Болезни Военный билет Призыв

Молекулярные эффекты действия ферментов. Механизм и стадии ферментативного катализа: теории Фишера, Кошланда, переходных состояний Молекулярные эффекты ферментативного катализа

Ферменты играют ключевую роль в метаболизме. Они ускоряют реакции, увеличивая их константы скоростей.

Рассмотрим энергетический профиль обычной реакции (рис. 12.I), проходящей в растворе по механизму столкновений А + В -> Р.

Образование продукта Р происходит, если энергия сталкивающихся молекул исходных веществ А и В превышает величину энергетического барьера. Очевидно, что можно ускорить эту реакцию, если каким-то образом уменьшить энергию активации &.Е ЗКГ

Общая схема ферментативной реакции, включает, как известно, образование единого фермент-субстратного комплекса, в активном центре которого и происходит разрыв старых и образование новых связей с появлением продукта.

В различных теоретических моделях механизма действия ферментов предлагаются разные способы понижения барьера реакции в фермент-субстратном комплексе. В результате фиксации субстрата на ферменте происходит некоторое снижение энтропии реагентов по сравнению с их свободным состоянием. Само по себе это облегчает дальнейшие химические взаимодействия между активными группами в фермент-субстратном комплексе, которые должны быть взаимно строго ориентированы. Предполагается также, что избыток энергии сорбции, который выделяется при связывании субстрата,

Рис. 12.1.

не переходит полностью в тепло. Энергия сорбции может быть частично запасена в белковой части фермента, а затем сконцентрироваться на атакуемой связи в области образовавшихся фермент-субстратных контактов.

Таким образом, постулируется, что энергия сорбции идет на создание низкоэнтропийной энергетически напряженной конформации в фермент-субстратном комплексе и тем самым способствует ускорению реакции. Однако экспериментальные попытки обнаружить упругие деформации, которые могли бы храниться в белковом глобуле фермента, не диссипируя в тепло в течение достаточно длительного времени между каталитическими актами (10 10 -3 с), не увенчались успехом. Более того, необходимая для

катализа взаимная ориентация и сближение расщепляемой связи субстрата и активных групп в центре фермента происходят спонтанно, вследствие внутримолекулярной подвижности разных, в том числе и активных, групп фермента и субстрата. Такое сближение не требует образования каких-либо энергетически неблагоприятных контактов. Этот вывод следует из анализа невалентных взаимодействий в активных центрах ряда ферментов (а-химотрипсин, лизоцим, рибонуклеаза, карбоксинептидаза). Таким образом, сама по себе напряженность конформации в фермент-субстратном комплексе не является необходимым источником энергии и движущей силой катализа.

В других моделях высказывается предположение о том, что в белковой глобуле происходит бездиссипативная передача энергии тепловых колебаний от наружных слоев белка к атакуемой связи в активном центре. Однако никаких серьезных доказательств этому нет, кроме утверждения о том, что фермент должен быть «устроен» так, чтобы его структура обеспечивала когерентный характер распространения флуктуационных изменений конформации без тепловых потерь по определенным степеням свободы.

Помимо отсутствия экспериментальных доказательств общим недостатком этих моделей является то, что в них не учитывается в явном виде важный фактор - спонтанная внутримолекулярная подвижность белка.

Шаг вперед в этом отношении сделан в конформационно-ре- лаксапионной концепции ферментативного катализа. В ней появление продукта рассматривается как результат последовательных конформационных изменений в фермент-субстратном комплексе, индуцированных первоначальными изменениями электронного состояния в активном центре фермента. Вначале, в течение короткого времени (10 |2 - 10 13 с), происходят электронно-колебательные взаимодействия, затрагивающие только выделенные химические связи субстрата и функциональные группы фермента, но не остальную часть белковой глобулы.

Вследствие этого создается конформационно-неравновесное состояние, которое релаксирует к новому равновесию с образованием продукта. Процесс релаксации происходит медленно и носит направленный характер, включая стадии отщепления продукта и релаксации свободной молекулы фермента к исходному равновесному состоянию. Координата ферментативной реакции совпадает с координатой конформационной релаксации. Температура же влияет на конформационную подвижность, а не на число активных соударений свободных молекул реагентов, что просто не имеет места в уже сформированном фермент-субстратном комплексе.

Вследствие больших различий в скоростях можно рассматривать отдельно быстрые электронные взаимодействия в активном центре, осуществляющиеся на коротких расстояниях, и более медленные конформационно-динамические изменения в белковой части.

На первом этапе катализа стохастический характер динамики белковой глобулы фермента и диффузии субстрата к активному центру приводят к образованию строго определенной конфигурации, включающей функциональные группы фермента и химические связи субстрата. Например, в случае гидролиза пептидной связи для реакции необходима одновременная атака субстрата двумя группами активного центра - нуклеофильной и электрофильной.

Пример 12.1. На рис. 12.2 приведено взаимное расположение расщепляемой пептидной связи субстрата и боковых цепей сер- 195, гис-51. Атом остатка сер-195 находится на расстоянии 2,8 А против карбонильного углерода С 1 , а протон гидроксильной группы, не нарушая водородной связи с атомом N гис-51 , располагается на расстоянии 2,0 А над атомом азота расщепляемой группы. При возникновении такой и только такой конфигурации происходит химический акт катализа. Формально это соответствует одновременному соударению нескольких молекул, что в растворе крайне маловероятно.

Возникает вопрос: какова вероятность спонтанного формирования такого рода реакционноспособной конфигурации в плотно структурированной среде за счет конформационных флуктуаций нескольких групп, происходящих по законам ограниченной диффузии?

Расчеты показывают, что существует вполне определенная вероятность одновременного попадания нескольких групп в «реакционную»

Рис. 12.2.

область некоторого радиуса, где они оказываются сближенными на короткие расстояния. Эта вероятность зависит главным образом от коэффициента диффузии и числа степеней свободы функциональных групп, «ищущих» друг друга в ограниченном пространстве. Например, при гидролизе пептидной связи необходимо создать благоприятную ориентацию для двух групп активного центра относительно определенных участков субстрата. Каждая из групп обладает тремя степенями свободы, а с учетом вибраций молекулы субстрата общее число степеней свободы N - 6 - 7. Это типично для ферментативных процессов.

Оказывается, что в обычных условиях среднее время образования такой активной конфигурации составляет т ~

10 2 - 1СИс, что совпадает с временами оборота фермента в условиях субстратного насыщения. В растворе для аналогичной реакции это время намного больше даже при значительных коэффициентах диффузии. Причина состоит в том, что, попав в ограниченную область в плотно структурированной среде, функциональные группы «находят» друг друга и сближаются на короткие расстояния раньше, чем они «разбегутся» в разные стороны, как это происходит в растворе. Вместе с тем величина т - 10~ 2 - 1СНс намного больше, чем времена релаксаций отдельных групп, что является следствием достаточно жестких стерических условий для протекания реакции. Увеличение числа функциональных групп и необходимых одновременных контактов между ними приводит к увеличению времени достижения многоцентровой активной конфигурации. Общая скорость ферментативного катализа определяется именно временем образования нужной конформации при спонтанном сближении соответствующих групп в активном центре. Следующие за этим электронные взаимодействия происходят гораздо быстрее и не лимитируют общую скорость катализа.

Существует ряд особенностей ферментов, облегчающих превращение субстрата в активном центре. Как правило, микросреда активного центра с его аминокислотными остатками более гидро- фобна, чем окружающая водная среда. Это снижает значение диэлектрической постоянной активного центра (е

Высокая локальная концентрация диполей пептидных связей создает в активном центре электрические поля напряженностью порядка тысяч и сотен тысяч вольт на сантиметр. Таким образом, ориентированные полярные группы создают внутриглобулярное электрическое поле, влияющее на кулоновские взаимодействия в активном центре.

Механизмы самих электронных переходов в активной конфигурации требуют для своей расшифровки привлечения методов квантовой химии. Перекрывание электронных орбиталей может привести к перераспределению электронной плотности, появлению дополнительного заряда на разрыхляющей орбитали атакуемой связи в субстрате и ее ослаблению.

Именно это и происходит при гидролизе пептидной связи в тетраэдрическом комплексе (см. рис. 12.2). Стекание электронной плотности от Ofoj-cep-195 на разрыхляющую орбиталь в пептидной связи происходит за счет взаимодействия неподеленной пары электронов 0[ 95 5 с я-электронами атома С 1 пептидной связи. При этом нело- деленная пара азота аминной группы выталкивается из пептидной

Рис. 12.3.

связи N=C", которая утрачивает двойной характер и в результате ослабляется.

Одновременно отекание электронной плотности от 0,95 ослабляет и связь Н-О^. Но тогда облегчается взаимодействие Н фермента и N аминной группы и ее протонирование с переходом протона от 0"[ ч5 к гис-57. В свою очередь это опять увеличивает взаимодействие Oj9 5 c пептидной группой и т.д.

Таким образом, в тетраэдическом комплексе создается уникальная ситуация, когда несколько мономолекулярных реакций протекают одновременно, взаимно ускоряя друг друга. Синхронное перемещение заряда и протона между сер- 195, гис-57, пептидной связью обеспечивает высокую эффективность процесса. Каталитический акт сводит в единую кооперативную систему три отдельные бимолекулярные реакции, ведущие к разрыву пептидной связи - событию, маловероятному в растворе. В системе индицируются естественные конформационные перестройки и в итоге происходит деацилирова- ние фермента и протонирование атома 0} 95 .

Принцип образования полифункциональной замкнутой системы атомных групп в активной конфигурации выполняется и в других фермент-субстратных комплексах (рис. 12.3).

В ферментативном катализе многостадийный характер превращений субстрата, маловероятный в растворе, обеспечивается за счет синхронного кооперативного их протекания в единой полифункцио- нальной системе.

Замена малоэффективных последовательных активационных стадий скоординированным процессом приводит формально к снижению энергии активации всей реакции. Заметим еще раз, что, строго говоря, физический смысл понятия «энергия активации» в ферментативных процессах не соответствует таковому для реакций в растворах, идущих по механизму активных столкновений свободных молекул.

Катализ – это процесс ускорения химической реакции под влиянием катализаторов, которые активно участвуют в ней, но к концу реакции остаются химически неизмененными. Катализатор ускоряет установление химического равновесия между исходными веществами и продуктами реакции. Энергия, необходимая для начала химической реакции, называется энергией активации . Она необходима, чтобы молекулы, участвующие в реакции, могли перейти в реакционно-способное (активное) состояние. Механизм действия фермента направлен на то, чтобы понизить энергию активации. Это достигается разделением реакции на отдельные шаги или этапы благодаря участию самого фермента. Каждый новый этап обладает более низкой энергией активации. Разделение реакции на этапы становится возможным благодаря образованию комплекса фермента с исходными веществами, так называемыми субстратами (S ). Такой комплекс называется фермент-субстратным (ES ). Далее этой комплекс расщепляется с образованием продукта реакции (Р) и неизмененного фермента (Е ).

E + S ES E + P

Таким образом, фермент – это биокатализатор, который путем образования фермент – субстратного комплекса разбивает реакцию на отельные этапы с более низкой энергией активации и тем самым резко повышает скорость реакции.

4. Свойства ферментов.

    Все ферменты - белковой природы.

    Ферменты обладают высокой молекулярной массой.

    Они хорошо растворимы в воде, при растворении образуют коллоидные растворы.

    Все ферменты - термолабильны, т.е. оптимум действия 35 – 45 о С

    По химическим свойствам являются амфотерными электролитами.

    Ферменты высокоспецифичны по отношению к субстратам.

    Ферменты для своего действия требуют строго определенного значения рН (пепсин 1.5 – 2.5).

    Ферменты обладают высокой каталитической активностью (ускоряют скорость реакции в 10 6 – 10 11 раз).

    Все ферменты способны к денатурации по воздействием сильных кислот, щелочей, спиртов, солей тяжелых металлов.

Специфичность действия ферментов:

По специфичности действия ферменты делятся на две группы: обладающие абсолютной специфичностью и с относительной специфичностью.

Относительная специфичность наблюдается, когда фермент катализирует реакции одного типа с более чем одним структуроподобным субстратом. Например, пепсин расщепляет все белки с животного происхождения. Такие ферменты действуют на определенный тип химической связи, в данном случае на пептидную связь. Действие этих ферментов распространяется на большое число субстратов, что позволяет организму обойтись небольшим числом пищеварительных ферментов.

Абсолютная специфичность проявляется тогда, когда фермент действует лишь на одно-единственное вещество и катализирует лишь определенное превращение данного вещества. Например, сахараза расщепляет только сахарозу.

Обратимость действия:

Некоторые ферменты могут катализировать как прямую реакцию, так и обратную. Например, лактатдегидрогеназа, фермент катализирующий окисление лактата до пирувата и восстановление пирувата до лактата.

Катализаторы - вещества, изменяющие скорость химической реакции, но сами при этом остающиеся без изменений. Биологиче­ские катализаторы называются ферментами.

Ферменты (энзимы) - биологические катализаторы белковой природы, синтезируемые в клетках и ускоряющие химические ре­акции при обычных условиях организма в сотни и тысячи раз.

Субстрат - вещество, на которое действует фермент.

Апофермент - белковая часть молекулы фермента-протеида.

Коферменты (кофакторы) - небелковая часть фермента, иг­рает важную роль в каталитической функции ферментов. В их со­став могут входить витамины, нуклеотиды и др.

Активный центр фермента - участок молекулы фермента, обладающий специфической структурой, который связывает и преобразует субстрат. В молекулах простых белков-ферментов (протеинов) построен из остатков аминокислот и может включать различные функциональные группы (-СООН, -NH 2 , -SH, -ОН и др.). В молекулах сложных ферментов (протеидов) помимо аминокислот в образовании активного центра участвуют вещества небелковой природы (вита­мины, ионы металлов и др.).

Аллостерический центр фермента - участок молекулы фер­мента, с которым могут связываться специфические вещества, из­меняя структуру фермента и его активность.

Активаторы ферментов - молекулы или ионы, повышающие активность ферментов. Например, соляная кислота - активатор фермента пепсина; ионы кальция Са ++ являются активаторами АТФ-азы мышц.

Ингибиторы ферментов - молекулы или ионы, снижающие активность ферментов. Например, ионы Hg ++ , Pb ++ угнетают ак­тивность почти всех ферментов.

Энергия активации - дополнительное количество энергии, которой должны обладать молекулы для того, чтобы их столкно­вение привело к взаимодействию и образованию нового вещества.

Механизм действия ферментов - обусловлен способностью ферментов понижать энергетический барьер реакции за счет взаимодействия с субстратом и образования промежуточного фермент-субстратного комплекса. Для осуществления реакции с участием фермента требуется меньше энергии, чем без него.

Термолабильность ферментов – зависимость активности ферментов от температуры.

Температурный оптимум ферментов - интервал температур от 37° до 40°С, при котором наблюдается наибольшая активность ферментов в организме человека.

Специфичность ферментов - способность фермента катализировать определенную химическую реакцию.

Относительная специфичность фермента - способность катализировать превращения группы субстратов сходного строения, имеющих определенный тип связи. Например, фермент пепсин катализирует гидролиз различ­ных пищевых белков, осуществляя разрыв пептидной связи.

Абсолютная (строгая) специфичность фермента - способ­ность катализировать превращения только одного субстрата опре­деленной структуры. Например, фермент мальтаза катализирует гидролиз только мальтозы.

Профермент - неактивная форма фермента. Например, про­ферментом пепсина является пепсиноген.

Кофермент А, или коэнзим ацетилирования (КоА) - кофермент многих ферментов, которые катализируют реакции присое­динения ацетильных групп к другим молекулам. В его состав вхо­дит витамин В 3 .

НАД (никотинамидадениндинуклеотид) - кофермент фер­ментов биологического окисления, переносчик атомов водорода. В его состав входит витамин РР (никотинамид).

Флавинадениндинуклеотид (ФАД) - небелковая часть флавинзависимых дегидрогеназ, которая связана с белковой частью фермента. Участвует в окислительно-восстановительных реакциях, содержит витамин В 2 .

Классы ферментов:

Оксидоредуктазы - ферменты, катализирующие окислитель­но-восстановительные реакции. К ним относятся дегидрогеназы и оксидазы.

Трансферазы - ферменты, катализирующие реакции переноса атомов или групп атомов от одного вещества к другому.

Гидролазы - ферменты, катализирующие реакции гидролиза веществ.

Лиазы - ферменты, катализирующие реакции негидролитиче­ского отщепления от субстрата групп атомов или разрыв углерод­ной цепи соединения.

Изомеразы - ферменты, катализирующие реакции образова­ния изомеров веществ.

Лигазы (синтетазы) - ферменты, катализирующие реакции биосинтеза различных веществ в организме.

Механизмы ферментативного катализа определяются ролью функциональных групп активного центра фермента в химической реакции превращения субстрата в продукт. Выделяют 2 основных механизма ферментативного катализа: кислотно-основной катализ и ковалентный катализ.

1. Кислотно-основной катализ

Концепция кислотно-основного катализа объясняет ферментативную активность участием в химической реакции кислотных групп (доноры протонов) и/или основных групп (акцепторы протонов). Кислотно-основной катализ - часто встречающееся явление. Аминокислотные остатки, входящие в состав активного центра, имеют функциональные группы, проявляющие свойства как кислот, так и оснований.

К аминокислотам, участвующим в кислотно-основном катализе, в первую очередь относят Цис, Тир, Сер, Лиз, Глу, Асп и Гис. Радикалы этих аминокислот в протонированной форме - кислоты (доноры протона), в депротонированной - основания (акцепторы протона). Благодаря этому свойству функциональных групп активного центра ферменты становятся уникальными биологическими катализаторами, в отличие от небиологических катализаторов, способных проявлять либо кислотные, либо основные свойства. Ковалентный катализ основан на атаке нук-леофильных (отрицательно заряженных) или электрофильных (положительно заряженных) групп активного центра фермента молекулами субстрата с формированием ковалентной связи между субстратом и коферментом или функциональной группой аминокислотного остатка (как правило, одной) активного центра фермента.

Действие сериновых протеаз, таких как трипсин, химотрипсин и тромбин, - пример механизма ковалентного катализа, когда ковалентная связь образуется между субстратом и аминокислотным остатком серина активного центра фермента.

25. Под комплементарностью понимают пространственное и химическое соответствие взаимодействующих молекул. Лиганд должен обладать способностью входить и пространственно совпадать с конформацией активного центра. Это совпадение может быть неполным, но благодаря конформационной лабильности белка активный центр способен к небольшим изменениям и "подгоняется" под лиганд. Кроме того, между функциональными группами лиганда и радикалами аминокислот, образующих активный центр, должны возникать связи, удерживающие лиганд в активном центре. Связи между лигандом и активным центром белка могут быть как нековалентными (ионными, водородными, гидрофобными), так и ковалентными.



Тот факт, что ферменты обладают высокой специфичностью, позволил в 1890 г. выдвинуть гипотезу, согласно которой активный центр фермента комплементарен субстрату, т.е. соответствует ему как "ключ замку". После взаимодействия субстрата ("ключ") с активным центром ("замок") происходят химические превращения субстрата в продукт. Активный центр при этом рассматривался как стабильная, жёстко детерминированная структура.

Субстрат, взаимодействуя с активным центром фермента, вызывает изменение его конформации, приводя к формированию фермент-субстратного комплекса, благоприятного для химических модификаций субстрата. При этом молекула субстрата также изменяет свою конформацию, что обеспечивает более высокую эффективность ферментативной реакции. Эта "гипотеза индуцированного соответствия" впоследствии получила экспериментальное подтверждение.

26. Ферменты, катализирующие одну и ту же химическую реакцию, но отличающиеся по первичной структуре белка, называют изоферментами , или изоэнзимами. Они катализируют один и тот же тип реакции с принципиально одинаковым механизмом, но отличаются друг от друга кинетическими параметрами, условиями активации, особенностями связи апофермента и кофермента. Природа появления изоферментов разнообразна, но чаще всего обусловлена различиями в структуре генов, кодирующих эти изоферменты. Следовательно, изоферменты различаются по первичной структуре белковой молекулы и, соответственно, по физико-химическим свойствам. На различиях в физико-химических свойствах основаны методы определения изоферментов. По своей структуре изоферменты в основном являются олигомерными белками. Фермент лактатдегидрогеназа (ЛДГ) катализирует обратимую реакцию окисления лактата (молочной кислоты) до пирувата (пировиноградной кислоты).

Состоит из 4 субъединиц 2 типов: М и Н. Комбинация этих субъединиц лежит в основе формирования 5 изоформ лактатдегидрогеназы. ЛДГ 1 и ЛДГ 2 наиболее активны в сердечной мышце и почках, ЛДГ4 и ЛДГ5 - в скелетных мышцах и печени. В остальных тканях имеются различные формы этого фермента. Изоформы ЛДГ отличаются электрофоретической подвижностью, что позволяет устанавливать тканевую принадлежность изоформ ЛДГ.

Креатинкиназа (КК) катализирует реакцию образования креатинфосфата:

Молекула КК - димер, состоящий из субъединиц двух типов: М и В. Из этих субъединиц образуются 3 изофермента - ВВ, MB, MM. Изофермент ВВ находится преимущественно в головном мозге, ММ - в скелетных мышцах и MB - в сердечной мышце. Изоформы КК имеют разную электрофоретическую подвижность. Активность КК в норме не должна превышать 90 МЕ/л. Определение активности КК в плазме крови имеет диагностическое значение при инфаркте миокарда (происходит повышение уровня МВ-изоформы). Количество изоформы ММ может повышаться при травмах и повреждениях скелетных мышц. Изоформа ВВ не может проникнуть через гематоэнцефалический барьер, поэтому в крови практически не определяется даже при инсультах и диагностического значения не имеет.

27. ФЕРМЕНТАТИВНЫЙ КАТАЛИЗ (биокатализ), ускорение биохим. р-ций при участии белковых макромолекул, называемых ферментами (энзимами). Ф.к.- разновидность катализа.



Уравнение Михаэлиса-Ментен: - основное уравнение ферментативной кинетики, описывает зависимость скорости реакции,катализируемой ферментом, от концентрации субстрата и фермента. Простейшая кинетическая схема, для которой справедливо уравнение Михаэлиса:

Уравнение имеет вид:

,

Где: - максимальная скорость реакции, равная ; - константа Михаэлиса, равная концентрации субстрата, при которой скорость реакции составляет половину от максимальной; - концентрация субстрата.

Константа Михаэлиса: Соотношение констант скорости

также является константой (К m ).

28. "ингибирование ферментативной активности " - снижение каталитической активности в присутствии определённых веществ - ингибиторов. К ингибиторам следует относить вещества, вызывающие снижение активности фермента. Обратимые ингибиторы связываются с ферментом слабыми нековалентными связями и при определённых условиях легко отделяются от фермента. Обратимые ингибиторы бывают конкурентными и неконкурентными. К конкурентному ингибированию относят обратимое снижение скорости ферментативной реакции, вызванное ингибитором, связывающимся с активным центром фермента и препятствующим образованию фермент-субстратного комплекса. Такой тип ингибирования наблюдают, когда ингибитор - структурный аналог субстрата, в результате возникает конкуренция молекул субстрата и ингибитора за место в активном центре фермента. Неконкурентным называют такое ингибирование ферментативной реакции, при котором ингибитор взаимодействует с ферментом в участке, отличном от активного центра. Неконкурентные ингибиторы не являются структурными аналогами субстрата. Необратимое ингибирование наблюдают в случае образования ковалентных стабильных связей между молекулой ингибитора и фермента. Чаще всего модификации подвергается активный центр фермента, В результате фермент не может выполнять каталитическую функцию. К необратимым ингибиторам относят ионы тяжёлых металлов, например ртути (Hg 2+), серебра (Ag +) и мышьяка (As 3+). Вещества, блокирующие определённые группы активного центра ферментов - специфические и. Диизопропилфторфосфат (ДФФ). Ацетат йода, п-хлормеркурибензоат легко вступают в реакции с SH-группами остатков цистеина белков. Эти ингибиторы относят к неспецифичным. При бесконкурентном ингибировании ингибитор связывается только с фермент-субстратным комплексом, но не со свободным ферментом.

Величину K I = [E]. [I] / , которая представляет собой константу диссоциации комплекса фермента с ингибитором, называют константой ингибирования.

Четвертичные аммониевые основания ингибируют ацетилхолинэстеразу, катализирующую реакцию гидролиза ацетилхолина на холин и уксусную кислоту.

В качестве ингибиторов ферментов по конкурентному механизму в медицинской практике используют вещества, называемые антиметаболитами. Эти соединения, будучи структурными аналогами природных субстратов, вызывают конкурентное ингибирование ферментов, с одной стороны, и, с другой - могут использоваться этими же ферментами в качестве псевдосубстратов. Сульфаниламидные препараты (аналоги парааминобензойной кислоты), применяемые для лечения инфекционных заболеваний.

Пример лекарственного препарата, действие которого основано на необратимом ингибировании ферментов, - препарат аспирин .

Ингибирования фермента циклооксигеназы, катализирующего реакцию образования простагландинов из арахидоновой кислоты.

29.Регуляция скорости ферментативных реакций осуществляется на 3 независимых уровнях:

1. изменением количества молекул фермента;

  1. доступностью молекул субстрата и кофермента;
  2. изменением каталитической активности молекулы фермента.

1. Количество молекул фермента в клетке определяется соотношением 2 процессов - синтеза и распада белковой молекулы фермента.

2. Чем больше концентрация исходного субстрата, тем выше скорость метаболического пути. Другой параметр, лимитирующий протекание метаболического пути, - наличие регенерированных коферментов . Важнейшее значение в изменении скорости метаболических путей играет регуляция каталитической активности одного или нескольких ключевых ферментов данного метаболического пути. Это высокоэффективный и быстрый способ регуляции метаболизма. Основные способы регуляции активности ферментов: аллостерическая регуляция; регуляция с помощью белок-белковых взаимодействий; регуляция путём фосфорилирования/дефосфорилирования молекулы фермента; регуляция частичным (ограниченным) протеолизом.

Повышение температуры до определённых пределов оказывает влияние на скорость ферментативной

реакции, подобно влиянию температуры на любую химическую реакцию. С повышением температуры ускоряется движение молекул, что приводит к повышению вероятности взаимодействия реагирующих веществ. Кроме того, температура может повышать энергию реагирующих молекул, что также приводит к ускорению реакции. Однако скорость химической реакции, катализируемая ферментами, имеет свой температурный оптимум, превышение которого сопровождается понижением ферментативной активности

Для большинства ферментов человека оптимальна температура 37-38 °С.

Активность ферментов зависит от рН раствора, в котором протекает ферментативная реакция. Для каждого фермента существует значение рН, при котором наблюдается его максимальная активность. Отклонение от оптимального значения рН приводит к понижению ферментативной активности.

Влияние рН на активность ферментов связано с ионизацией функциональных групп аминокислотных остатков данного белка, обеспечивающих оптимальную конформацию активного центра фермента. При изменении рН от оптимальных значений происходит изменение ионизации функциональных групп молекулы белка. большая часть ферментов организма человека имеет оптимум рН, близкий к нейтральному, совпадающий с физиологическим значением рН

30. Аллостерическими ферментами называют ферменты, активность которых регулируется не только количеством молекул субстрата, но и другими веществами, называемыми эффекторами . Участвующие в аллостерической регуляции эффекторы - клеточные метаболиты часто именно того пути, регуляцию которого они осуществляют.

Аллостерические ферменты играют важную роль в метаболизме, так как они чрезвычайно быстро реагируют на малейшие изменения внутреннего состояния клетки. Имеют большое значение в следующих ситуациях: при анаболических процессах, при катаболических процессах, для координации анаболических и катаболических путей. АТФ и АДФ - аллостерические эффекторы, действующие как антагонисты; для координации параллельно протекающих и взаимосвязанных метаболических путей (например, синтез пуриновых и пиримидиновых нуклеотидов, используемых для синтеза нуклеиновых кислот).

Эффектор, вызывающий снижение (ингибирование) активности фермента, называют отрицательным эффектором, или ингибитором. Эффектор, вызываюший повышение (активацию) активности ферментов, называют положительным эффектором, или активатором. Аллостерическими эффекторами часто служат различные метаболиты.

Особенности строения и функционирования аллостерических ферментов: обычно это олигомерные белки, состоящие из нескольких протомеров или имеющие доменное строение;они имеют аллостерический центр, пространственно удалённый от каталитического активного центра;эффекторы присоединяются к ферменту нековалентно в аллостерических (регуляторных) центрах;аллостерические центры, так же, как и каталитические, могут проявлять различную специфичность по отношению к лигандам: она может быть абсолютной и групповой. протомер, на котором находится аллостерический центр, - регуляторный протомер.аллостерические ферменты обладают свойством кооперативности; аллостерические ферменты катализируют ключевые реакции данного метаболического пути.

конечный продукт может действовать как аллостерический ингибитор фермента, катализирующего чаще всего начальный этап данного метаболического пути:

В центральных метаболических путях исходные вещества могут быть активаторами ключевых ферментов метаболического пути.

ЭТАПЫ ФЕРМЕНТАТИВНОГО КАТАЛИЗА

1. Формирование фермент-субстратного комплекса

Ферменты обладают высокой специфичностью и это позволило выдвинуть гипотезу, согласно которой активный центр фермента комплементарен субстрату, т.е. соответствует ему как «ключ замку». После взаимодействия субстрата «ключ» с активным центром «замок» происходят химические превращения субстрата в продукт.

Позднее был предложен другой вариант этой гипотезы – активный центр является гибкой структурой по отношению к субстрату. Субстрат, взаимодействуя с активным центром фермента, вызывает изменение его конформации, приводя к формированию фермент-субстратного комплекса. При этом субстрат также изменяет свою конформацию, что обеспечивает более высокую эффективность ферментативной реакции.

2. Последовательность событий в ходе ферментативного катализа

а. этап сближения и ориентации субстрата относительно активного центра фермента

б. образование фермент-субстратного комплекса

в. деформация субстрата и образование нестабильного комплекса фермент-продукт

г. распад комплекса фермент-продукт с высвобождением продуктов реакции из активного центра фермента и освобождением фермента

3. Роль активного центра в ферментативном катализе

В контакт с субстратом вступает лишь небольшая часть фермента, от 5 до 10 аминокислотных остатков, формирующих активный центр фермента. Остальные аминокислотные остатки обеспечивают правильную конформацию молекулы фермента для оптимального протекания химической реакции. В активном центре фермента субстраты располагаются так, чтобы участвующие в реакции функциональные группы субстратов находились в непосредственной близости друг к другу. Такое расположение субстратов снижает энергию активации, что определяет каталитическую эффективность ферментов.

Выделяют 2 основных механизма ферментативного катализа:

1. кислотно-основной катализ

2. ковалентный катализ

Концепция кислотно-основного катализа объясняет ферментативную активность участием в химической реакции кислотных групп (доноры протонов) и/или основных групп (акцепторы протонов). Аминокислотные остатки, входящие в состав активного центра, имеют функциональные группы, проявляющие свойства как кислот, так и оснований. Это цистеин, тирозин, серин, лизин, глутаминовая кислота, аспарагиновая кислота и гистидин.

Примером кислотно-основного катализа является окисление спирта с помощью фермента алкогольдегидрогеназы.

Ковалентный катализ основан на атаке «-» и «+» групп активного центра фермента молекулами субстрата с формированием ковалентной связи между субстратом и коферментом. Примером является действие сериновых протеаз (припсин, хемотрипсин) на гидролиз пептидных связей при переваривании белков. Ковалентная связь образуется между субстратом и аминокислотным остатком серина активного центра фермента.