Болезни Военный билет Призыв

Лазерная локация луны. Большая энциклопедия нефти и газа

Принцип лазерной локации (ЛЛ) основан на том, что свет распространяется в вакууме прямолинейно и с постоянной скоростью. Испускается короткий лазерный импульс и засекатся время, лазерный луч отражается от лоцируемого объекта и возвращается назад, где его ловят при помощи телескопа и чувствительных фотодетекторов и определяют время между испусканием импульса и его возвращением. Зная скорость света, можно вычислить расстояние до объекта. Если импульс короткий и время между испусканием и приёмом отражённого сигнала измерено точно, то и расстояние до объекта можно вычислить с соответствующей точностью. Отдельно учитывается влияние атмосферы, которая искривляет луч (рефракция) и привносит задержку, но это уже тонкие детали.

Идеи о локации Луны высказывались давно, ещё в 20-х гг. XX века, когда ещё и лазеров-то не было. Едва только лазер был изобретён, тут же возникла идея применить уникальные свойства лазерного излучения для лазерной локации Луны (ЛЛЛ). Первые опыты по ЛЛЛ были проведены в 1962-63 гг. в США и СССР. Тогда ни о каких измерениях речи не шло, проверялась сама возможность осуществления такой локации. Опыты оказались вполне удачными, отражённый сигнал был уверенно зарегистрирован, хотя длительность импульса 1 мс не позволяла измерять расстояние точнее 150 км. В 1965-66 были проведены опыты с более короткими импульсами – была достигнута точность около 180 м. При этом точность была ограничена уже не столько длительностью импульса, сколько рельефом местности.

Потом была высказана идея – для повышения точности локации доставить на Луну уголковые отражатели (УО). Уголковые отражатели примечательны тем, что возвращают сигнал всегда строго в обратном направлении, а кроме того, сигнал не имеет размазывания по времени, обусловленного рельефом местности.

Утверждается, что на Луну были доставлены 5 уголковых отражателей – два на советских луноходах и три американскими астронавтами – «Аполлон-11», «Аполлон-14» и «Аполлон-15».

На этом занудности-банальности кончаются, а дальше начинаются волшебные сказки с невероятными чудесами и детективными тайнами!

Начнём с того, что УО, установленный на «Луноходе-1», неожиданно «потерялся»! Причём, на этот счёт есть два мнения. Ведущий научный сотрудник, зав. аспирантурой Пулковской обсерватории, к.ф.-м.н. Е.Ю.Алёшкина

в своей статье утверждает, что его УО вышел из строя.

Это произошло при движении в очень сложных условиях внутри одного из кратеров. На стенке этого кратера притаился еще один, вторичный, маленький. Это самое подлое на Луне. Чтобы выбраться из этого паршивого кратера оператор-водитель принял вместе с экипажем решение луноход сдать назад. А солнечная панель была откинута. И получилось так, что крышкой солнечной панели он въехал в стенку этого невидимого, ведь камеры смотрели только вперед, кратера. Он черпнул лунного грунта на солнечную панель. А после того, как выбрались, решили эту панель закрыть. Но лунная пыль такая противная, что ее так просто не стрясешь. За счет запыления солнечной батареи упал зарядный ток. а из-за того, что пыль стряслась на радиатор, нарушился тепловой режим. В итоге в этом злополучном кратере «Луноход-2» и остался. Все попытки спасти аппарат закончились ничем.

Со вторым история получилась глупая. Четыре месяца он уже находился на спутнике Земли. 9 мая я сел за штурвал . Мы угодили в кратер, навигационная система вышла из строя.

Как выбираться? Не раз мы уже попадали в подобные ситуации. Тогда просто закрывали солнечные батареи и выбирались. А тут - в группе управления новые люди. Они и приказали не закрывать и так выбираться. Мол, закроем, и не будет откачки тепла из лунохода, приборы перегреются.

Мы не послушались и попробовали выехать так. Зацепили лунный грунт. А лунная пыль такая липкая. А тут еще приказывают закрыть панель солнечной батареи - мол, пыль сама по себе и осыплется. Она и осыпалась - на внутреннюю панель, луноход перестал получать подзарядку солнечной энергией в необходимом объеме и постепенно обесточился. 11 мая сигнала от лунохода уже не было.

Эту информацию подтверждает... LRO! Вот изображение «Лунохода-2» с открытой крышкой, направленного на восток:

В обшем, второй луноход сейчас лоцировать бесполезно.

Рабочий диапазон углов для уголкового отражателя, установленного на луноходах, составляет ±10 градусов. Для того, чтобы можно было лоцировать УО, установленный на луноходе, с учётом лунной либрации величиной примерно 7 градусов,

луноход должен быть надлежащим образом ориентирован на Землю по азимуту (на субтерральную точку) и углу места с точностью 2-3 градуса .

UPD от 03.11.2013. Я созвонился с В.П.Долгополовым и уточнил размещение уголковых отражателей на корпусе лунохода - они расположены с наклоном строго вперёд по курсу, именно так, как изображено на фотографиях музейных макетов.

А теперь вспоминаем слова Довганя о том, что «Луноход-2» смотрит на восток, и пристально вглядываемся в карту:


Зелёными стрелками показана фактическая ориентация луноходов, жёлтыми - необходимая для успешной локации УО, установленных на луноходах. Субтерральная точка, которая находится в центре изображения, и на которую по азимуту должен быть ориентирован «Луноход-2», находится на юго-запад от «Лунохода-2», а «Луноход-2» повёрнут на восток (на мой взгляд, азимут составляет примерно 100-110 градусов) - в таком положении угол падения лоцирующего луча на УО примерно 70 градусов, угол совершенно запредельный для кварцевого УО, т.е. уголковый отражатель «Лунохода-2» абсолютно нефункционален. И астрономы его успешно лоцируют вот уже почти 40 лет??? Закрываю глаза и представляю, как фотоны с лихим пируэтом заныривают в уголковый отражатель развёрнутого задом наперёд «Лунохода-2», чтобы там отразиться и проделав обратный пируэт направиться к Земле... Шехерезада нервно курит в сторонке! Ей сказок хватило только на 1001 ночь.

Возникает закономерный вопрос - а что же они (астрономы) тогда лоцировали?

Более-менее подробно детали американского эксперимента описаны в документе Apollo 11 Preliminary Science Report . Подробности советских экспериментов по лазерной локации Луны, проводившихся в Крымской астрофизической обсерватории (КрАО) приведены во втором томе сборника «Передвижная лаборатория на Луне ЛУНОХОД-1» . Там же приведена формула вычисления величины ответного сигнала

и указан результат расчёта - 0,5 фотоэлектрона с одного импульса т.е. с двух импульсов лазера должен быть зарегистрирован примерно 1 фотоэлектрон.

Количество фотончиков, которые долетят до Луны, равно количеству выпущенных из лазера умножить на этот коэффициент прозрачности N M =К λ N t . Скажем, для КрАО он указывается в среднем 0,73. Для более высокогорных обсерваторий атмосфера прозрачнее. Препятствие в виде атмосферы встретится на пути фотончиков ещё раз, когда отражённые фотончики будут возвращаться на Землю - результат придётся ещё раз умножить на коэффициент прозрачности атмосферы К λ .

Луч, выпущенный из лазера, расходится. Тому есть две принципиальные причины. Первая - дифракционное расширение пучка. Оно определяется как отношение длины волны света к диаметру пучка. Следовательно, чтобы его снизить, нужно увеличивать диаметр пучка. Для этого луч лазера расширяют и пропускают через тот же телескоп, которым потом будут ловить ответные фотоны. Переключение осуществляется перекидным зеркалом - учитывая, что ответные фотоны прилетят только через 2,5 секунды, это совсем несложно обеспечить. Для телескопа с выходным диаметром 3 метра дифракционное расширение пучка составляет всего 0,05" (угловой секунды). Гораздо сильнее вторая причина - турбулентность в атмосфере. Она обеспечивает расходимость пучка на уровне примерно 1". Эта причина принципиально неустранима. Единственный способ борьбы с нею - выносить телескоп за пределы атмосферы.

Итак, луч на выходе из атмосферы имеет расходимость θ. Для малых углов θ можно пользоваться приближением θ = tg(θ) = sin(θ). Следовательно, луч осветит пятно диаметром D = Rθ, где R - расстояние до Луны (в среднем 384 000 км, максимум 405 696 км, минимум 363 104 км). Луч с расходимостью 1" осветит на Луне пятно диаметром примерно 1,9 км. Площадь пятна, как известно из курса геометрии, равна .

Количество света, попавшего в телескоп в результате отражения от УО или лунного грунта, пропорционально площади телескопа. Для телескопа диаметром d площадь равна .

В случае отражения от УО далеко не все фотончики, попавшие на Луну, попадут на УО и отразятся. Количество фотончиков, отражённых от УО, пропорционально площади отражателя S 0 и его коэффициенту отражения К 0 . (Это при условии, что вообще задели УО хотя бы краешком пятна.) Для отражателей французского изготовления общая площадь равна 640 см 2 с коэффициентом отражения 0.9, но надо помнить, что для призм с треугольной лицевой гранью рабочая площадь составляет 2/3 от общей. Американские были изготовлены из неметаллизированных кварцевых призм и имели коэффициент отражения втрое меньше, зато большую площадь - УО, якобы доставленные экспедициями экспедициями «Аполлон-11» и «Аполлон-14» составляет 0.1134 м 2 , «Аполлон-15» - 0.34 м 2 (NASA-CR-113609). В результате количество фотончиков, которые отразятся от УО, составит .

Вообще-то распределение фотончиков по площади пятна существенно неравномерное :

Однако при суммировании результатов по несколькми лазерным «выстрелам» с целью выделить полезный сигнал на фоне шумов эта неравномерность сгладится.

Далеко не все фотончики, отразившиеся от УО, попадут в телескоп. Отражённый луч имеет расходимость θ" и осветит на Земле пятно диаметром L=Rθ". Площадь пятна на Земле, по которому распределится отражённый пучок, равна . Из этого пятна в телескоп попадёт (если попадёт, что тоже надо проверить) количество фотонов . Для французских УО, установленных на луноходах, расходимость отражённого пучка указана 6" (для длины волны рубинового лазера 694,3 нм), что даёт диаметр отражённого пятна на Земле 11 км, американские были сделаны из триппель-призм меньшего размера, а поэтому имели чуть большую расходимость 8,6" (тоже для длины волны рубинового лазера 694,3 нм), диаметр пятна на Земле будет около 16 км. Вообще-то расходимость отражённого пучка определяется дифракцией , т.е. отношением длины волны лазера к апертуре одного элемента УО θ" = 2.44 λ/D RR . Поэтому применение зелёного лазера с длиной волны 532 нм вполне может быть оправдано - несмотря на большее поглощение и рассеивание зелёного света в земной атмосфере по сравнению с красным и инфракрасным.

Как видим, получили практически ту же формулу, которая была указана в работе Кокурина и др., только в той были добавлены ещё и коэффициенты прохождения в передающем и приёмном тракте, эффективность квантового преобразования фотоприёмника (сколько фотонов из числа попавших в телескоп будет зафиксировано в виде электрического сигнала). Ещё не хватает зависимости эффективной площади отражения от угла падения, т.е. формулы выведены из предположения о близком к нормальному углу падения лоцирующего луча на УО. На самом деле зависимость вот такая:

В случае отражения от грунта большая часть света поглотится, а оставшаяся рассеется по закону, близкому к ламбертовскому (равномерно во все стороны), в телесном угле 2π стерадиан. На самом деле отражение от Луны несколько хитрее - у лунного грунта присутствуют ярко выраженные эффекты обратного рассеяния и оппозиционный эффект, которые приводят к тому, что строго в обратном направлении лунный грунт отражает в 2-3 раза больше, чем обычная ламбертовская (матовая) поверхность. Грубо говоря, вся поверхность Луны работает как уголковый отражатель, хотя и не очень хороший.

Альбедо Луны в среднем считается равным 0,07, хотя в разных местах видимой поверхности Луны альбедо имеет величину от 0,05 до 0,16. (UPD: По свеженьким данным , полученным лазерным альтиметром LOLA , при отражении строго назад альбедо может достигать аж 0.33, а в некоторых постоянно тёмных кратерах на южном полюсе даже 0.35!)

Проверяем, какая часть освещённого пятна попадёт в телескоп. Поле зрения телескопа определяется его максимальным увеличением, которое определяется его диаметром. Расчёт для телескопа КрАО диаметром 2.64 м даёт поле зрения 22", в работе приводится величина 15" - величины близкие. Размер освещаемого пятна обычно меньше, так что всё пятно оказывается в поле зрения телескопа.

Количество фотонов, отражённых от лунного грунта и попавших в телескоп, равно .

Отсюда выводим формулу оценки эффективности применения уголкового отражателя как отношение блеска УО к блеску лунного грунта . Беглого взгляда на эту формулу достаточно, чтобы увидеть, что для повышения уровня ответного сигнала от УО по сравнению с отражением от грунта, необходимо снижать угол расходимости лоцирующего лазерного луча - зависимость квадратичная.

(UPD: "Луноход-1" хоть и стоит неудачно, но его таки видно. Расчётный угол падения на его УО - 31,5 градус от нормали (без учёта либрации), при таком угле ЭПР уменьшается на порядок и усиливается расползание импульсного отклика из-за неперпендикулярности панели УО к лоцирующему лучу. А вот для "Лунохода-2" расчётный угол падения - примерно 70 градусов от нормали - угол совершенно запредельный даже для кварцевого УО. Отражение от его УО невозможно. Никакая либрация не поможет.)

От УО в телескоп должно попадать полторы сотни фотончиков, от грунта штук 5, а Алёшкина пишет про "1 фотон на 10-20 выстрелов". Это что же такое получается? Регистрируется фотонов даже меньше, чем должно было быть от грунта!

А так и должно быть! Вспоминаем, что при локации в стороне от субтерральной точки поверхность Луны существенно неперпендикулярна лучу, стало быть, отражённый сигнал размазывается во времени,

а временной фильтр (temporal filter) вырезает из него только те фотончики, которые соответствуют ожидаемому результату.


Если же вспомнить, что поверхность Луны не является идеально гладкой, а на ней встречаются горы, кратеры, то наличие стенки кратера или склона горы, обращённого к Земле, на который лоцирующий луч лазера падает перпендикулярно, даст точно такой же компактный по времени сигнал, как и отражённый от УО, но меньшей интенсивности.

Если мы ослабим расчётный сигнал от грунта как соотношение площади участка лунной поверхности, перпендикулярной к лоцирующему лучу, к площади сечения лоцирующего луча, мы получим полное соответствие экспериментальных результатов расчёту для гипотезы с отражением от грунта. Учитывая, что диаметр лоцирующего луча на Луне 2-7 км, то горы или стенки кратера высотой 2-3 км уже достаточно, а на Луне таких гор и кратеров хватает. Причём, даже не требуется идеально плоской поверхности. Как следует из расчёта, при альбедо 0.16 (а горы на Луне светлее морей) расчётное количество фотончиков от грунта превышает экспериментальные значения примерно в 3 раза, т.е. для совпадения с расчётом достаточно, чтобы только треть освещённого пятна попадало на поверхность, лежащую на ожидаемой плоскости. Остальные 2/3 могут иметь какой угодно рельеф.


Красной линией выделена условная поверхность, отражённый сигнал от которой пройдёт через временной фильтр. В идеале это должен быть фрагмент сферы с радиусом 380 000 км и с центром примерно в центре Земли. Такой фрагмент сферы мало отличается от плоскости.

Гипотеза с отражением сигнала от УО не подтверждается опубликованными экспериментальными данными - ошибка не на проценты, даже не в разы, а на порядки.

В общем, мне всё ясно с нашей прикладной астрономией -

Лазерная локация

Лазерной локацией в зарубежной печати называют область оптикоэлектроники, занимающуюся обнаружением и определением местоположения различных объектов при помощи электромагнитных волн оптического диапазона, излучаемых лазерами. Объектами лазерной локации могут стать танки, корабли, ракеты, спутники, промышленные и вооруженные сооружения. Принципиально лазерная локация осуществляется активным методом.

В основе лазерной локации, так же как и в радиолокации лежат три основных свойства электромагнитных волн:

1. Способность отражаться от объектов. Цель и фон, на котором она расположена, по-разному отражают упавшее на них излучение.

Лазерное излучение отражается от всех предметов: металлических и неметаллических, от леса, пашни, воды. Более того, оно отражается от любых объектов, размеры которых меньше длины волны, лучше, чем радиоволны. Это хорошо известно из основной закономерности отражения, по которой следует, что чем короче длина волны, тем лучше она отражается. Мощность отраженного в этом случае излучения обратно пропорциональна длине волны в четвертой степени. Лазерному локатору принципиально присуща и большая обнаружительная способность, чем радиолокатору - чем короче волна, тем она выше. Поэтому-то и проявлялась по мере развития радиолокации тенденция к перехода от длинных волн к более коротким. Однако изготовление генераторов радиодиапазона, излучающих сверх короткие радиоволны становилось все труднее и труднее, а затем вовсе и зашло в тупик. Создание лазеров открыло новые перспективы в технике локации.

2. Способность распространяться прямолинейно. Использование узконаправленного лазерного луча, которым проводится просмотр пространства, позволяет определить направление на объект (пеленг цели) Это направление находят по расположению оси оптической системы, формирующей лазерное излучение. Чем уже луч, тем с большей точностью может быть определен пеленг.

Простые расчеты показывают - чтобы получить коэффициент направленности около 1.5, при использовании радиоволн сантиметрового диапазона, нужно иметь антенну диаметром около 10м. Такую антенну трудно поставить на танк, а тем более на летательный аппарат. Она громоздка и нетранспортабельна. Нужно использовать более короткие волны.

Угловой раствор луча лазера, изготовленного с помощью твердотельного активного вещества, как известно составляет всего 1.0.1.5 градуса и при этом без дополнительных оптических систем.

Следовательно, габариты лазерного локатора могут быть значительно меньше, чем аналогичного радиолокатора. Использование же незначительных по габаритам оптических систем позволит сузить луч лазера до нескольких угловых минут, если в этом возникнет необходимость.

3. Способность лазерного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта. Так, при импульсном методе дальнометрирования используется следующее соотношение: L = ct/2, где L - расстояние до объекта, с - скорость распространения излучения, t - время прохождения импульса до цели и обратно.

Рассмотрение этого соотношения показывает, что потенциальная точность измерения дальности определяется точностью измерения времени прохождения импульса энергии до объекта и обратно. Совершенно ясно, что чем короче импульс, тем лучше.

Какими же параметрами принято характеризовать локатор? Каковы его паспортные данные? Рассмотрим некоторые из них.

Прежде всего, зона действия. Под ней понимают область пространства, в которой ведется наблюдение. Ее границы обусловлены максимальной и минимальной дальностями действия и пределами обзора по углу места и азимуту. Эти размеры определяются назначением военного лазерного локатора.

Другим параметром является время обзора. Под ним понимается время, в течении которого лазерный луч производит однократный обзор заданного объема пространства.

Следующим параметром локатора является определяемые координаты.

Они зависят от назначения локатора. Если он предназначен для определения местонахождения наземных и подводных объектов, то достаточно измерять две координаты: дальность и азимут. При наблюдении за воздушными объектами нужны три координаты. Эти координаты следует определять с заданной точностью, которая зависит от систематических и случайных ошибок. Будем пользоваться таким понятием как разрешающая способность. Под разрешающей способностью понимается возможность раздельного определения координат близко расположенных целей.

Каждой координате соответствует своя разрешающая способность. Кроме того, используется такая характеристика, как помехозащищенность. Это способность лазерного локатора работать в условиях естественных и искусственных помех. И весьма важной характеристикой локатора является надежность. Это свойство локатора сохранять свои характеристики в установленных пределах в заданных условиях эксплуатации.

Способ включает сканирование пространства последовательностью лазерных сигналов, генерируемых лазерным локатором, регистрацию рассеянных и/или отраженных объектом лазерных сигналов, определение расстояния до объекта и углового положения объекта. Расстояние до объекта определяется по времени задержки между излученными и принятыми сигналами. Угловое положение объекта определяется по направлению соответствующего излученного сигнала. В качестве генерируемого лазерным локатором сигнала используют цуг из по меньшей мере двух импульсов с изменяемым промежутком времени между импульсами и/или соотношением амплитуд импульсов в каждом цуге. Технический результат - увеличение производительности лазерной локации.

Заявляемое техническое решение относится к способам определения местоположения объектов, точнее к способам лазерной локации, и представляет интерес для лазерной локации космических объектов, поверхности Земли, лазерной геодезии, а также может быть использовано для определения скорости движущегося объекта.

Известен способ определения расстояния до удаленного объекта, включающий облучение его лазерным сигналом, прием отраженного или рассеянного объектом сигнала и определения времени задержки ΔT между моментами излучения зондирующего и приема отраженного или рассеянного объектом сигналов, при этом расстояние до объекта L определяется простой формулой L=cΔT/2, где c - скорость света .

Достоинством известного способа является возможность определять расстояние до удаленных, в том числе на космические расстояния, объектов с высокой точностью, которая фактически определяется быстродействием приемной системы и возможностью локатора генерировать короткие световые импульсы (прежде всего, с коротким передним фронтом). При давно достигнутом уровне быстродействия ~0,1 нс расстояние может быть определено с точностью несколько сантиметров, именно такая точность достигнута, например, при лазерной локации Луны.

Недостатком известного способа является невозможность с достаточной точностью определить направление на лоцируемый объект, обычно это направление известно заранее (как в случае, например, лазерной локации Луны было точно известно положение уголковых отражателей, возвращавших сигнал локатора). В другом варианте реализации известного способа генерируется мощный лазерный импульс, которым сразу «засвечивается» значительный участок пространства (значительный телесный угол), в котором лоцируемый объект находится заведомо, то есть расходимость используемого лазерного излучения достаточна велика. Это позволяет определить расстояние до объекта, однако не его положение в пространстве. Необходимость использования высокоэнергетичных лазерных локаторов является значительным недостатком известного способа, поскольку для этого требуется достаточно мощная и относительно громоздкая лазерная установка. Очевидно, что если зондирующее излучение может иметь в 10 раз меньшую расходимость, то энергия лазерного импульса может быть снижена, минимум, в 100 раз (если расстояние до объекта достаточно велико).

Наиболее близким техническим решением (прототипом) является способ лазерной локации, включающий сканирование пространства последовательностью лазерных сигналов, генерируемых лазерным локатором, регистрацию рассеянного и/или отраженного объектом лазерного сигнала и определение расстояния до объекта по времени задержки между излученным и принятым сигналами, а углового положения объекта по направлению излученного сигнала . В известном способе сканирующее устройство осуществляет программируемый поворот в пространстве зондирующего лазерного луча со сравнительно малой расходимостью. Использование известного способа позволяет определить не только расстояние до объекта, но и его угловое положение в пространстве, а двукратное применение соответствующей процедуры (то есть определение положения объекта в два различных момента времени) позволяет найти скорость объекта.

Основным недостатком известного способа является его сравнительно низкая производительность при определении положения объекта с достаточно высокой точностью. В самом деле, следующий лазерный сигнал излучается после того, как зафиксирован «возвращенный объектом» предшествующий сигнал или когда можно гарантировать, что в зондируемой области пространства искомого объекта нет (иначе возможно «перепутать», какому излученному сигналу соответствует зарегистрированный сигнал). Сформулированное условие ограничивает частоту следования лазерных сигналов f на предельном уровне fmax=c/2L, и, соответственно, время определения положения (поиска) объекта может быть велико. Например, если объект может быть расположен на расстоянии до 300 км, то максимальная частота работы лазерного локатора составит 500 Гц. Если известно, что объект находится в области с поперечным размером 10×10 км, а требуется определить его положение с точностью 100×100 метров (требуемая расходимость лазерного излучения составляет всего лишь ~0,3 мрад и соответствует апертуре телескопа менее 1 см для дифракционного качества излучения и длины волны зондирующего излучения ~1 мкм, угловая точность сканирующего устройства может быть на порядок выше), то всего может потребоваться 10000 лазерных импульсов и, соответственно, около 20 секунд. Заметим, что за такое время объект может выйти за пределы исследуемой области (для этого достаточно поперечной скорости ~500 м/с).

Указанная причина ограничивает, в том числе рабочую частоту и производительность лазерных локаторов, применяемых для лазерного зондирования земной поверхности, поскольку каждый следующий зондирующий импульс может быть излучен только после того, как зарегистрирован предыдущий «отраженный» импульс . В результате стоимость, например, лазерных геодезии и топографии высокого разрешения оказывается достаточно высокой.

Техническим результатом изобретения является увеличение производительности лазерной локации.

Технический результат достигается тем, что в способе лазерной локации, включающем сканирование пространства последовательностью лазерных сигналов, генерируемых лазерным локатором, регистрацию рассеянных и/или отраженных объектом лазерных сигналов, определение расстояния до объекта по времени задержки между излученными и принятыми сигналами, а углового положения объекта - по направлению соответствующего излученного сигнала, в качестве генерируемого лазерным локатором сигнала используют цуг из по меньшей мере двух импульсов с изменяемыми промежутками времени между импульсами и/или соотношением амплитуд импульсов в каждом цуге.

Под амплитудой импульса, в зависимости от соотношения между длительностью отдельного импульса τи и временным разрешением системы регистрации τp, подразумевается энергия импульса (если τи<τр) или его мощность (если τи>τр).

Применение заявляемого технического решения позволяет фактически «промаркировать» излучаемые лазерным локатором сигналы и установить взаимно однозначное соответствие между излученным и принятым сигналами. В результате даже при значительно более высокой, чем в прототипе, частоте следования генерируемых локатором лазерных сигналов возможно определить, какому излученному сигналу соответствует принятый, и, соответственно, используя только быстродействующий фотоприемник, одновременно определить расстояние до объекта (по времени задержки) и угловое положение объекта (по направлению, в котором излучался тот сигнал, который в дальнейшем был принят).

Реализация заявляемого технического решения для описанного выше примера локализации объекта, находящегося на расстоянии ~300 км, в области с поперечным размером 100×100 метров может быть, например, следующей. Лазерный локатор на частоте 100 кГц генерирует последовательность из цугов парных («сдвоенных») коротких (~1 нс) импульсов с изменяемым промежутком времени между ними, например: в первой паре второй импульс следует через 20 нс после первого, во второй паре - через 40 нс, в сотом цуге импульсов промежуток между импульсами составит 2 мкс и т.д.; после генерации 200 сдвоенных импульсов (промежуток времени между последними импульсами в паре составит 4 мкс) описанная выше последовательность цугов повторяется. Здесь частота 100 кГц означает, что промежуток времени между первыми лазерными импульсами в последовательно генерируемых цугах составляет 10 мкс. Таким образом, по промежутку времени между импульсами в цуге (при достаточном разрешении системы регистрации) возможно определить «номер» и момент генерации именно этого цуга. Один и тот же промежуток времени между двумя импульсами в цуге повторяется через 2 мс (10 мкс × 200), что как раз соответствует максимальному расстоянию до объекта 300 км. То есть при регистрации возвращаемого объектом сигнала возможно «перепутать» только расстояние L и L+300 (L - расстояние до объекта в километрах), что, очевидно, не произойдет при L≤300 км, поскольку амплитуда принимаемого сигнала будет отличаться многократно.

При той же самой, как в прототипе, расходимости излучения 0,3 мрад (пространственном «разрешении» 100 метров) время просмотра области пространства 10×10 км с расстояния ~300 км составит 0,1 с и уменьшится в 200 раз по сравнению с прототипом. Заметим, что необходимая для работы на указанной частоте 100 кГц угловая скорость поворота луча ~30 рад/с современными сканирующими устройствами обеспечивается с кратным запасом. Кроме того, при предварительной локализации объекта в области, например, 1×1 км время фиксации объекта может быть дополнительно уменьшено в 10 раз (или улучшено пространственное разрешение).

Если объект предположительно находится на большем расстоянии или необходима более высокая частота сканирования (меньшее время просмотра пространства), то период генерируемой последовательности цугов может быть, например, утроен следующим образом: вначале генерируется описанная выше последовательность цугов с одинаковой амплитудой обоих импульсов в каждом цуге, затем генерируется последовательность из 200 цугов с аналогично изменяемым промежутком времени между импульсами в цуге, но с амплитудой первого импульса, например, втрое большей, чем амплитуда второго импульса, затем генерируется последовательность из 200 цугов с обратным соотношением между амплитудами генерируемых импульсов в цуге. При использовании для «маркировки» излучаемых лазерным локатором сигналов цугов, состоящих, например, из трех импульсов, генерируемая последовательность из неповторяемых цугов может быть еще значительно длиннее.

В заявляемом техническом решении существенно используется тот факт, что в каждом конкретном цуге промежуток времени между входящими в цуг импульсами мал и не превышает несколько микросекунд. Это означает, что при любой реальной скорости лоцируемого объекта, если на него попадает один импульс из цуга, то попадут и все остальные импульсы из этого цуга. Действительно, при максимальном промежутке времени между импульсами в одном цуге 4 мкс и поперечной скорости объекта 8 км/с (первая космическая скорость) перемещение объекта (и приемника сигнала) между импульсами составит всего ~3 см. Это также означает, что все импульсы из одного цуга распространяются фактически по одной и той же траектории и потери при прохождении светом этой траектории с хорошей точностью одинаковы для всех импульсов, составляющих отдельный цуг; следовательно, соотношение амплитуд принятых импульсов в цуге будет соответствовать соотношению амплитуд излученных импульсов в этом цуге.

Аналогично возможно кратное увеличение производительности при лазерном зондировании Земли не только с «космических» расстояний (со спутников), но и при аэросъемке (с самолетов). Так, при высоте съемки (высоте полета самолета) 1,5 км частота следования зондирующих сигналов не превышает 100 кГц и может быть увеличена до 500-700 кГц (и выше) с использованием заявляемого способа. В этом случае взаимное перемещение объекта и приемника сигнала в рамках одного цуга импульсов не превысит ~0,2 мм (максимальный промежуток времени между импульсами в одном цуге не больше 1 мкс, а относительная скорость объекта и приемника ≤200 м/с).

Генерирование лазерным локатором последовательности цугов импульсов согласно заявляемому техническому решению может быть реализовано различными средствами, например системой генератор-усилитель, когда генератор излучает короткие импульсы на максимальной требуемой частоте (в приведенном выше примере на частоте 50 МГц, соответствующей временному интервалу 20 нс), а система управления «вырезает» требуемые для усиления импульсы, или при использовании двух (или более) соответствующим образом синхронизованных лазеров. Аналогично, пространственное сканирование может быть реализовано различными методами, однако конкретная реализация заявляемого способа лазерной локации не является предметом настоящей заявки на патент.

Таким образом, применение заявляемого технического решения позволяет многократно увеличить производительность лазерной локации и определять не только расстояние до объекта, но и направление на него (то есть угловое положение объекта) с использованием высокочувствительных и быстродействующих фотоприемников вообще без использования приемников излучения с пространственным разрешением типа ПЗС-матриц - как правило, заметно менее чувствительных и с большим уровнем шумов, а также обладающих сравнительно низким быстродействием . Заявляемый способ лазерной локации дает возможность использовать компактные маломощные лазерные локаторы, регистрировать сигнал на дневном фоне. Это позволяет сделать вывод о том, что заявляемое техническое решение удовлетворяет критериям «новизна» и «существенные отличия».

Литература

1. Смирнов В.А. Введение в оптическую радиоэлектронику. М.: Советское радио, 1973. - 189 с.

2. Матвеев И.Н., Протопопов В.В. и др. Лазерная локация. М.: Машиностроение, 1984. - 272 с. (прототип).

3. Данилин И.М., Медведев Е.М., Мельников С.Р. Лазерная локация Земли и леса: учебное пособие. - Красноярск: Институт леса им. В.Н.Сукачева СО РАН, 2005. - 182 с.

4. Патент RU 2352959, МПК: G01S 17/06, 20.04.2009.

Способ лазерной локации, включающий сканирование пространства последовательностью лазерных сигналов, генерируемых лазерным локатором, регистрацию рассеянных и/или отраженных объектом лазерных сигналов, определение расстояния до объекта по времени задержки между излученными и принятыми сигналами, а углового положения объекта - по направлению соответствующего излученного сигнала, отличающийся тем, что в качестве генерируемого лазерным локатором сигнала используют цуг из по меньшей мере двух импульсов с изменяемым промежутком времени между импульсами и/или соотношением амплитуд импульсов в каждом цуге.

Похожие патенты:

Изобретение относится к аппаратуре измерения расстояний и может быть использовано, например, для определения расстояния от измерительного прибора до поверхности стены, потолка помещения или до предмета (объекта) внутри или вне помещения.

Изобретение относится к оптико-электронному приборостроению. Окружающее пространство сканируют в горизонтальной плоскости и выбирают видеокадр с объектом, до которого требуется измерить расстояние. Вертикальную и горизонтальную координаты изображения объекта измеряют относительно координат начала видеокадра, при этом горизонтальную координату объекта вычисляют суммированием координаты начала выбранного видеокадра со значением горизонтальной координаты в видеокадре. Визирную ось лазерного дальномера устанавливают по измеренной вертикальной координате объекта. При следующем цикле сканирования проводят замер дальности до объекта в момент прохождения визирной оси лазерного дальномера по вычисленной при предыдущем цикле сканирования горизонтальной координате объекта. Устройство, реализующее способ, включает оптико-электронный модуль на сканирующей платформе с вращением вокруг вертикальной оси, снабженной приводом и датчиком углового положения. Лазерный дальномер размещают на своей одноосной платформе с возможностью ее поворота в вертикальной плоскости и снабженной приводом и датчиком углового положения. Технический результат - обеспечение возможности измерения дальности до объекта лазерным дальномером при непрерывном сканировании с большими скоростями окружающего пространства, в том числе и кругового. 2 н.п. ф-лы, 2 ил.

Способ увеличения информативности и производительности лазерной локации включает в себя сканирование пространства последовательностью лазерных сигналов, генерируемых лазерным локатором, регистрацию рассеянных и/или отраженных объектом лазерных сигналов, определение расстояния до объекта по времени задержки между излученными и принятыми сигналами. Угловое положение объекта определяют по направлению соответствующего излученного сигнала. При этом в качестве сканирующего лазерного излучения используют последовательность лазерных импульсов, различающихся по длине волны, поступающих на сканирующее устройство. Лазерные импульсы разделяют по длинам волн посредством селектора длин волн. Технический результат заключается в повышении производительности и информативности лазерного радара. 7 з.п. ф-лы, 3 ил.

Способ лазерной локации

Лазерная локация

Лазерной локацией в зарубежной печати называют область оптикоэлектроники, занимающуюся обнаружением и определением местоположения различных объектов при помощи электромагнитных волн оптического диапазона, излучаемых лазерами. Объектами лазерной локации могут стать танки, корабли, ракеты, спутники, промышленные и вооруженные сооружения. Принципиально лазерная локация осуществляется активным методом.

В основе лазерной локации, так же как и в радиолокации лежат три основных свойства электромагнитных волн:

1. Способность отражаться от объектов. Цель и фон, на котором она расположена, по-разному отражают упавшее на них излучение. Лазерное излучение отражается от всех предметов: металлических и неметаллических, от леса, пашни, воды. Более того, оно отражается от любых объектов, размеры которых меньше длины волны, лучше, чем радиоволны. Это хорошо известно из основной закономерности отражения, по которой следует, что чем короче длина волны, тем лучше она отражается. Мощность отраженнного в этом случае излучения обратно пропорциональна длине волны в четвертой степени. Лазерному локатору принципиально присуща и большая обнаружительная способность, чем радиолокатору - чем короче волна, тем она выше. Поэтому-то и проявлялась по мере развития радиолокации тенденция к перехода от длинных волн к более коротким. Однако изготовление генераторов радиодиапазона, излучающих сверх короткие радиоволны становилось все труднее и труднее, а затем вовсе и зашло в тупик. Создание лазеров открыло новые перспективы в технике локации.

2. Способность распространяться прямолинейно. Использование узконаправленного лазерного луча, которым проводится просмотр пространства, позволяет определить направление на объект(пеленг цели) Это направление находят по расположению оси оптической системы, формирующей лазерное излучение. Чем уже луч, тем с большей точностью может быть определен пеленг.

Простые расчеты показывают - чтобы получить коэффициент направленности около 1.5, при использовании радиоволн сантиметрового диапазона, нужно иметь антенну диаметром около 10м. Такую антенну трудно поставить на танк, а тем более на летательный аппарат. Она громоздка и нетранспортабельна. Нужно использовать более короткие волны.

Угловой раствор луча лазера, изготовленного с помощью твердотельного активного вещества, как известно составляет всего 1.0 ... 1.5 градуса и при этом без дополнительных оптических систем. Следовательно габариты лазерного локатора могут быть значительно меньше, чем аналогичного радиолокатора. Использование же незначительных по габаритам оптических систем позволит сузить луч лазера до нескольких угловых минут, если в этом возникнет необходимость.

3. Способность лазерного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта. Так, при импульсном методе дальнометрирования используется следующее соотношение:

Где L - расстояние до обькта, с - скорость распространения излучения, t - время прохождения импульса до цели и обратно.

Рассмотрение этого соотношения показывает, что потенциальная точность измерения дальности определяется точностью измерения времени прохождения импульса энергии до объекта и обратно. Совершенно ясно, что чем короче импульс, тем лучше.

Какими же параметрами принято характеризовать локатор? Каковы его паспортные данные? Рассмотрим некоторые из них.

Прежде всего зона действия. Под ней понимают область пространства, в которой ведется наблюдение. Ее границы обусловлены максимальной и минимальной дальностями действия и пределами обзора по углу места и азимуту. Эти размеры определяются назначением военного лазерного локатора.

Другим параметром является время обзора. Под ним понимается время, в течении которого лазерный луч производит однократный обзор заданного объема пространства.

Следующим параметром локатора является определяемые координаты. Они зависят от назначения локатора. Если он предназначен для определения местонахождения наземных и подводных объектов, то достаточно измерять две координаты: дальность и азимут. При наблюдении за воздушными объектами нужны три координаты. Эти координаты следует определять с заданной точностью, которая зависит от систематических и случайных ошибок. Будем пользоваться таким понятием как разрешающая способность. Под разрешающей способностью понимается возможность раздельного определения координат близко расположенных целей. Каждой координате соответствует своя разрешающая способность. Кроме того, используется такая характеристика, как помехозащищенность. Это способность лазерного локатора работать в условиях естественных и искусственных помех. И весьма важной характеристикой локатора является надежность. Это свойство локатора сохранять свои характеристики в установленных пределах в заданных условиях эксплуатации.


Осенью 1965 г. группа советских ученых выполнила уникальный эксперимент: определила расстояние до Луны с точностью до 200 м.

Ученые использовали лазер на рубине, генерировавший гигантские импульсы длительностью 5 10“8 с. Для посылки лазерных импульсов к Луне и последующего приема импульсов, отраженных лунной поверхностью, применялся оптический телескоп Крымской обсерватории с диаметром главного зеркала 260 см. В 1969 г. на поверхность Луны высадились американские астронавты с «Аполлона-11», а в 1970 г. на лунную поверхность опустился управляемый с Земли советский космический аппарат «Луноход-1». Астронавты и луноход доставили на Луну специальные светоотража- тели-катафоты. Катафот, или, иначе, уголковый отражатель предназначен для того, чтобы возвращать падающий на него световой луч назад-в направлении, строго параллельном первоначальному направлению луча. Такой способностью обладает, например, уголок, образованный тремя плоскими зеркалами, ориентированными под прямыми углами друг к другу. Используя отражение посылаемых с Земли коротких лазерных импульсов от уголковых отражателей, находящихся на лунной поверхности, ученые смогли определить расстояние от Земли до Луны (точнее говоря, от зеркала земного телескопа до лунного отражателя) с погрешностью, не превышающей нескольких десятков сантиметров. Чтобы представить себе, насколько высока такая точность, надо вспомнить, что Луна находится на расстоянии 380000 км от

Установленный на поверхности Луны лазерный отражатель представляет собой квадрат с длиной стороны 45 см, состоящий из 100 отдельных уголковых отражателей. Предусмотрена возможность изменения ориентации плоскости квадрата - с учетом местоположения отражателя на лунной поверхности
Земли. Погрешность измерения дальности, равная 40 см, в 109 раз меньше указанного расстояния!
Но зачем измерять расстояние до Луны со столь огромной точностью? Неужели это делается только из «спортивного интереса»? Конечно, нет. Такие измерения выполняют не для того, чтобы поточнее узнать расстояние от земного телескопа до лунного отражателя, а для того, чтобы поточнее определить изменения этого расстояния в течение некоторого промежутка времени, например в течение недели, месяца, года. Исследуя графики, описывающие изменение расстояния со временем, ученые получают информацию для ответа на ряд вопросов, имеющих большую научную важность: как распределена масса в недрах Луны? С какой скоростью сближаются или расходятся земные континенты? Как изменяется со временем положение магнитных полюсов Земли?
Вот поэтому и существуют в мире несколько десятков лазерно-локационных систем космического назна
чения. Они осуществляют локацию Луны, а также искусственных спутников Земли геодезического назначения. В качестве примера укажем лазерно-локационную систему Физического института имени П. Н. Лебедева АН СССР, предназначенную для локации Луны. Лазер на рубине генерирует гигантские световые импульсы длительностью 10“8 с и с энергией порядка 0,1 Дж. Импульсы проходят через квантовый усилитель, после чего их энергия увеличивается до 3 Дж. Затем световые импульсы попадают на 260-см зеркало телескопа и отправляются к Луне. Погрешность измерения расстояния до Луны составляет в данном случае 90 см. За счет сокращения длительности импульса до * 10“ 9 с погрешность уменьшена до 25 см. В качестве еще одного примера отметим лазерно-локационную систему Космического центра в США, предназначенную для локации искусственных спутников Земли. В ней используется импульсный рубиновый лазер, генерирующий импульсы длительностью 4* 10" 9 с и с энергией 0,25 Дж. Погрешность измерения расстояния составляет 8 см.
Упрощенная оптическая схема лазерно-локационной системы Физического института АН СССР: 7 - лазер на рубине, 2 - квантовый усилитель света, 3 - главное зеркало телескопа диаметром 260 см

Лазерные локаторы устанавливают не только на земной поверхности, но и на летательных аппаратах. Представим себе, что происходит сближение двух космических кораблей и предстоит их автоматическая стыковка. Необходимо точно контролировать взаимное положение кораблей, точно измерять расстояние между ними. Для этого на одном из кораблей устанавливают лазерный локатор. В качестве примера рассмотрим локатор на основе С02-лазера, генерирующего регулярную последовательность световых импульсов с частотой следования 50 кГц. Лазерный луч сканируется построчно (подобно электронному лучу в телевизионной трубке) в пределах телесного угла 5 х 5°; время обзора лучом этого сектора пространства составляет 10 с. Лазерный локатор осуществляет поиск и опознавание стыкуемого аппарата в указанном секторе пространства, непрерывное измерение его угловых координат и дальности, обеспечивает точное маневрирование - вплоть до момента стыковки. Всеми операциями локатора управляет бортовая ЭВМ.
Лазерные локаторы сегодня используют как в космонавтике, так и в авиации. В частности, они могут выполнять роль точных измерителей высоты. Заметим, что лазерный высотомер применялся на космических кораблях «Аполлон» для картографирования поверхности Луны.
Основное назначение лазерных локаторов-такое же, как и радиолокаторов: обнаружение и опознавание удаленных от наблюдателя объектов, слежение за перемещением этих объектов, получение информации о характере объектов и их движении. Как и в радиолокации, в оптической локации для обнаружения объекта и получения информации о нем используются импульсы излучения, отраженные объектом. При этом у оптической локации есть ряд преимуществ перед радиолокацией. Лазерный локатор позволяет более точно определять координаты и скорость объекта. Более того, он дает возможность выявлять размеры объекта, его форму, ориентацию в пространстве. На экране лазерного локатора можно наблюдать видеоизображение объекта.
Преимущества лазерной локации связаны с острой направленностью лазерных пучков, высокой частотой оптического излучения, исключительно малой длительностью световых импульсов. Действительно, ост- 66
ронаправленным лучом можно буквально «ощупать» объект, «просмотреть» разные участки его поверхности. Высокая частота оптического излучения позволяет более точно измерить скорость объекта. Напомним, что если объект движется на наблюдателя (от наблюдателя), то отраженный им световой импульс будет иметь уже не исходную частоту, а более высокую (более низкую) частоту. Это есть хорошо известный как в оптике, так и в акустике эффект Доплера; этот эффект лежит в основе обсуждавшихся ранее лазерных анемометров. Изменение частоты отраженного импульса (доплеровское смещение частоты) пропорционально скорости объекта (точнее, проекции скорости на направление от наблюдателя к объекту) и частоте излучения. Чем выше частота излучения, тем больше измеряемое локационной аппаратурой доплеровское смещение частоты и, следовательно, тем точнее может быть определена скорость объекта. Наконец, отметим важность использования в локации достаточно коротких импульсов излучения. Ведь измеряемое с помощью локатора расстояние до объекта пропорционально промежутку времени от отправления зондирующего импульса до приема отраженного импульса. Чем короче сам импульс, тем более точно можно определить этот промежуток времени, а значит, и расстояние до объекта. Недаром в космической лазерной локации используются световые импульсы длительностью порядка 10“8 с и меньше. Напомним, что при длительности импульса 10“8 с погрешность при локации Луны составила 90 см, а при длительности импульса 2 10_9с погрешность уменьшилась до 25 см.
Впрочем, у оптических локационных систем есть и недостатки. Конечно, довольно удобно «осматривать» объект с помощью узкого остронаправленного луча лазера. Однако не так-то просто с помощью такого луча обнаружить объект; время обзора контролируемой области пространства оказывается в данном случае относительно большим. Поэтому оптические локационные системы часто используют в комплексе с радиолокационными. Последние обеспечивают быстрый обзор пространства, быстрое обнаружение цели, а оптические системы затем измеряют параметры обнаруженной цели, осуществляют слежение за целью. Кроме того, при распространении оптического излуче
ния через естественную среду - атмосферу или воду- возникают проблемы, связанные с воздействием среды на световой луч. Во-первых, свет частично поглощается в среде. Во-вторых, по мере распространения излучения по трассе происходит непрерывно нарастающее искажение волнового фронта светового пучка вследствие турбулентности атмосферы, а также рассеяния света на частицах среды. Все это ограничивает дальность действия наземных и подводных оптических локационных систем и ставит их работу в зависимость от состояния среды и, в частности, от погодных условий.