии L ~ 45-50 см от дифракционной решётки. ИзмерьтеL не менее 5 раз, рассчитайте среднее значение . Данные занесите в таблицу.

5. Рассчитайте средние значения. Данные занесите в таблицу.

6. Рассчитайте период d решётки, запишите его значение в таблицу.

7. По измеренному расстоянию от центра щели в экране до положения красного края спектра и расстоянию от дифракционной решётки до экрана вычислите sin0кр, под которым наблюдается соответствующая полоса спектра.

8. Вычислите длину волны, соответствующую красной границе воспринимаемого глазом спектра.

9. Определите длину волны для фиолетового края спектра.

10. Рассчитайте абсолютные погрешности измерений расстояний L и l.

L = 0.0005 м + 0.0005 м = 0.001 м
l = 0.0005 м + 0.0005 м = 0.001 м

11. Рассчитайте абсолютную и относительную погрешности измерения длин волн.

Ответы на контрольные вопросы

1. Объясните принцип действия дифракционной решётки.

Принцип действия такой же, как и призмы - отклонение проходящего света на определённый угол. Угол зависит от длины волны падающего света. Чем больше длина волны, тем больше угол. Представляет собой систему из одинаковых параллельных щелей в плоском непрозрачном экране.

Нажмите, чтобы увеличить

2. Укажите порядок следования основных цветов в дифракционном спектре?

В дифракционном спектре: фиолетовый, синий, голубой, зелёный, жёлтый, оранжевый и красный.

3. Как изменится дифракционный спектр, если использовать решётку с периодом, в 2 раза большим, чем в вашем опыте? В 2 раза меньшим?

Спектр в общем случае есть частотное распределение. Пространственная частота - величина, обратная периоду. Отсюда очевидно, что увеличение периода вдвое приводит к сжатию спектра, а уменьшение спектра приведёт к растяжению спектра вдвое.

Выводы: дифракционная решётка позволяет очень точно измерить длину световой волны.

Федеральное государственное образовательное учреждение

высшего профессионального образования

"Сибирский федеральный университет"

Институт градостроительства, управления и региональной экономики

Кафедра Физики

Отчет по лабораторной работе

Измерение длины световой волны с помощью дифракционной решетки

Преподаватель

В.С Иванова

Студент ПЭ 07-04

К.Н. Дубинская

Красноярск 2009


Цель работы

Изучение дифракции света на одномерной решетке, измерение длины световой волны.

Краткое теоретическое введение

Одномерная дифракционная решетка представляет собой ряд прозрачных параллельных щелей одинаковой ширины а, разделенных равными непрозрачными промежутками b. Сумму размеров прозрачного и непрозрачного участков принято называть периодом, или постоянной решеткой d.

Период решетки связан с числом штрихов на одном миллиметре n соотношением

Общее число штрихов решетки N равно

где l – ширина решетки.

Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех N щелей, т.е. дифракционная решетка осуществляет многолучевую интерференцию когерентных дифрагированных пучков света, идущих от всех щелей.

Пусть на решетку падает параллельный пучок монохроматического света с длиной волны . За решеткой в результате дифракции лучи будут распространяться по разным направлениям. Так как щели находятся на одинаковых расстояниях друг от друга, то разности хода ∆ вторичных лучей, образующихся согласно принципу Гюйгенса – Френеля и идущих от соседних щелей в одном направлении , будут одинаковы в пределах всей решетки и равны

Если эта разность хода кратна целому числу длин волн, т.е.

то при интерференции в фокальной плоскости линзы возникнут главные максимумы. Здесь m = 0,1,2, … - порядок главных максимумов.

Главные максимумы расположены симметрично относительно центрального, или нулевого, с m = 0, соответствующего лучам света, прошедшим через решетку без отклонений (недифрагированным, = 0). Равенство (2) называют условием главных максимумов на решетке. Каждая щель также образует свою дифракционную картину. В тех направлениях, в которых одна щель дает минимумы, будут наблюдаться минимумы и от других щелей. Эти минимумы определяются условием

Положение главных максимумов зависит от длины волны λ. Поэтому при пропускании через решетку белого света все максимумы, кроме центрального (т = 0), разложатся в спектр, фиолетовая часть которого будет обращена к центру дифракционной картины, а красная - наружу. Это свойство дифракционной решетки используется для исследования спектрального состава света, т.е. дифракционная решетка может быть использована как спектральный прибор.

Обозначим расстояние между серединой нулевого максимума и максимумами 1,2, ... m- го порядков, соответственно, х 1 х 2 ... х т а расстояние между плоскостью дифракционной решетки и экраном -L. Тогда синус угла дифракции

Используя последнее соотношение, из условия главных максимумов можно определить λ любой линии спектра.

В экспериментальной установке имеются:

S- источник света, КЛ- коллиматорная линза, Щ- щель для ограничения размеров пучка света, ФЛ- фокусирующая линза, ДР- дифракционная решетка с периодом d = 0.01 мм, Э- экран для наблюдения дифракционной картины. Для работы в монохроматическом свете используются светофильтры.

Порядок выполнения работы

1. Расположим детали установки по 1 оси в указанном порядке, закрепляем на экране лист бумаги.

2. Включаем источник света S. Устанавливаем светофильтр белого цвета.

3. Измеряем прикрепленной к установке линейкой расстояние L от решетки до экрана.


L 1 = 13.5см=0.135м, L 2 =20.5см=0.205м.

4. Отмечаем на листе бумаги середины нулевого, первого и других максимумов вправо и влево от центра. С предельной точностью измерить расстояние х 1, х 2 .

5. Рассчитаем длины волн, пропускаемых светофильтром.

6. Найдем среднеарифметическое значение длины волны по формуле

7. Рассчитаем абсолютную погрешность измерений по формуле

где n – число изменений, ɑ - доверительная вероятность измерения, t ɑ (n) – соответствующий коэффициент Стьюдента.

8. Окончательный результат записываем в виде

9. Сравниваем полученную длину волны с теоретическим значением. Записываем вывод по работе.


Дифракционной решетки

Цель работы

С помощью дифракционной решетки получить спектр, изучить его. Определить длину волны фиолетовых, зеленых и красных лучей

Теоретическая часть работы

Параллельный пучок света, проходя через дифракционную решетку, вследствие дифракции за решеткой распространяется по все возможным направлениям и интерферирует. На экране, установленном на пути интерферирующего света, можно наблюдать интерференционную картину. В точке О поставленного за решеткой экрана разность хода лучей любой цветности будет равна нулю, здесь будет центральный нулевой максимум – белая полоса. В точке экрана, для которой разность хода фиолетовых лучей будет равна длине волны этих лучей, лучи будут иметь одинаковые фазы; здесь будет максимум – фиолетовая полоса – Ф. В точке экрана, для которой разность хода красных лучей будет равна длине их волны, будет максимум для лучей красного света – К. Между точками Ф и К расположатся максимумы всех остальных составляющих белого цвета в порядке возрастания длины волны. Образуется дифракционный спектр. Сразу за первым спектром расположен спектр второго порядка. Длину волны можно определить по формуле:

Где λ- длина волны, м

φ – угол, под которым наблюдается максимум для данной длины волны,

d – период дифракционной решетки d= 10 -5 м,

k – порядок спектра.

Поскольку углы, под которыми наблюдаются максимумы первого и второго порядков не превышают 5 0 , можно вместо синусов углов использовать их тангенсы:

где a – расстояние от центра окна до середины лучей спектра, м;

ℓ - расстояние от дифракционной решетки до экрана, м

Тогда длина волны может быть определена по формуле:

Оборудование

Прибор для определения длины световой волны, дифракционная решетка, лампа накаливания.

Ход работы

1. Установите экран на расстоянии 40-50 см от решетки (ℓ).

2. Глядя сквозь решетку и щель в экране на источник света, добейтесь, чтобы по обе стороны от щели были четко видны дифракционные спектры.

3. По шкале на экране, определите расстояние от центра окна до середины фиолетовых, зеленых и красных лучей (a), вычислить длину световой волны по формуле: ,

4. Изменив расстояние от решетки до экрана (ℓ), опыт повторите для спектра второго порядка для лучей того же цвета.

5. Найдите среднее значение длины волны для каждого из монохроматических лучей и сравните с табличными данными.

Таблица Значения длин волн для некоторых цветов спектра



Таблица Результаты измерений и вычислений

Вычисления

1. Для спектра первого порядка: k=1 , d= , ℓ 1 =

а ф1 = , а з1 = , а кр1 =

Длина волны для спектра первого порядка:

- фиолетового цвета: , λ ф1 =

- зеленого цвета: , λ з1 =

- красного цвета: , λ кр1 =

2. Для спектра второго порядка: k=2 , d= , ℓ 2 =

а ф2 = , а з2 = , а кр2 =

Длина волны для спектра второго порядка:

- фиолетового цвета: , λ ф2 =

- зеленого цвета: , λ з2 =

- красного цвета: , λ кр2 =

3. Среднее значение длин волн:

- фиолетового цвета: , λ фср =

- зеленого цвета: , λ зср =

- красного цвета: , λ крср =

Вывод

Записать ответы на вопросы полными предложениями

1. Что называется дифракцией света?

2. Что называется дифракционной решеткой?

3. Что называется периодом решетки?

4. Записать формулу периода решетки и комментарии к ней

Цель урока:

  • рассмотреть практическое применение явлений дифракции и интерференции света;
  • познакомить учащихся с одним из способов определения длины световой волны с помощью дифракционной решётки;
  • продолжить формирование умений учащихся пользоваться измерительными приборами, проводить наблюдения, снимать показания приборов, записывать их в таблицу, составлять отчёт и делать выводы.

Оборудование:

  • мультимедийный проектор, компьютер, слайдовые презентации, подготовленные к уроку учителем (Приложение№3 ) и учащимися (Приложение №1 ; Приложение №2 );
  • оптическая скамья, рейтер, источник света, слайд-рамка с комплектом масок, пенал, соединительные провода, выпрямитель ВУ-4М (для лабораторной работы).

Ход урока

1. Актуализация знаний.

Учитель: Уже несколько уроков мы изучаем с вами световые волны. Свет это поперечная электромагнитная волна, поэтому как и механические волны световые волны могут огибать препятствия на своём пути, могут усиливать и ослаблять друг друга. Как называются эти явления? При каких условиях и с помощью каких приборов их можно наблюдать?

(Заслушать ответы учащихся)

2. Проверка домашнего задания творческого характера.

Учитель: Проверим домашнее задание. К сегодняшнему уроку вам нужно было подготовить мини-проект на тему “Практическое применение интерференции и дифракции света” и представить свою работу в виде небольшой презентации.

Учащиеся представляют свои работы (Приложение №2 “Явление дифракции в природе и технике” , приложение №1 “Техническое применение интерференции” )

3. Выполнение лабораторной работы.

Учитель: Теоретический материал о дифракционной решётке мы разобрали на предыдущем уроке, а сейчас с помощью этого замечательного прибора мы будем определять длину световой волны согласно описанию, данному в учебнике Г.Я.Мякишева, Б.Б.Буховцева “Физика-11” на стр. 329-330. Время выполнения работы – 15-17 минут.

Инструктаж учащихся по технике безопасности с росписями в журнале по ТБ!

4. Закрепление материала по теме “Волновые свойства света” (фронтальная работа)

Учитель: Приступаем к выполнению заданий различного уровня сложности из КИМов по подготовке к ЕГЭ (Приложение №3 “Готовимся к ЕГЭ” ).

5. Дополнительный материал к уроку

Учитель: Известно ли вам, что существует наука цветология? В основу этой науки положено изучение психологического восприятия цвета. Сегодня доказано, что каждый цвет испускает свойственную только ему определенную вибрацию. Вибрации чистых цветов оказывают восстанавливающее действие на те или иные функции организма, нормализуя их деятельность. Сегодня цветотерапия переживает второе рождение – специальная аппаратура позволяет во много раз усилить терапевтический эффект метода. Цветотерапия успешно используется в офтальмологии. Например, если 2-3 раза в год проводить лечение воздействием цвета на глаз, то возрастная дальнозоркость отодвинет время своего наступления. Успешно лечится косоглазие. Снимается астенопатия – зрительная утомляемость, которая возникает утех, кто много работает с компьютером.

Сообщение ученицы. Недавно читая газету-целительницу "Ай, Болит", я обратила внимание на статью Надежды Николаевны Ивановой из города Армавир Краснодарского края. Название статьи "Цвет – хорош он или нет – ищи ответ". В ней говорится, что с помощью "цветной" воды можно облегчить боль, поддержать себя и близкого человека в трудную минуту. Чтобы приготовить такую цветную воду нужно взять подставку (это может быть салфетка, бумага или картон) и поставит на нее стакан с чистой прозрачной водой нe менее, чем на 5 -10 минут. Вода воспримет и передаст вам энергию цвета. А пить ее следует не спеша, маленькими глотками.

  • Если вы с кем-то крупно поссорились, возбуждены, раздражены, выпейте несколько глотков воды из стакана, стоявшего на зеленой подставке.
  • После того как немного yспокоитесь, можете прибегнуть к помощи розового цвета: вы избавитесь от остатков напряженности. Так же работает и голубой цвет.
  • Бывает, после неприятного события или досадной неудачи никак не получается успокоиться: мучаете себя, вновь и вновь проигрывая в памяти, как все было. В таких случаях поможет лимонный цвет. Так же этот цвет поможет вам укрепить память.
  • При ежедневной работе на компьютере хорошо иметь рядом с собой стакан воды на бирюзовой подставке и почаще делать небольшие глотки, бирюзовый цвет защищает от радиоактивности и от теплового излучения компьютера. Эта вода способна сотворить чудо, она поможет вам подобрать без труда нужное слово на экзамене.
  • Если вы отправились в школу на контрольную, выпейте немного воды, приправленной энергией желтого цвета. Этот цвет способствует генерации блестящих идей, стимулирует духовную деятельность.
  • Если вы переутомились – то выпейте глоток воды из красного стакана. Вы сразу ощутите прилив энергии.
  • Воздействие оранжевого цвета зачастую становится первым толчком к позитивным переменам, а так же повышает аппетит.

6. Итоги урока.

7. Рефлексия.

Учащиеся продолжают фразу:

Сегодня на уроке я…

Больше всего мне сегодня запомнилось…

Самым интересным было…

8. Задание на дом:

п.66-72. Разобрать примеры решения задач на стр.207-208. Упр.10(1.4).

Федеральное государственное образовательное учреждение

высшего профессионального образования

"Сибирский федеральный университет"

Институт градостроительства, управления и региональной экономики

Кафедра Физики

Отчет по лабораторной работе

Измерение длины световой волны с помощью дифракционной решетки

Преподаватель

В.С Иванова

Студент ПЭ 07-04

К.Н. Дубинская

Красноярск 2009

Цель работы

Изучение дифракции света на одномерной решетке, измерение длины световой волны.

Краткое теоретическое введение

Одномерная дифракционная решетка представляет собой ряд прозрачных параллельных щелей одинаковой ширины а, разделенных равными непрозрачными промежутками b. Сумму размеров прозрачного и непрозрачного участков принято называть периодом, или постоянной решеткой d.

Период решетки связан с числом штрихов на одном миллиметре n соотношением

Общее число штрихов решетки N равно

где l – ширина решетки.

Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех N щелей, т.е. дифракционная решетка осуществляет многолучевую интерференцию когерентных дифрагированных пучков света, идущих от всех щелей.

Пусть на решетку падает параллельный пучок монохроматического света с длиной волны . За решеткой в результате дифракции лучи будут распространяться по разным направлениям. Так как щели находятся на одинаковых расстояниях друг от друга, то разности хода ∆ вторичных лучей, образующихся согласно принципу Гюйгенса – Френеля и идущих от соседних щелей в одном направлении , будут одинаковы в пределах всей решетки и равны

Если эта разность хода кратна целому числу длин волн, т.е.

то при интерференции в фокальной плоскости линзы возникнут главные максимумы. Здесь m = 0,1,2, … - порядок главных максимумов.

Главные максимумы расположены симметрично относительно центрального, или нулевого, с m = 0, соответствующего лучам света, прошедшим через решетку без отклонений (недифрагированным, = 0). Равенство (2) называют условием главных максимумов на решетке. Каждая щель также образует свою дифракционную картину. В тех направлениях, в которых одна щель дает минимумы, будут наблюдаться минимумы и от других щелей. Эти минимумы определяются условием

Положение главных максимумов зависит от длины волны λ. Поэтому при пропускании через решетку белого света все максимумы, кроме центрального (т = 0), разложатся в спектр, фиолетовая часть которого будет обращена к центру дифракционной картины, а красная - наружу. Это свойство дифракционной решетки используется для исследования спектрального состава света, т.е. дифракционная решетка может быть использована как спектральный прибор.

Обозначим расстояние между серединой нулевого максимума и максимумами 1,2, ... m- го порядков, соответственно, х 1 х 2 ... х т а расстояние между плоскостью дифракционной решетки и экраном -L. Тогда синус угла дифракции

Используя последнее соотношение, из условия главных максимумов можно определить λ любой линии спектра.

В экспериментальной установке имеются:

S- источник света, КЛ- коллиматорная линза, Щ- щель для ограничения размеров пучка света, ФЛ- фокусирующая линза, ДР- дифракционная решетка с периодом d = 0.01 мм, Э- экран для наблюдения дифракционной картины. Для работы в монохроматическом свете используются светофильтры.

Порядок выполнения работы

    Расположим детали установки по 1 оси в указанном порядке, закрепляем на экране лист бумаги.

    Включаем источник света S. Устанавливаем светофильтр белого цвета.

    Измеряем прикрепленной к установке линейкой расстояние L от решетки до экрана.

L 1 = 13.5см=0.135м, L 2 =20.5см=0.205м.

    Отмечаем на листе бумаги середины нулевого, первого и других максимумов вправо и влево от центра. С предельной точностью измерить расстояние х 1, х 2 .

    Рассчитаем длины волн, пропускаемых светофильтром.

    Найдем среднеарифметическое значение длины волны по формуле

    Рассчитаем абсолютную погрешность измерений по формуле

где n – число изменений, ɑ - доверительная вероятность измерения, t ɑ (n) – соответствующий коэффициент Стьюдента.

    Окончательный результат записываем в виде

    Сравниваем полученную длину волны с теоретическим значением. Записываем вывод по работе.

Ход работы

Порядок максимума

X m вправо от 0

X m влево от 0

Светофильтр - зеленый

5,3 * 10 -5 см

5,7 * 10 -5 см

6,9 * 10 -5 см