Болезни Военный билет Призыв

Неорганические катализаторы. Сравнение каталитического действия ферментов и неорганических катализаторов. Отличие ферментов от неорганических катализаторов

Ферменты –это белковые молекулы, которые катализируют химические реакции в живых системах. Относительная молекулярная масса ферментов от 10 в 5 степени до 10 в 7 степени

Все биохимические реакции являются каталитическими. Катализаторы биохимических реакций имеют белковую природу и называются ферментами.

Ферменты отличаются от обычных катализаторов:

1)Они обладают более высокой каталитической эффективностью. Эффективность работы ферментов выражается молярной активностью – числом молекул субстрата, превращающихся в продукты реакции за единицу времени при условии полного насыщения фермента субстратом.

2)Ферменты высокоспецифичны, т.е. избирательность действия. Различают субстратную и групповую специфичность. Субстратная специфичность включает в себя и стереоспецифичность – проявление каталитической активности только в отношении одного из стереоизомеров данного вещества.

Ферменты с групповой специфичностью обеспечивают превращения разных субстратов, но имеющих определенные структурные фрагменты.

3)Ферменты проявляют максимальную эффективность только в мягких условиях температура (36*-38*), характеризующихся небольшим интервалом температур и значений рН

Ферменты катализируют превращение аминокислот; пищеварительные ферменты расщепляют пептидные связи самих белков; все биохимические реакции осуществимы в присутствии ферментов

Каждый фермент катализирует только определенную химическую реакцию.

Другой случай представляет собой ферменты с широкой специфичностью в отношении субстрата.

Вследствие высокой специфичности ферментов в обратимых процессах при определенных условиях они обычно увеличивают скорость только реакции, идущей в нужном направлении. В этом заключается одно из отличий ферментативного катализа от простого.

В организме для регуляции ферментативных процессов используются активаторы и ингибиторы .

Ингибиторы тормозят действие ферментов. Бывает обратимое и необратимое ингибирование фермента.

Обратимое наблюдается при взаимодействии с катионами металлов-токсикантов:Hg , Pb,Cd или с ингибиторами белковой природы.

При необратимом торможении ингибитор, обладающий структурным сходством с субстратом, блокирует активный центр фермента, надолго выводя его из строя. (отравляющие вещества)

12. Зависимость скорости ферментативной реакции от: а) температуры; б) рН среды; в) концентрации фермента. Ответ поясните с использованием графиков.

При увеличении температуры свыше определенного значения (45*-50*) биохимические реакции резко замедляются, а затем останавливаются, что связано с инактивацией ферментов при высоких температурах. Снижение активности фермента при температуре выше оптимальной связано с тепловой денатурацией белка, которая наступает при 50*-60*,а в некоторых случаях и при 40*



Снижение активности фермента при значенияхрН , отличающихся от оптимального значения, объясняется изменением степени его ионизации изменением характера ион-ионных и других взаимодействий, обеспечивающих стабильность третичной структуры белка. Для большинства ферментов Оптимальное значение рН совпадает с физиологическими значениями (7,3-7,4). Существуют ферменты, для нормального функционирования которых нужна сильно кислая (пепсин 1,5-2,5) или сильно щелочная (аргиназа 9,5-9,9) среда.

При высокой концентрации субстрата, обеспечивающей полное насыщение всех активных центров фермента, скорость реакции перестает зависеть от концентрации субстрата, однако скорость реакции остается зависеть от концентрации фермента

ГРАФИКИ НА СТРАНИЦЕ 227 В КРАСНОМ УЧЕБНИКЕ

Особенности кинетики ферментативной реакции. Графическая зависимость влияния концентрации субстрата на скорость ферментативной реакции (при постоянной концентрации фермента). Уравнение Михаэлиса-Ментен и его анализ.

Для каждой ферментативной реакции промежуточной реакцией является присоединение к активному центру фермента (Е) молекулы субстрата (St) с возникновением фермент-субстратного комплекса () , который в дальнейшем распадается на продукты реакции (Р) и молекулу фермента:

Где k1 , k-1 , k2 - константы скоростей отдельных стадий

Образование фермент-субстратного комплекса приводит к перераспределению электронов в молекуле субстрата. Скорость реакции зависит от концентрации субстрата. При низких концентрациях субстрата реакция имеет по субстрату первый порядок (Nst = 1) , а при высоких – нулевой (Nst = 0) . При этом скорость реакции становится максимальной. Максимальная скорость ферментативной реакции зависит от концентрации фермента в системе.

ГРАФИК СТРАНИЦА 227 КРАСНЫЙ УЧЕБНИК

Впервые кинетическое описание ферментативных процессов сделали Михаэлис и Ментен, которые предположили уравнение:

Км – константа Михаэлиса, учитывающая величины констант скоростей отдельных реакций (К1 , К-1 , К2), численно равна концентрации субстрата, при которой скорость ферментативной реакции равна половине максимальной (U мах /2)

Величина Км для данной ферментативной реакции зависит от типа субстрата, рН реакционной среды, температуры и концентрации фермента в системе. Реакция протекает тем быстрее, чем меньше Км. На скорость ферментативной реакции влияет присутствие активаторов и ингибиторов. Скорость зависит от концентрации субстрата и фермента.

Афанасьев Илья

Катализаторы и ферменты - вещества ускоряющие химические процессы, но сами при этом не расходуются.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Сравнение неорганических катализаторов и биологических ферментов Презентацию подготовил Ученик 10В класса МАОУ «Лицей №131» Афанасьев Илья Учитель: Сафонова Эльфия Рустямовна

С чего начать? Академик Георгий Константинович Боресков,советский химик и инженер, однажды в полушуточном стиле описал, что было бы, если бы на Земле вдруг исчезли все катализаторы, суть описания сводилась к тому, что наша планета скоро стала бы безжизненной пустыней, омываемой океаном слабой азотной кислоты .

Но о каких именно катализаторах говорил Академик Боресков? Ведь наравне с неорганическими катализаторами, в химии используются и биологические ферменты, без которых существование нашего организма было бы невозможным. Давайте узнаем, что из себя представляют ферменты и неорганические катализаторы, и в чем их отличия Палладий-один из часто используемых катализаторов Биологические Ферменты

Ферменты Ферменты - биологические катализаторы белковой природы. Термин фермент (от лат. fermentum - закваска) был предложен в начале XVII в. голландским ученым Ван Гельмонтом для веществ, влияющих на спиртовое брожение.

История открытия ферментов Человек, на протяжении жизни, замечал, что что-то какие-то вещества оказывают влияние на производство хлеба, создания вина и молочных изделий. Но только в 1833 году из прорастающих зерен ячменя было выделено вещество, осуществляющее превращение крахмала в сахар и впоследстивии именуем амилазой. Но только в конце 19 века было доказано,что при растирании дрожжевых клеток образуется сок, который обеспечивает процесс спиртового брожения. Амила́за (др.-греч. άμυλον - крахмал

Функции ферментов Ферменты участвуют в осуществлении всех процессов обмена веществ и в реализации генетической информации возможность. Возможность быстрого переваривания продуктов в живом организме осуществляется благодаря им Ферменты выделяют из легких углекислый газ Повышают уровень выносливости организма Поддерживают работу иммунной системы для борьбы с инфекциями Именно ферменты осуществляют поиск раковых клеток в организме, впоследствии уничтожая их.

Химические свойства ферментов По химическим свойствам ферменты являются амфотерными электролитами. Они обладают высокой молекулярной массой(48000 Д= 7.970544000006 x 1 0 ^ 23 кг) Они очень видоспецифичны (для каждого органа может быть свой фермент Из этого пункта следует, что для каждого органа требуется своя температура, кислотность, давление и т.д

Примеры реакций с участием ферментов Реакции брожения глюкозы с использованием различных ферментов, в результате которой одна молекула глюкозы преобразуется в 2 молекулы этанола и в 2 молекулы углекислого газа.

Н.Клеман, Ш.Дезорм (1806 г.) Оксиды азота – агенты, способные окисляться кислородом воздуха и передавать кислород сернистому газу Неогранические катализаторы

К.Кирхгоф (1811 г.) Работы Клемана, Дезорма и Кирхгофа инициировали поиск таких уникальных веществ. За 20 лет было найдено множество реакций:

Механизм Катализатора

Универсальные катализаторы Никель Ренея Никель Ренея, иначе «скелетный никель» - твёрдый микрокристаллический пористый никелевый катализатор.Представляет собой серый высокодисперсный порошок (размер частиц обычно 400-800 нм), содержащий, помимо никеля, некоторое количество алюминия (до 15 масс.%) и насыщенный водородом (до 33 ат.%). Никель Ренея широко применяется как катализатор разнообразных процессов гидрирования или восстановления водородом органических соединений (например, гидрирования аренов, алкенов, растительных масел и т. п.). Ускоряет также и некоторые процессы окисления кислородом воздуха. Получают никель Ренея сплавлением при 1200 °C никеля с алюминием (20-50 % Ni ; иногда в сплав добавляются незначительные количества цинка или хрома), после чего размолотый сплав для удаления алюминия обрабатывают горячим раствором гидроксида натрия с концентрацией 10 - 35 %; остаток промывают водой в атмосфере водорода. Лежащий в основе приготовления никеля Ренея принцип используется и для получения каталитически активных форм других металлов - кобальта, меди, железа и т. д.

Универсальные Катализаторы Палладий Палладий - переходный металл серебристо-белого цвета с гранецентрированной кубической решёткой типа Cu Палладий часто применяется как катализатор, в основном, в процессе гидрогенизации жиров и крекинге нефти. Хлорид палладия используется как катализатор и для обнаружения микроколичеств угарного газа в воздухе или газовых смесях

Универсальные катализаторы Платина Платина, особенно в мелкодисперсном состоянии, является очень активным катализатором многих химических реакций, в том числе используемых в промышленных масштабах. Например, платина катализирует реакцию присоединения водорода к ароматическим соединениям даже при комнатной температуре и атмосферном давлении водорода. Ещё в 1821 немецкий химик И. В. Дёберейнер обнаружил, что платиновая чернь способствует протеканию ряда химических реакций; при этом сама платина не претерпевала изменений. Так, платиновая чернь окисляла пары винного спирта до уксусной кислоты уже при обычной температуре. Через два года Дёберейнер открыл способность губчатой платины при комнатной температуре воспламенять водород. Если смесь водорода и кислорода (гремучий газ) ввести в соприкосновение с платиновой чернью или с губчатой платиной, то сначала идет сравнительно спокойная реакция горения. Но так как эта реакция сопровождается выделением большого количества теплоты, платиновая губка раскаляется, и гремучий газ взрывается. На основании своего открытия Дёберейнер сконструировал «водородное огниво» - прибор, широко применявшийся для получения огня до изобретения спичек.

Сравнение Неорганических Катализаторов и Биологических ферментов Общее между ферментами и неорганическими катализаторами: 1. Увеличивают скорость химических реакций, при этом сами не расходуются. 2. Ферменты и неорганические катализаторы ускоряют энергетически возможные реакции. 3. Энергия химической системы остается постоянной. 4. В ходе катализа направление реакции не изменяется.

Ферменты обладают конформационной лабильностью - способностью к небольшим изменениям своей структуры за счет разрыва и образования новых слабых связей, не обладают неорганические катализаторы

Сравнение Неорганических Катализаторов и Биологических ферментов Признаки Сравнения Неорганические катализаторы Ферменты Химическая природа Низкомолекулярные вещества, образованные одним или несколькими элементами Белки-высокомолекулярные полимеры Видоспецифичность Универсальные катализаторы На каждую реакцию нужен свой фермент Кислотная среда Сильнокислая или щелочная У каждого органа своя кислотная среда Интервалы t Очень широкие 35-42 градуса Цельсия,затем денатурируют Увеличение скорости реакций От 10 ^2 до 10^6 раз От 10^8 до 10^12 раз Стабильность Могут быть побочные эффекты(70%) Почти 100% выход продуктов.

П ерекись водорода без присутствия катализаторов разлагается довольно медленно. При наличии неорганического катализатора (обычно солей железа) реакция несколько убыстряется. А при добавлении фермента каталазы пероксид разлагается с невообразимой скоростью. MnO2+H2O2=>O2+H2O+MnO

В отличие от катализаторов неорганической природы ферменты "работают" в "мягких" условиях: при атмосферном давлении, при температуре 30 - 40°С, при значении рН-среды близком к нейтральному. Скорость ферментативного катализа намного выше, чем небиологического. Единственная молекула фермента может катализировать от тысячи до миллиона молекул субстрата за 1 минуту. Такая скорость недостижима для катализаторов неорганической природы.

Итог Несмотря на то, что и ферменты, и неорганические катализаторы используются для одной цели-ускорять вещества, они обладают довольно разными свойствами. Но не стоит забывать, что без них люди не смогли достичь успехов не только в химии, но и в других науках. Не нужно искать золотую середину в поиске идеального, нужно использовать их для своего случае, где смогут себя проявить по максимуму.

Сходство

1. Катализируют только энергетически возможные реакции. 2. Не изменяют направления реакции. 3. Ускоряют наступление равновесия реакции, но не сдвигают его. 4. Не расходуются в процессе реакции.

1. Скорость ферментативной реакции намного выше. 2. Высокая специфичность. 3. Мягкие условия работы (внутриклеточные). 4. Возможность регулирования скорости реакции. 5. Скорость ферментативной реакции пропорциональна количеству фермента.

Ферментативный катализ имеет свои особенности

Этапы катализа

В ферментативной реакции можно выделить следующие этапы:

1. Присоединение субстрата (S) к ферменту (E) с образованием фермент-субстратного комплекса (E-S).

2. Преобразование фермент-субстратного комплекса в один или несколько переходных комплексов (E-X) за одну или несколько стадий.

3. Превращение переходного комплекса в комплекс фермент-продукт (E-P).

4. Отделение конечных продуктов от фермента.

Механизмы катализа

Доноры

Акцепторы

СООН -NH 3 + -SH

СОО- -NH 2 -S-

1. Кислотно-основной катализ – в активном центре фермента находятся группы специфичных аминокислотных остатков, которые являются хорошими донорами или акцепторами протонов. Такие группы представляют собой мощные катализаторы многих органических реакций.

2. Ковалентный катализ – ферменты реагируют со своими субстратами, образуя при помощи ковалентных связей очень нестабильные фермент-субстратные комплексы, из которых в ходе внутримолекулярных перестроек образуются продукты реакции.

Типы ферментативных реакций

1. Тип "пинг-понг" – фермент сначала взаимодействует с субстратом А, отбирая у него какие либо химические группы и превращая в соответствующий продукт. Затем к ферменту присоединяется субстрат В, получающий эти химические группы. Примером являются реакции переноса аминогрупп от аминокислот на кетокислоты - трансаминирование.

Ферментативная реакция по типу "пинг-понг"

2. Тип последовательных реакций – к ферменту последовательно присоединяются субстраты А и В, образуя "тройной комплекс", после чего осуществляется катализ. Продукты реакции также последовательно отщепляются от фермента.

Ферментативная реакция по типу "последовательных реакций"

3. Тип случайных взаимодействий – субстраты А и В присоединяются к ферменту в любом порядке, неупорядоченно, и после катализа так же отщепляются.

Ферментативная реакция по типу "случайных взаимодействий"

Ферменты имеют белковую природу

Давно выяснено, что все ферменты являются белками и обладают всеми свойствами белков. Поэтому подобно белкам ферменты делятся на простые и сложные.

Простые ферменты состоят только из аминокислот – например, пепсин , трипсин , лизоцим .

Сложные ферменты (холоферменты) имеют в своем составе белковую часть, состоящую из аминокислот –апофермент , и небелковую часть – кофактор . Кофактор, в свою очередь, может называться коферментом или простетической группой. Примером могут быть сукцинатдегидрогеназа (содержит ФАД) (в цикле трикарбоновых кислот), аминотрансферазы (содержат пиридоксальфосфат) (функция), пероксидаза (содержит гем). Для осуществления катализа необходим полноценный комплекс апобелка и кофактора, по отдельности катализ они осуществить не могут.

Как многие белки, ферменты могут быть мономерами , т.е. состоят из одной субъединицы, и полимерами , состоящими из нескольких субъединиц.

Ферменты - это специализированные белки, образуются в клетках и способны ускорять биохимические процессы, т.е. это биологические катализаторы.

Многие ферменты для проявления каталитической активности нуждаются в присутствии некоторых веществ небелковой природы - кофакторов. Различают 2 группы кофакторов - ионы металлов (а также некоторые неорганические соединения) и коферменты, которые представляют собой органические вещества. В числе коферментов есть такие, которые содержат металлы (железо в геме, кобальт в кобаламиде).

Сходства ферментов и неорганических катализаторов:

  • 1. катализируют только энергетически возможные реакции;
  • 2. не изменяют равновесия в обратимых реакциях;
  • 3. не изменяют направление реакции;
  • 4. не расходуются в результате реакции.

Отличия между ферментами и неорганическими катализаторами (общие свойства ферментов):

  • 1. сложность строения;
  • 2. высокая мощность действия. За единицу фермента принимают такое его количество, которое катализирует превращение 1мкМ вещества за 1 минуту;
  • 3. специфичность;
  • 4. это вещества с регулируемой активностью;

действуют в мягких условиях организма.

Давно выяснено, что все ферменты являются белками и обладают всеми свойствами белков. Поэтому подобно белкам ферменты делятся на простые и сложные.

Простые ферменты состоят только из аминокислот - например, пепсин, трипсин, лизоцим.

Сложные ферменты (холоферменты) имеют в своем составе белковую часть, состоящую из аминокислот - апофермент, и небелковую часть - кофактор. Кофактор, в свою очередь, может называться коферментом или простетической группой. Примером могут быть сукцинатдегидрогеназа (содержит ФАД) (в цикле трикарбоновых кислот), аминотрансферазы (содержат пиридоксальфосфат) (функция), пероксидаза (содержит гем). Для осуществления катализа необходим полноценный комплекс апобелка и кофактора, по отдельности катализ они осуществить не могут.

По типу катализируемых реакций ферменты подразделяются на 6 классов согласно иерархической классификации ферментов (КФ, EC -- Enzyme Comission code). Классификация была предложена Международным союзом биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology). Каждый класс содержит подклассы, так что фермент описывается совокупностью четырёх чисел, разделённых точками. Например, пепсин имеет название ЕС 3.4.23.1. Первое число грубо описывает механизм реакции, катализируемой ферментом:

  • 1. Оксидоредуктазы, катализирующие окисление или восстановление. Пример: каталаза, алкогольдегидрогеназа
  • 2. Трансферазы, катализирующие перенос химических групп с одной молекулы субстрата на другую. Среди трансфераз особо выделяют киназы, переносящие фосфатную группу, как правило, с молекулы АТФ.
  • 3. Гидролазы, катализирующие гидролиз химических связей. Пример: эстеразы, пепсин, трипсин, амилаза, липопротеинлипаза
  • 4. Лиазы, катализирующие разрыв химических связей без гидролиза с образованием двойной связи в одном из продуктов.
  • 5. Изомеразы, катализирующие структурные или геометрические изменения в молекуле субстрата.
  • 6. Лигазы, катализирующие образование химических связей между субстратами за счет гидролиза АТФ. Пример: ДНК-полимераза

При растворении в воде молекулы белка приобретают положительный заряд.

Как это свойство белка выразить с помощью значения рI ?

+ а. рI > 7 г. pI < 3

б. pI = 7 д. по знаку заряда нельзя судить об

в. pI< 7 интервале значения рI.

3. При растворении в воде белка, содержащего аминокислоты глутамат, аргинин, валин, молекулы белка приобрели положительный заряд. Что можно сказать о аминокислотном составе белка?

а. глутамата больше, чем аргинина + г. аргинина больше, чем глутамата

б. валина меньше, чем глутамата д. аргинина и глутамата одинаковое

в. валина больше, чем глутамата количество

4 . У белка крови альбумина значение величины рI равно 4,6. Это означает, что в водном растворе

+ а. белок заряжен отрицательно г. знак заряда может быть любой

б. белок заряжен положительно д. знак заряда определить невозможно

в. белок не имеет заряда

Сходство ферментов с неорганическими катализаторами заключается в том,

а. фермент обладает высокой специфичностью

б. скорость ферментативной реакции регулируется

+ г. в ходе катализа энергия системы остается постоянной

Отличие ферментов от неорганических катализаторов заключается в том, что

(2 ответа):

+ а. фермент обладает высокой специфичностью

+ б. скорость ферментативной реакции регулируется

в. в ходе катализа энергия химической системы изменяется

г. ферменты катализируют энергетически невозможные реакции

д. в ходе катализа направление химической реакции изменяется

7. Объясняя строение фермента, упомянули термины « кофактор и кофермент».

Следует уточнить:

+а. кофактор и кофермент находятся вне активного центра

б. только кофактор находится в активном центре

в. только кофермент находится в активном центре

г. кофактор и кофермент находятся в активном центре

д. кофермент находится вне активного центра

8. По определению: «Денатурация белка-это

а. потеря растворимости г. изменение пространственной

б. гидролиз всех пептидных связей структуры

в. частичный протеолиз +д. потеря природных свойств белка.

9. Обсуждая функции белка, применили термин «апофермент». Что имели ввиду:

а. сложный белок-фермент + г. белковую часть фермента

б. простой белок-фермент д. инактивированный белок-фермент.

в. небелковую часть фермента

10. Активный центр сложного белка-фермента включает в себя участки:



а. только каталитический г. субстратный и аллостерический

б. только субстратный д. каталитический и аллостерический

+ в. субстратный и каталитический

11. В основу понятия «специфичность» фермента положены:

а. тип реакции г. строение продукта реакции

б. строение субстрата д. тип реакции, строение субстрата

+в. тип реакции и строение субстрата и продукта реакции.

12. При изучении свойств фермента обнаружили, что он действует на субстраты одного химического класса, имеющие сходное пространственное строение. Как определить вид возможной специфичности:

а. абсолютная + г. групповая, стереоспецифичность

б. группова я (относительная) д. абсолютная, стероспецифичность

в.стереоспецифичность

13. Теория « индуцированного изменения пространственной конфигурации фермента и субстрата» в процессе их взаимодействия выдвинута ученым

+ а . Кошландом г. Ментен

б. Лоури д. Фишером

в. Михаэлисом

14. Характеризуя белок, применили термин «холофермент». Что имели ввиду: это

+ а. сложный белок-фермент г. белковую часть фермента

б. простой белок-фермент д. инактивированный белок-фермент

в. небелковую часть фермента

15. Деление ферментов на классы основано на:

а. строении субстрата г. природе кофермента

б. строении продукта реакции д. типе реакции и природе кофермента

+в. типе катализируемой реакции

16. Ферменты, содержащие в активном центре ионы железа, дезактивируются под влиянием иона цианида. Определите тип ингибирования:

а. конкурентный в. неспецифический

б. неконкурентный +г. специфический



17. Вещество «эффектор, модулятор» действует на участок фермента:

а. субстратный г. субстратный и аллостерический

б. каталитический д. субстратный и каталитический

+ в. аллостерический