Болезни Военный билет Призыв

На рисунке дано графическое изображение электрического поля. Графическое изображение электрического поля. Силовые линии напряженности электрического поля

«Задачи по физике» - Вычислите действующую на кирпич силу тяжести и скажите, как действует вес кирпича? Сборник задач по физике. С точки зрения бесстрастной науки Толя производил наблюдения, а Коля ставил опыты. Зная плотность воды 1 г/куб.См, определи плотность целебной кислятины. Вес выражается совсем в других величинах - в ньютонах.

«История электричества» - XX век - использование электричества в быту - повсеместно. Известно, что если некоторые вещества потереть о шерсть, они притягивают лёгкие предметы. XVIII век - cоздаётся первый электрический конденсатор - Лейденская банка (1745). XXI век - отключение электроснабжения в бытовой и производственной сетях.

«Термодинамика» - Обратимый цикл Карно. Второе начало термодинамики. Из рассмотренного цикла Карно. Энтропия S – аддитивная величина. Утверждение о возрастании энтропии потеряло свою категоричность. Третье начало термодинамики. Второе и третье начала термодинамики. Энтропия S равна сумме энтропий тел, входящих в систему.

«Закон Кулона» - Два брата - годами равные, характером разные. В любой замкнутой системе заряженных тел алгебраическая сумма зарядов остается постоянной. Дарья с Марьей видятся, да не сходятся. Хоть не собака, а кусается. Как солнце горит, быстрее ветра летит, по силе себе равных не имеет. Закон Кулона был открыт им в 1785г.

«Электроёмкость конденсатора» - Электроемкость конденсатора. Плоский конденсатор. Электроемкость определяется электрическими свойствами окружающей среды. Электроемкость определяется геометрическими размерами проводников. Электроемкостью двух проводников называют отношение заряда одного из проводников к разности потенциалов между этим проводником и соседним.

«Электрическое поле в диэлектриках» - Диэлектрик, как и всякое вещество, состоит из атомов и молекул. Термин «диэлектрики» введен Фарадеем. Каждый сегнетоэлектрик характеризуется так называемой точкой Кюри. Внешнее поле создается системой свободных электрических зарядов. Свойства сегнетоэлектриков сильно зависят от температуры. Молекулы диэлектрика электрически нейтральны.

Графическое изображение поля с помощью векторов напряженности в различных точках поля очень неудобно. Вектора напряженности накладываются друг на друга, и получается очень запутанная картина. Более нагляден метод изображения электрических полей с помощью силовых линий, предложенный Фарадеем.

Линии напряженности (силовые линии) – это линии, проведенные в поле так, что касательные к ним в каждой точке совпадает по направлению с вектором напряженности поля в данной точке (Рис.8).

Линии напряженности не пересекаются, т.к. в каждой точке поля вектор напряженности имеет только одно направление. На Рис.9 изображены электростатические поля точечных зарядов и диполя и бесконечно большой плоскости.

Пусть заряд q перемещается вдоль равномерно заряженной бесконечной плоскости из точки 1 в точку 2. Силовые линии электростатического поля и вектор напряженности этого поля направлены перпендикулярно плоскости (Рис.9). Рассчитаем работу электрических сил при перемещении заряда.

, т.к.

Но эту же работу можно было бы определить и по уравнению . И поскольку она равна нулю, то потенциалы поля в точках 1 и 2 равны. Следовательно, поверхности равного потенциала, т.е. эквипотенциальные и поверхности, расположены вдоль плоскости и нормальны к линиям напряженности. Это справедливо и для поля точечного заряда, поля шара, заряженного либо по поверхности, либо по объему и др. полей.

Таким образом, линии напряженности всегда нормальны к эквипотенциальным поверхностям, т.е. поверхностям равного потенциала.

На Рис.9 видно, что поля точечных зарядов обладают центральной симметрией. Линии напряженности – прямые линии, они выходят из заряда, если он положительный и входящие в заряд, если он отрицательный. Следовательно, положительный заряд можно считать началом линий напряженности, а отрицательный – местом их окончания. Касательные к силовым линиям совпадают с самими линиями и направлены в каждой точке поля в том же направлении, что и напряженность.

В случае диполя эти линии искривлены. Стоит отметить, что во всех этих случаях электростатические поля неоднородны – в каждой точке поля напряженность отличается как по величине, так и по направлению. Очевидно, что линиями однородного поля являются прямые параллельные вектору напряженности.

Число проводимых в пространстве силовых линий ничем не ограничено. Линии напряженности, характеризуя направление напряженности, не характеризуют величину напряженности. Однако можно ввести условие, которое связывает величину напряженности с числом проводимых силовых линий. Там, где напряженность больше, линии проводят гуще, а там, где она меньше – менее густо. Принято, что число линий, проходящих через единицу поверхности, которая расположена перпендикулярно к силовым линиям, равно численному значению напряженности.



Общее число линий напряженности, пронизывающих некоторую поверхность, назовем потоком напряженности через эту поверхность.

Получим уравнение для расчета потока напряженности – N E . Сначала определим поток напряженности через элементарную площадку, расположенную под некоторым углом к вектору напряженности (Рис.10).

Электрическое поле изображают с помощью электрических линий и следов эквипотенциальных поверхностей.

Поверхность, проведённая в пространстве так, что все её точки имеют одинаковый потенциал, называется эквипотенциальной .

Рисунок 1.7 – Неоднородное симметричное поле

Рисунок 1.8 – Неоднородное несимметричное поле

Рисунок 1.9 – Однородное несимметричное поле

Если вектор напряженности в каждой точке поля одинаков по величине и направлению то поле считается однородным .

Силовые линии магнитного поля (линии напряженности) проводятся так что:

2. Густота силовых линий отражает величину напряженности;

3. Проводятся так, чтобы вектор напряженности в каждой точке линии был направлен по касательной к ней.

Силовые линии это мысленные траектории движения пробного положительного заряда, внесенного в данную точку поля.

Следы эквипотенциальных поверхностей проводятся так, чтобы они пересекались с силовыми линиями под прямым углом, между каждыми двумя соседними эквипотенциальными поверхностями разность потенциалов одинакова.

1.3 Электропроводность веществ: проводники, диэлектрики, полупроводники

Почти в любом объёме любого вещества содержится некоторое количество свободных зарядов, их число в единице объёма называется концентрацией .

При отсутствии внешнего электрического поля свободные заряды совершают хаотическое тепловое движение, попадая в электрическое поле они приобретают скорость упорядоченного, направленного движения.

Упорядоченное направленное движение зарядов под действием сил внешнего электрического поля называется электрическим током .

Способность веществ, проводить электрический ток называется электропроводностью .

В зависимости от электропроводности все вещества делят на три группы:

1) Проводники – вещества, обладающие хорошей электропроводимостью, следовательно, хорошо проводящие электрический ток. Делятся на две подгруппы:

а) Первого рода – металлы и их сплавы. В них большое количество свободных электронов, которые под действием сил внешнего электрического поля приобретают скорость направленного движения, следовательно ток в проводника первого рода – это упорядоченное направленное движение электронов, а значит не сопровождается переносом вещества и химическими реакциями.

Проводник первого рода помещён в электростатическое поле, происходит явление электромагнитной индукции –мгновенное перемещение свободных зарядов к одной поверхности проводника. На этой поверхности возникает избыточный отрицательный заряд, недостаток электронов у противоположной поверхности создаёт избыточный положительный заряд, следовательно заряженные поверхности проводника создают собственное поле, направленное против внешнего и всегда его уравновешивающего. На этом основано экранирование – защита части пространства от внешних электрических полей.


б) Второго рода – это электролиты – водные растворы солей, кислот, щелочи, в них под действием растворителя (воды) происходит расход молекул на положительно и отрицательно заряженные ионы (электролитическая диссонация). Во внешнем электрическом поле ионы приобретают скорость направленного движения, значит ток в проводниках второго рода – это направленное движение ионов, а значит, сопровождается переносом вещества и химическими реакциями.

2) Диэлектрики – вещества, не имеющие свободных зарядов, а потому не способные проводить постоянный электрический ток. Делятся на две группы: неполярные и полярные диэлектрики .

У неполярных диэлектриков электронные орбиты расположены так, что при отсутствии внешнего поля электрические центры «+» и « - » в одной точке атом не создаёт диполя. Во внешнем поле орбиты смещаются так, что электрические центры «+» и « - » в разных точках, образовалась диполь – два одинаковых по величине, но противоположных по знаку связанных заряда. Произошла поляризация диэлектрика – деформационная .

У полярных диэлектриков диполи существуют от природы без всякого внешнего поля, но ариентированны хаотически. Во внешнем поле диполи поворачиваются и выстраиваются вдоль линий внешнего поля, происходит поляризация, которая называется ориентационной .

Внутри любого поляризованного диэлектрика поле существует, но по сравнению со внешним оно ослаблено в E раз.

Постоянный электрический ток диэлектрики не проводят, а переменный ток проводят – направленное колебательное движение диполей под действием сил внешнего переменного электрического поля.

О том, что колебательные движения диполей можно назвать электрическим током говорит опыт Эйхенвольда.

При протягивании диэлектрика в месте AB происходит … временный поворот на 180° и это сопровождается возникновением магнитного поля , которое всегда сопутствует электрическому току.

Существуют:

Ток проводимости – упорядоченное направленное движение свободных зарядов под действием сил внешнего электрического поля (постоянный и переменный).

Ток смещения связанных зарядов (в диэлектрике) – колебательное движение диполей под действием сил внешнего переменного электрического поля

3) Полупроводники – вещества, занимающие промежуточное положение по электропроводимости между проводниками и диэлектриками. Ток в них это направленное движение свободных электронов и дырок, зависит от некоторых факторов (температура, освещённость, наличие примесей).

Электростатическое поле удобно изображать графически с помощью силовых линий и эквипотенциальных поверхностей.

Силовая линия – это линия, в каждой точке которой касательная совпадает с направлением вектора напряженности (см. рис.). Силовым линиям придают направление стрелкой. Свойства силовых линий:

1 ) Силовые линии непрерывны. Они имеют начало и конец – начинаются на положительных и заканчиваются на отрицательных зарядах.

2 ) Силовые линии не могут пересекаться друг с другом, т.к. напряженность – это сила, а две силы в данной точке от одного заряда не могут быть.

3 ) Силовые линии проводят так, чтобы их количество через единичную перпендикулярную площадку было пропорционально величине напряженности.

4 ) Силовые линии «выходят» и «входят» всегда перпендикулярно поверхности тела.

5 ) Силовую линию не следует путать с траекторией движущегося заряда. Касательная к траектории совпадает с направлением скорости, а касательная к силовой линии – с силой и, следовательно, с ускорением.

Эквипотенциальной поверхностью называют поверхность, в каждой точке которой потенциал имеет одинаковое значение j = const.

Силовые линии всегда перпендикулярны эквипотенциальным поверхностям. Докажем это. Пусть вдоль эквипотенциальной поверхности перемещается точечный заряд q . Элементарная работа, совершаемая при этом равна dA=qE×cosa×dl = q×dj = 0, т.к. dj = 0. Поскольку q ,E и ×dl ¹ 0, следовательно

cosa = 0 и a = 90 о.

На рисунке изображено электростатическое поле двух одинаковых точечных зарядов. Линии со стрелками – это силовые линии, замкнутые кривые – эквипотенциальные поверхности. В центре осевой линии, соединяющей заряды напряженность равна 0. На очень большом расстоянии от зарядов эквипотенциальные поверхности становятся сферическими. .
На этом рисунке показано однородноеполе – это поле, в каждой точке которого вектор напряженности остается постоянным по величине и направлению Эквипотенциальные поверхности – это плоскости, перпендикулярные силовым линиям. Вектор напряженности всегда направлен в сторону убывания потенциала.

Тема 1. Вопрос 6.

Принцип суперпозиции.

На основе опытных данных был получен принципа суперпозиции (наложения) полей: «Если электрическое поле создается несколькими зарядами, то напряженность и потенциал результирующего поля складываются независимо, т.е. не влияя друг на друга». При дискретном распределении зарядов напряженность результирующего поля равна векторной сумме, а потенциал алгебраической (с учетом знака) сумме полей, создаваемых каждым зарядом в отдельности. При непрерывном распределении заряда в теле векторные суммы заменяется на интегралы, где dE и dj – напряженность и потенциал поля элементарного (точечного) заряда, выделенного в теле. Математически принцип суперпозиции можно записать так.

Тема 2. Вопрос 1.

Теорема Гаусса.

Сначала введем понятие «поток вектора » - это скалярная величина

(Н×м 2 /Кл = В×м) элементарный поток вектора напряженности Е , n – нормаль к площадке, dS – элементарная площадка – это такая малая площадка, в пределах которой Е = const; Е n – проекция вектора Е на направление нормали n
поток вектора напряженности через конечную площадку S
-²- -²- -²-через замкнутую поверхность S

1) Сфера, заряженная с поверхностной плотностью заряда s (Кл/м 2)

Рассмотрим области: 1) вне сферы () и внутри ее (). Выберем поверхности: 1) S 1 и 2) S 2 – обе поверхности – сферы, концентрические с заряженной сферой. Сначала найдем потоки вектора Е через выбранные поверхности, а затем воспользуемся теоремой.

(¨) Потоки вектора Е через S 1 () и S 2 . () E ^n , a = 0, cosa = 1.
(¨¨) по теореме Гаусса; F 2 = 0, т.к. S 2 не охватывает никаких зарядов. Приравнивая потоки из (¨) и (¨¨), найдем E(r) .
q = s×2pR 2 – полный заряд сферы Вне сферы поле такое же, как поле точечного заряда. На границе сферы происходит скачок напряженности.

Тема 2. Вопрос 2.

Теорема Гаусса.

2)Тонкая длинная нить, заряженная с линейной плотностью заряда t (Кл/м)

В этом случае «гауссова» поверхность – соосный с нитью цилиндр длиной l .

Сначала найдем поток, потом воспользуемся теоремой Гаусса.

Тема 2. Вопрос 3.

Теорема Гаусса.

3) Тонкостенный длинный цилиндр , заряженный:

1) с линейной плотностью заряда t или

2) с поверхностной плотностью заряда s.

Этот пример аналогичен предыдущему. Выбираем гауссову поверхность в виде соосного цилиндра, разбиваем поверхность на боковую и две торциальные. В первом случае при заданной линейной плотности t получим такую же формулу, как идля длинной нити. Во втором случае охватываемый заряд равен (s×2p×R×l) и формула для E несколько иная, хотя зависимость от r – та же.

Тема 2. Вопрос 4.

Графическое изображение электрического поля

Электрическое поле – это особый вид материи, существующий вокруг тел или частиц, обладающих электрическим зарядом, а также при изменении магнитного поля – например, в электромагнитных волнах. Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела.

Основное свойство электростатистического поля заключается в его воздействии на неподвижные электрические заряды.

Для количественного определения электрического поля вводится силовая характеристика − напряженность электрического поля.

Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда: E→=F→q.E→=F→q .

Напряженность электрического поля – векторная физическая величина. Направление вектора E→E→ в каждой точке пространства совпадает с направлением силы, действующей на положительный пробный заряд.

Электрическое поле неподвижных и не меняющихся со временем зарядов называется электростатическим. Во многих случаях для краткости это поле обозначают общим термином – электрическое поле

Если с помощью пробного заряда исследуется электрическое поле, создаваемое несколькими заряженными телами, то результирующая сила оказывается равной геометрической сумме сил, действующих на пробный заряд со стороны каждого заряженного тела в отдельности. Следовательно, напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряженностей электрических полей, создаваемых в той же точке зарядами в отдельности: E→=E→1+E→2+... .E→=E→1+E→2+... .

Это свойство электрического поля означает, что поле подчиняется принципу суперпозиции .

В соответствии с законом Кулона напряженность электростатического поля, создаваемого точечным зарядом Q на расстоянии r от него, равна по модулюE=14πε0ċQr2.E=14πε0ċQr2.

Это поле называется кулоновским. В кулоновском поле направление вектора E→E→ зависит от знака заряда Q: если Q > 0, то вектор E→E→ направлен по радиусу от заряда, если Q

Для наглядного изображения электрического поля используют силовые линии. Эти линии проводят так, чтобы направление вектора E→E→ в каждой точке совпадало с направлением касательной к силовой линии (рис. 1.). При изображении электрического поля с помощью силовых линий, их густота должна быть пропорциональна модулю вектора напряженности поля.

Рисунок 1 - Силовые линии электрического поля

Силовые линии кулоновских полей положительных и отрицательных точечных зарядов изображены на рисунке 2. Так как электростатическое поле, создаваемое любой системой зарядов, может быть представлено в виде суперпозиции кулоновских полей точечных зарядов, изображенные на рисунке 2 поля можно рассматривать как элементарные структурные единицы («кирпичики») любого электростатического поля.

Рисунок 2 - Силовые линии кулоновских полей

Кулоновское поле точечного заряда Q удобно записать в векторной форме. Для этого нужно провести радиус-вектор r→r→ от заряда Q к точке наблюдения. Тогда при Q > 0 вектор E→E→ параллелен r→,r→, а при Q .