Болезни Военный билет Призыв

Нерегулярные типы размножения. III.2.10. Влияние способа размножения на расщепление. Наследование при нерегулярных типах полового размножения. Учебные и воспитательные цели

При половом размножении развитие организмов происходит из зигот, возникающих при слиянии половых клеток. Нарушение нормального полового процесса или наличие нерегулярных типов полового размножения (партеногенеза, андрогенеза, гиногенеза) в жизненном цикле изменяют характер наследования.

Впервые данные о наследовании при партеногенезе у ястребинок (Hieracium) были получены Г. Менделем . Он отмечал, что у Hieracium наблюдается противоположное тому, что обнаруживалось у гороха: в первом поколении не было единообразия, а в F 2 не происходило расщепления. Мендель не смог объяснить этих явлений, так как он не знал, что в роде Hieracium распространена апогамия (партеногенез).

В природе многие виды размножаются партеногенетически - низшие ракообразные, пчелы, ящерицы, некоторые рыбы; среди растений - малина, манжетки, лапчатки, ястребинки и др.

При амейотическом партеногенезе , протекающем без мейоза, все потомки, развивающиеся из диплоидной клетки - гомо- или гетерозиготной - оказываются одинаковыми, такими же, как мать, расщепления в потомстве не происходит.

Если партеногенетическое развитие осуществляется после мейоза (гаплоидный партеногенез ), то гетерозиготный материнский организм может образовать два сорта гамет (А и а) с равной вероятностью и расщепление зависит от соотношения выживших гаплоидных особей с разным генотипом .

У видов с гапло-диплоидным определением пола (пчелы, осы, наездники, муравьи и др.) самки развиваются из оплодотворенных, а большинство самцов - из неоплодотворенных яиц , причем гаплоидность сохраняется только в клетках зародышевого пути, в соматических клетках число хромосом вторично удваивается.

Соотношение полов при партеногенетическом развитии обычно отличается от соотношения 1:1 - в потомстве, как правило, преобладают самки. Это связано, по-видимому, с большей гибелью неоплодотворенных гаплоидных яиц, из которых развиваются самцы.

Так, у пчел в семье количество самок (рабочих пчел) в сотни раз больше, чем самцов-трутней. Это служит причиной нарушения нормального расщепления.

Например, при скрещивании гомозиготной коричневоглазой (доминантный признак) самки (генотип АА) с рецессивным белоглазым самцом (аа) * в F 1 появляются коричневоглазые самки (Аа) и самцы (АА) * . В F 2 произойдет расщепление: все самки окажутся коричневоглазыми - АА и аА, а партеногенетические самцы будут двух типов - коричневоглазые (АА) * и белоглазые (аа) * в соотношении 1:1. Так как самок в потомстве в сотни раз больше, чем самцов, то в расщеплении будут преобладать коричневоглазые особи, т. е. наблюдается сильное отклонение от нормального расщепления (3:1).

Министерство здравоохранения Республики Беларусь

УО «Гомельский государственный медицинский университет»

Кафедра медицинской биологии и генетики

Обсуждено на заседании кафедры

Протокол № ____ от «___»_________________20___ года

ЛЕКЦИЯ № 4

по медицинской биологии и генетике

для студентов 1 курса

лечебного, медико-профилактического и медико-диагностического

факультетов

Тема: «Размножение и его цитологические основы».

Время - 90 мин.

Учебные и воспитательные цели:

1. Знать эволюцию форм размножения организмов, сущность бесполого и полового размножения.

2. Выделить особенности полового размножения у млекопитающих.

3. Ознакомить с биологической сущностью нерегулярных типов полового размножения.

ЛИТЕРАТУРА:

1. - биология. Курс лекций для студентов мед. ВУЗов. - Витебск, 2000 с. 70-84.

2. Биология /Под ред.В.Н. Ярыгина/ 1-я книга - М.:Вш,1997. - с. 202-220.

3. О.-Я. Л. , Л.А. Храмцова. Практикум по мед.биологии. - Изд. «Белый Ветер», 2000 - с. 33-38.

4. Заяц Р.Г., Рачковская И.В. Основы общей и медицинской генетики. Мн.: ВШ, 1998. - с.29-31.

МАТЕРИАЛЬНОЕ ОБЕСПЕЧЕНИЕ

1. Мультимедийная презентация.


РАСЧЕТ УЧЕБНОГО ВРЕМЕНИ

№ п/п

Расчет рабочего времени

Размножение - универсальное свойство живого.

Бесполое размножение, его виды и биологическое значение.

Половое размножение, его виды.

Гаметогенез. Закономерности овогенеза и сперматогенеза у млекопитающих. Особенности строения гамет.

Оплодотворение, его фазы, биологическая сущность. Моно- и полиспермия.

Особенности репродукции у человека, ее гормональная регуляция.

Всего:


Размножение - способность организмов к самовоспроизведению. Свойства организмов производить потомство. Это является условием существования вида, в основе которого - передача генетического материала.

Существует два основных типа размножения: бесполое и половое.

Бесполое размножение - участвует одна особь; образуются особи генетически идентичные исходной родительской особи; половые клетки не образуются; нет генетического разнообразия. Бесполое размножение усиливает роль стабилизирующей функции естественного отбора, обеспечивает сохранение приспособленности в изменяющихся условиях обитания.

Встречается два вида бесполого размножения: вегетативное и спорообразование. Частным случаем является полиэмбриония у позвоночных - бесполое размножение на ранних стадиях эмбрионального развития. Впервые описано И. Мечниковым на примере расщепления бластул у медузы и развитие из каждого агрегата клеток целого организма. У человека примером полиэмбрионии является развитие двойни однояйцевых однополых близнецов.

Размножение на организменном уровне

Бесполое

Вегетативное:

Спорообразование:

Размножение группой соматических клеток.

1. Простое деление надвое: у прокариот, и одноклеточных эукариот.

2. Шизогония (эндогония): у одноклеточных: жгутиковых и споровиков.

3. Почкование: у одноклеточных дрожжей; у многоклеточных - гидры.

4. Фрагментация: у многоклеточных червей.

5. Полиэмбриония.

6. Вегетативными органами: образование стеблевых, корневых почек, луковицами, клубнями.

Упорядоченное деление: равномерный, продольный, и поперечный амитоз у морской звезды и кольчатых червей.

Спора – специализированная клетка с гаплоидным набором хромосом. Образуется мейозом, реже – митозом на материнском растении спорофите в спорангиях. Встречается у простейших эукариот, водорослей, грибов, мхов, папоротников, хвощей, плаунов.


Эволюционно половому размножению предшествовал половой процесс - конъюгация. Конъюгация обеспечивает обмен генетической информации без увеличения количества особей. Встречается у простейших эукариот, водорослей и бактерий.

Половое размножение - возникновение и развитие потомства из оплодотворенной яйцеклетки - зиготы. В ходе исторического развития половое размножение организмов стало доминирующим в растительном и животном мире. Оно имеет ряд преимуществ:

1. Высокий коэффициент размножения. Большое количество зачатков новых особей.

2. Полное обновление генетического материала. Источник наследственной изменчивости. Успех в борьбе за существование.

3. Большие адаптивные способности дочерних особей.

Половое размножение характеризуется следующими особенностями:

1. Участвуют две особи.

2. Источником образования новых организмов служат специальные клетки – гаметы, обладающие половой дифференцировкой.

3. Для образования нового организма необходимо слияние двух половых клеток. Достаточно 1 клетки каждого родителя.

4. Деление - мейоз, обеспечивает эволюционные перспективы.

Деление свойственно прежде всего одноклеточным организмам . Как правило, оно осуществляется путём простого деления клетки надвое. У некоторых простейших (например, фораминифер) происходит деление на большее число клеток. Во всех случаях образующиеся клетки полностью идентичны исходной. Крайняя простота этого способа размножения, связанная с относительной простотой организации одноклеточных организмов, позволяет размножаться очень быстро. Так, в благоприятных условиях количество бактерий может удваиваться каждые 30-60 минут. Размножающийся бесполым путём организм способен бесконечно воспроизводить себя, пока не произойдёт спонтанное изменение генетического материала - мутация . Если эта мутация благоприятна, она сохранится в потомстве мутировавшей клетки, которое будет представлять собой новый клеточный клон.

Размножение спорами

Нередко бесполому размножению бактерий предшествует образование спор. Бактериальные споры - это покоящиеся клетки со сниженным метаболизмом, окружённые многослойной оболочкой, устойчивые к высыханию и другим неблагоприятным условиям, вызывающим гибель обычных клеток. Спорообразование служит как для переживания таких условий, так и для расселения бактерий: попав в подходящую среду, спора прорастает, превращаясь в вегетативную (делящуюся) клетку.

Бесполое размножение с помощью одноклеточных спор свойственно и различным грибам и водорослям . Споры во многих случаях образуются путём митоза (митоспоры), причём иногда (особенно у грибов) в огромных количествах; при прорастании они воспроизводят материнский организм. Некоторые грибы, например злостный вредитель растений фитофтора, образуют подвижные, снабжённые жгутиками споры, называемые зооспорами или бродяжками. Проплавав в капельках влаги некоторое время, такая бродяжка «успокаивается», теряет жгутики, покрывается плотной оболочкой и затем, в благоприятных условиях, прорастает.

Помимо митоспор, у многих из указанных организмов, а также у всех высших растений формируются споры и иного рода , а именно мейоспоры, образующиеся путём мейоза . Они содержат гаплоидный набор хромосом и дают начало поколению, обычно не похожему на материнское и размножающемуся половым путём. Таким образом, образование мейоспор связано с чередованием поколений - бесполого (дающего споры) и полового.
Вегетативное размножение . Другой вариант бесполого размножения осуществляется путём отделения от организма его части, состоящей из большего или меньшего числа клеток. Из них развивается взрослый организм. Примером может служить почкование у губок и кишечнополостных или размножение растений побегами , черенками , луковицами или клубнями . Такая форма бесполого размножения обычно называется вегетативным размножением. В своей основе оно аналогично процессу регенерации. Играет важную роль в практике растениеводства. Так, может случиться, что высеянное растение (например, яблоня) обладает некой удачной комбинацией признаков. У семян данного растения эта удачная комбинация почти наверняка будет нарушена, так как семена образуются в результате полового размножения, а оно связано с рекомбинацией генов. Поэтому при разведении яблонь обычно используют вегетативное размножение - отводками, черенками или прививками почек на другие деревья.
Бесполое размножение, воспроизводящее идентичные исходному организму особи, не способствует появлению организмов с новыми вариантами признаков, а тем самым ограничивает возможность приспособления видов к новым для них условиям среды. Средством преодоления этой ограниченности стал переход к половому размножению.

Почкование н екоторым видам одноклеточных свойственна такая форма бесполого размножения, как почкование . В этом случае происходит митотическое деление ядра. Одно из образовавшихся ядер перемещается в формирующееся локальное выпячивание материнской клетки , а затем этот фрагмент отпочковывается. Дочерняя клетка существенно меньше материнской, и ей требуется некоторое время для роста и достраивания недостающих структур, после чего она приобретает вид, свойственный зрелому организму.Почкование- вид вегетативного размножения. Почкованием размножаются многие низшие грибы , например дрожжи и даже многоклеточные животные, например пресноводная гидра . При почковании дрожжей на клетке образуется утолщение, постепенно превращающиеся в полноценную дочернюю клетку дрожжей. На теле гидры несколько клеток начинают делиться, и постепенно на материнской особи вырастает маленькая гидра , у которой образуются рот со щупальцами и кишечная полость , связанная с кишечной полостью „матери“.Если материнская особь поймает добычу, то часть питательных веществ попадает и в маленькую гидру,и наоборот, дочерняя особь, охотясь, также делится пищей с материнской особью. вскоре маленькая гидра отделяется от материнского организма и обычно располагается рядом с ней.(но не всегда!)
Деление телом. Некоторые организмы могут размножаться делением тела на несколько частей, причём из каждой части вырастает полноценный организм, во всём сходный с родительской особью (плоские и кольчатые черви, иглокожие).
87.Половое размножение. Регулярные и нерегулярные формы.

Половое размножение - процесс у большинства эукариот , связанный с развитием новых организмов из половых клеток (у одноклеточных эукариот при конъюгации функции половых клеток выполняют половые ядра).

Образование половых клеток, как правило, связано с прохождением мейоза на какой-либо стадии жизненного цикла организма. В большинстве случаев, половое размножение сопровождается слиянием половых клеток, или гамет , при этом восстанавливается удвоенный, относительно гамет, набор хромосом. В зависимости от систематического положения эукариотических организмов, половое размножение имеет свои особенности, но как правило, оно позволяет объединять генетический материал от двух родительских организмов и позволяет получить потомков с комбинацией свойств, отсутствующей у родительских форм.

Эффективности комбинирования генетического материала у потомков, полученных в результате полового размножения способствуют:


  1. случайная встреча двух гамет;

  2. случайное расположение и расхождение к полюсам деления гомологичных хромосом при мейозе;

  3. кроссинговер между хроматидами .
Такая форма полового размножения как партеногенез , не предусматривает слияния гамет. Но так как организм развивается из половой клетки (ооцита), партеногенез все равно считается половым размножением.

Во многих группах эукариот произошло вторичное исчезновение полового размножения, или же оно происходит очень редко. В частности, в отдел дейтеромицетов (грибы) объединяет обширную группу филогенетических аскомицетов и базидиомицетов , утративших половой процесс. До 1888 года предполагалось, что среди наземных высших растений половое размножение полностью утрачено у сахарного тростника . Утеря полового размножения в какой-либо группе многоклеточных животных не описана. Однако известны многие виды (низшие ракообразные - дафнии , некоторые типы червей ), способные в благоприятных условиях размножаться партеногенетически в течение десятков и сотен поколений. Например, некоторые виды коловраток на протяжении миллионов лет размножаются только партеногенетически, даже образуя при этом новые виды (!).

У ряда полиплиодных организмов с нечётным числом наборов хромосом половое размножение играет малую роль в поддержании генетической изменчивости в популяции в связи с образованием несбалансированых наборов хромосом в гаметах и у потомков.

Возможность комбинировать генетический материал при половом размножении имеет большое значение для селекции модельных и хозяйственно важных организмов.

88.Цитологические основы полового размножения. Мейоз, как специфический процесс при формировании половых клеток.

Мейоз (от греч. meiosis - уменьшение) или редукционное деление клетки - деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом - образованием специализированных половых клеток , или гамет , из недифференцированных стволовых .

С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса .

В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация ) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.

Этот же механизм лежит в основе стерильности межвидовых гибридов . Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет . Определенные ограничения на конъюгацию хромосом накладывают и хромосомные мутации (масштабные делеции, дупликации, инверсии или транслокации).

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.


  • Профаза I - профаза первого деления очень сложная и состоит из 5 стадий:

  • Лептотена или лептонема - упаковка хромосом.

  • Зиготена или зигонема - конъюгация (соединение) гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами.

  • Пахитена или пахинема - кроссинговер (перекрест), обмен участками между гомологичными хромосомами; гомологичные хромосомы остаются соединенными между собой.

  • Диплотена или диплонема - происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток .

  • Диакинез - ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам ; гомологичные хромосомы остаются соединёнными между собой.

  • Метафаза I - бивалентные хромосомы выстраиваются вдоль экватора клетки.

  • Анафаза I - микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе .

  • Телофаза I
Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

  • Профаза II - происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления.

  • Метафаза II - унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.

  • Анафаза II - униваленты делятся и хроматиды расходятся к полюсам.

  • Телофаза II - хромосомы деспирализуются и появляется ядерная оболочка.
В результате из одной диплоидной клетки образуется четыре гаплоидных клетки . В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и два так называемых редукционных тельца (абортивные дериваты первого и второго делений).

89.Гаметогенез. Строение половых клеток.

Гаметогенез подразделяется на сперматогенез (процесс образования сперматозоидов у самцов) и оогенез (процесс образования яйцеклетки). По тому, что происходит с ДНК, эти процессы практически не отличаются: одна исходная диплоидная клетка дает четыре гаплоидные. Однако, по тому, что происходит с цитоплазмой, эти процессы кардинально различаются.

В яйцеклетке накапливаются питательные вещества, необходимые в дальнейшем для развития зародыша, поэтому яйцеклетка – это очень крупная клетка, и когда она делится, цель – сохранить питательные вещества для будущего зародыша, поэтому деление цитоплазмы несимметрично. Для того чтобы сохранить все запасы цитоплазмы и при этом избавиться от ненужного генетического материала, от цитоплазмы отделяются полярные тельца , которые содержат очень мало цитоплазмы, но позволяют поделить хромосомный набор. Полярные тельца отделяются при первом и втором делении мейоза

90.Закономерности сперматогенеза у млекопитающих и человека.

91.Закономерности овогенеза у млекопитающих и человека.

Первая фаза раневого процесса - фаза воспаления - характеризуется травматическим отеком тканей, повышением сосудистой проницаемости, ацидозом, миграцией лейкоцитов, тучных клеток и макрофагов. Происходит очищение раны путем фагоцитоза и лизиса некротизированных тканей.

Во второй фазе раневого процесса - фазе регенерации - происходит развитие грануляционной ткани , постепенно заполняющей раневой дефект. Основными структурами этой ткани являются фибробласты, межклеточное вещество и капилляры. Клетки фиброблас-тического дифферона грануляционной ткани отличаются от фибробластов нормальной соединительной ткани высокой функциональной активностью. Они синтезируют белки и гликозаминоглнканы, образуя коллагеновые волокна. В развитии и созревании грануляционной ткани важную роль играют также макрофаги, тучные и плазматические клетки. Грануляционная ткань впоследствии преобразуется в рубцовую соединительную ткань.

Третья фаза раневого процесса - фаза реорганизации рубца - характеризуется прогрессирующим уменьшением числа кровеносных сосудов и клеточных элементов (фибробластов, макрофагов, тучных клеток) при явлениях нарастания общей массы коллагеновых волокон. Параллельно с созреванием грануляционной ткани и ее превращением в рубцовую ткань происходит эпителизация раны. Эпителизация раны и созревание грануляционной ткани строго соответствуют во времени.

В зависимости от характера и величины ранения, особенностей реактивности организма и других условий раневой процесс протекает по-разному. При небольшом объеме поражения имеет место заживление раны первичным натяжением. Воспаление и замещение дефекта в тканях следуют непосредственно за их травматическим отеком и не сопровождаются нагноением. К концу первой недели раневой процесс в основном завершается. Если же объем поражения велик и края раны оказываются на более или менее значительном расстоянии друг от друга, то заживление раны осуществляется через нагноение с образованием хорошо развитой грануляционной ткани с последующим ее рубцеванием. Заживление раны происходит вторичным натяжением со значительной продолжительностью фаз раневого процесса.

Заживление раны первичным и вторичным натяжением имеет количественные, но не качественные различия. Механизмы регенерации при этом принципиально сходны и включают воспаление, разрастание соединительной ткани, эпителизацию. Знание ключевых звеньев регенерацbонного процесса позволяет целенаправленно вести поиск средств регуляции заживления ран и разработке способов тканевой терапии.

К нерегулярным типам полового размножения можно отнести:

  • партеногенетическое,
  • гиногенетическое,
  • андрогенетическое

размножение животных и растений.

Партеногенез - это развитие зародыша из неоплодотворенной яйцеклетки. Явление естественного партеногенеза свойственно низшим ракообразным, коловраткам, перепончатокрылым (пчелам, осам) и др. Известен он также у птиц (индейки). Партеногенез можно стимулировать искусственно, вызывая активацию неоплодотворенных яиц путем воздействия различными агентами. Различают партеногенез:

  • соматический, или диплоидный,
  • генеративный, или гаплоидный.

При соматическом партеногенезе яйцеклетка не претерпевает редукционного деления или если и претерпевает, то два гаплоидных ядра, сливаясь вместе, восстанавливают диплоидный набор хромосом (автокариогамия); таким образом в клетках тканей зародыша сохраняется диплоидный набор хромосом. При генеративном партеногенезе зародыш развивается из гаплоидной яйцеклетки. Например, у медоносной пчелы (Apis mellifera) трутни развиваются из неоплодотворенных гаплоидных яиц путем партеногенеза.

Гиногенез . Очень сходно с партеногенезом гиногенетическое размножение. В отличие от партеногенеза при гиногенезе участвуют сперматозоиды как стимуляторы развития яйцеклетки (псевдогамия), но оплодотворения (кариогамии) в этом случае не происходит; развитие зародыша осуществляется исключительно за счет женского ядра . Гиногенез обнаружен у круглых червей, живородящей рыбки Molliensia formosa, у серебряного карася (Platypoecilus) и у некоторых растений - лютика (Ranunculus auricomus), мятлика (род Роа pratensis) и др. Гиногенетическое развитие можно вызвать искусственно , если перед оплодотворением сперму или пыльцу облучить рентгеновыми лучами, обработать химическими веществами или подвергнуть действию высокой температуры. При этом разрушается ядро мужской гаметы и теряется способность к кариогамии, но сохраняется способность к активации яйца.

Явление гиногенетического размножения имеет большое значение для изучения наследственности , так как при этом потомство получает наследственную информацию только от матери . Таким образом, при бесполом размножении, партеногенезе и гиногенезе потомство должно быть сходно только с материнским организмом.

Андрогенез . Прямой противоположностью гиногенеза является андрогенез. При андрогенезе развитие яйца осуществляется только за счет мужских ядер и материнской цитоплазмы . Андрогенез может иметь место в тех случаях, когда материнское ядро почему-либо погибает до момента оплодотворения. Если в яйцеклетку попадает один сперматозоид, то развивающийся зародыш с гаплоидным набором хромосом оказывается нежизнеспособным или маложизнеспособным. Жизнеспособность андрогенных зигот нормализуется, если восстанавливается диплоидный набор хромосом.

При огромном разнообразии форм размножения организмов все они могут быть сведены к двум основным типам: бесполому и половому. При бесполом размножении воспроизведение потомства происходит от одной родительской особи путем образования спор или вегетативно. При вегетативном размножении потомство возникает от отделившихся от материнской особи участков тела. При вегетативном размножении у растений сохраняется гетерозиготность в течение многих поколений.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция 1. Размножение .

План:

  1. Cущность размножения;
  2. Партеногенез. Моноспермия и полиспермия.
  3. Избирательность гамет и селективное оплодотворение.
  4. Нерегулярные типы полового размножения.
  5. Эволюционное значение апомиктического способа размножения.

Клетки и ее структурные элементы составляют материальную основу размножения организмов. Продолжение и преемственность жизни на Земле поддерживается благодаря

Размножению организмов.

При огромном разнообразии форм размножения организмов все они могут быть сведены к двум основным типам: бесполому и половому. При бесполом размножении воспроизведение потомства происходит от одной родительской особи путем образования спор или вегетативно. В первом случае новый организм возникает из споры.

При вегетативном размножении потомство возникает от отделившихся от материнской особи участков тела. При вегетативном размножении у растений сохраняется гетерозиготность в течение многих поколений.

При половом размножении потомство дают две родительские особи. Особую форму полового размножения представляет партеногенез, при котором новый организм возникает из неоплодотворенного яйца. У растений развитие зародыша без слияния половых клеток получило название апомиксиса.

Господствующим типом размножения животных и растений является половое размножение.

Моноспермия и полиспермия. При слиянии ядра яйцеклетки с ядрами двух и большего числа спермиев происходило бы нагромаждением ядерного материала и свойства отцовского и материнского организмов не могли бы наследоваться в равной степени. Поэтому у большинства растений и животных оплодотворение идет при участии одного спермия. Это моноспермия.

У некоторых видов птиц, млекопитающих, насекомых яйцо имеет несколько микропиле и в него проникает много сперматозоидов. Это явление получило название полиспермии. При полиспермии в цитоплазме ядра образуются несколько мужских пронуклеусов, однако только один из них соединяется с ядром яйцеклетки, а все другие растворяются.

У растений в ходе эволюции выработались механизмы, обеспечивающие блокирование зародышевого мешка после проникновения в него одной пыльцевой трубки.

Однако, наблюдались случаи, когда в зародышевый мешок проникают несколько пыльцевых трубок и происходило слияние спермиев с другими клетками зародышевого мешка, в результате чего образуется несколько зародышей. Полиспермия у растений возможна и при проникновении в зародышевый мешок одной пыльцевой трубки, когда спермии во время ее роста претерпели одно или несколько митотических делений. Явление полиспермии наблюдается у хлопчатника, табак, свеклы и др. растений.

Избирательность гамет и селективное оплодотворение. Ветер и насекомые заносят на рыльце цветка большое количество пыльцы разных растений того же вида, а очень часто и пыльцу других видов. В то же время в зародышевый мешок проникает, как правило, только одна пыльцевая трубка. Многочисленные исследования показали, что, как правило, оплодотворение происходит пыльцой других особей данного вида и сорта растений. Этот процесс обеспечивается целым рядом приспособлений: в сроках созревания генеративных органов, строении цветка, способа опыления, структуре пестика, биохимическом составе выделений пыльцевой трубки и т.д.

В то же время существуют не менее многочисленные физиологические и генетические барьеры, препятствующие оплодотворению растений одного вида пыльцой других видов или родов. При этом пыльцевые зерна совсем не прорастают или пыльцевые трубки не достигают зародышевого мешка, а если оплодотворение и происходит, то зародыш не развивается из-за несоответствия хромосомных компонентов соединившихся гамет.

При прорастании на одном рыльце пыльцы разных сортов или разных растений одного и того же сорта выявляется разная конкурентноспособность пыльцевых трубок по скорости их прорастания в тканях столбика пестика. Это явление селективности оплодотворения.

Нерегулярные типы полового размножения. Основной тип полового размножения, сущность которого составляет процесс соединения мужских и женских половых гамет наз. Амфимиксисом. Но у некоторых растений развитие зародыша происходит без слияния половых клеток.

Апомиксис представляет собой способ образования семян без полового процесса. Формы апомиксиса у покрытосеменных растений многообразны и различаются между собой по характеру развития зародышевого мешка, зародыша и эндосперма. Апомиксис может нерегулярным и регулярным. При первом типе материнская клетка мегаспор претерпевает обычный мейоз и возникает гаплоидный зародышевый мешок. Новый зародыш может образовываться из неоплодотворенной яйцеклетки или других клеток зародышевого мешка – синергид и антипод. Иногда спермий проникает в яйцеклетку, но с ее ядром не сливается. Он лишь стимулирует ее деление, а сам элиминируется (гиногенез). При этих формах нерегулярного апомиксиса возникают гаплоиды с редуцированным числом хромосом и признаками материнского организма. Если ядро яйцеклетки по каким то причинам погибает, зародыш может образоваться из ядра спермия и цитоплазмы яйцеклетки (андрогенез). Он будет иметь гаплоидное число хромосом и признаки отцовского растения.

Нерегулярный апомиксис в природе появляется спорадически и может быть вызван искусственно.

При регулярном апомиксисе зародышевый мешок диплоиден. Он может возникать из нередуцированной клетки археспория (генеративная апоспория) или других клеток нуцеллуса - центральной многоклеточной части семяпочки (соматическая апоспория). Зародыш при этом может образоваться из яйцеклетки (диплоидный партеногенез) или другой клетки гаметофита (диплоидная апогамия). Независимо от способа возникновения и плоидности зародышевого мешка зародыши могут образовываться м не из клеток гаметофита, а из нуцеллуса или его покрова – интегумента (адвентивная эмбриония). Эти зародыши всегда диплоидны и могут развиваться рядом с другими зародышами, возникшими из оплодотворенных или неоплодотворенных яйцеклеток, синергид или антипод. Такая форма апомиксиса широко распространена в сем. Рутовые.

Устойчивое апомиктическое размножение имеет преимущества по сравнению с обычным половым. Апомиксис позволяет ибежать расщепления в потомстве гетерозиготных гибридов и сохранить гетерозис в неограниченно длинном ряду поколений.

Эволюционное значение апомиктического способа размножения противоречиво. С одной стороны, апомиксис обладает большим претмуществом, связанным с наличием у апомиктов очень устойчиво и выгодной в данных условиях генетической системы, что часто обеспечивает им высокую жизнеспособность. С другой стороны, преимущество апомиктов имеет временный характер, т.к. в результате выключения полового процесса они образуют внутри вида закрытые клоновые системы и поэтому обладают малой эволюционной пластичностью.

Вопросы:

1). Назовите и охарактеризуйте пути бесполосеменного (семена без оплодотворения) размножения у высших растений.

2). Значение совмещения полового размножения и апомиксиса.

3). Что такое апомиксис и как он связан с видообразованием.

4). Почему виды, использовавшие апомиксис в своей эволюции, пришли в тупик и потеряли пластичность для будущей эволюции?