Болезни Военный билет Призыв

Определение параллельности прямых. Параллельные прямые, признаки и условия параллельности прямых

1. Если две прямые параллельны третьей прямой, то они являются параллельными:

Если a ||c и b ||c , то a ||b .

2. Если две прямые перпендикулярны третьей прямой, то они параллельны:

Если a c и b c , то a ||b .

Остальные признаки параллельности прямых основаны на углах, образующихся при пересечении двух прямых третьей.

3. Если сумма внутренних односторонних углов равна 180°, то прямые параллельны:

Если ∠1 + ∠2 = 180°, то a ||b .

4. Если соответственные углы равны, то прямые параллельны:

Если ∠2 = ∠4, то a ||b .

5. Если внутренние накрест лежащие углы равны, то прямые параллельны:

Если ∠1 = ∠3, то a ||b .

Свойства параллельных прямых

Утверждения, обратные признакам параллельности прямых, являются их свойствами. Они основаны на свойствах углов, образованных пересечением двух параллельных прямых третьей прямой.

1. При пересечении двух параллельных прямых третьей прямой, сумма образованных ими внутренних односторонних углов равна 180°:

Если a ||b , то ∠1 + ∠2 = 180°.

2. При пересечении двух параллельных прямых третьей прямой, образованные ими соответственные углы равны:

Если a ||b , то ∠2 = ∠4.

3. При пересечении двух параллельных прямых третьей прямой, образованные ими накрест лежащие углы равны:

Если a ||b , то ∠1 = ∠3.

Следующее свойство является частным случаем для каждого предыдущего:

4. Если прямая на плоскости перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой:

Если a ||b и c a , то c b .

Пятое свойство - это аксиома параллельности прямых:

5. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной прямой.

ГЛАВА III.
ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ

§ 35. ПРИЗНАКИ ПАРАЛЛЕЛЬНОСТИ ДВУХ ПРЯМЫХ.

Теорема о том, что два перпендикуляра к одной прямой параллельны (§ 33), даёт признак параллельности двух прямых. Можно вывести более общие признаки параллельности двух прямых.

1. Первый признак параллельности.

Если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны.

Пусть прямые АВ и СD пересечены прямой ЕF и / 1 = / 2. Возьмём точку О - середину отрезка КL секущей ЕF (черт. 189).

Опустим из точки О перпендикуляр ОМ на прямую АВ и продолжим его до пересечения с прямой СD, АВ_|_МN. Докажем, что и СD_|_МN.
Для этого рассмотрим два треугольника: МОЕ и NОК. Эти треугольники равны между собой. В самом деле: / 1 = / 2 по условию теоремы; ОK = ОL - по построению;
/ МОL = / NОК, как вертикальные углы. Таким образом, сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника; следовательно, /\ МОL = /\ NОК, а отсюда и
/ LМО = / КNО, но / LМО прямой, значит, и / КNО тоже прямой. Таким образом, прямые АВ и СD перпендикулярны к одной и той же прямой МN, следовательно, они параллельны (§ 33), что и требовалось доказать.

Примечание. Пересечение прямых МО и СD может быть установлено путём поворота треугольника МОL вокруг точки О на 180°.

2. Второй признак параллельности.

Посмотрим, будут ли параллельны прямые АВ и СD, если при пересечении их третьей прямой ЕF равны соответственные углы.

Пусть какие-нибудь соответственные углы равны, например / 3 = / 2 (черт. 190);
/ 3 = / 1, как углы вертикальные; значит, / 2 будет равен / 1. Но углы 2 и 1 - внутренние накрест лежащие углы, а мы уже знаем, что если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны. Следовательно, АВ || СD.

Если при пересечении двух прямых третьей соответственные углы равны, то эти две прямые параллельны.

На этом свойстве основано построение параллельных прямых при помощи линейки и чертёжного треугольника. Выполняется это следующим образом.

Приложим треугольник к линейке так, как это показано на чертеже 191. Будем передвигать треугольник так, чтобы одна его сторона скользила по линейке, а по какой-либо другой стороне треугольника проведём несколько прямых. Эти прямые будут параллельны.

3. Третий признак параллельности.

Пусть нам известно, что при пересечении двух прямых АВ и СD третьей прямой сумма каких-нибудь внутренних односторонних углов равна 2d (или 180°). Будут ли в этом случае прямые АВ и СD параллельны (черт. 192).

Пусть / 1 и / 2-внутренние односторонние углы и в сумме составляют 2d .
Но / 3 + / 2 = 2d , как углы смежные. Следовательно, / 1 + / 2 = / 3+ / 2.

Отсюда / 1 = / 3, а эти углы внутренние накрест лежащие. Следовательно, АВ || СD.

Если при пересечении двух прямых третьей сумма внутренних односторонних углов равна 2 d, то эти две прямые параллельны.

Упражнение.

Доказать, что прямые параллельны:
а) если внешние накрест лежащие углы равны (черт. 193);
б) если сумма внешних односторонних углов равняется 2d (черт. 194).

Параллельность двух прямых можно доказать на основе теоремы, согласно которой, два проведенных перпендикуляра по отношению к одной прямой, будут параллельны. Существуют определенные признаки параллельности прямых – всего их три, и все их мы рассмотрим более конкретно.

Первый признак параллельности

Прямые параллельны, если при пересечении их третьей прямой, образуемые внутренние углы, лежащие накрест, будут равны.

Допустим, при пересечении прямых АВ и СD прямой линией ЕF, были образованы углы /1 и /2. Они равны, так как прямая линия ЕF проходит под одним уклоном по отношению к двум остальным прямым. В местах пересечения линий, ставим точки Ки L – у нас получился отрезок секущей ЕF. Находим его середину и ставим точку О (черт. 189).

На прямую АВ опускаем перпендикуляр из точки О. Назовем его ОМ. Продолжаем перпендикуляр до тех пор, пока он не пересечется с прямой СD. В результате, первоначальная прямая АВ строго перпендикулярна МN, а это значит, что и СD_|_МN, но это утверждение требует доказательства. В результате проведения перпендикуляра и линии пересечения, у нас образовалось два треугольника. Один из них – МОЕ, второй – NОК. Рассмотрим их более подробно. признаки параллельности прямых 7 класс

Данные треугольники равны, поскольку, в соответствии с условиями теоремы, /1 =/2, а в соответствии с построением треугольников, сторона ОK = стороне ОL. Угол МОL =/NОК, поскольку это вертикальные углы. Из этого следует, что сторона и два угла, прилежащие к ней одного из треугольников соответственно равны стороне и двум углам, прилежащим к ней, другого из треугольников. Таким образом, треугольник МОL =треугольникуNОК, а значит, и угол LМО = углу КNО, но нам известно, что/LМО прямой, значит, и соответствующий ему, угол КNО тоже прямой. То есть, нам удалось доказать, что к прямой МN, как прямая АВ, так и прямая СD перпендикулярны. То есть, АВ и СD по отношению друг к другу являются параллельными. Это нам и требовалось доказать. Рассмотрим остальные признаки параллельности прямых (7 класс), которые отличаются от первого признака по способу доказательства.

Второй признак параллельности

Согласно второму признаку параллельности прямых, нам необходимо доказать, что углы, полученные в процессе пересечения параллельных прямых АВ и СD прямой ЕF, будут равны. Таким образом, признаки параллельности двух прямых, как первый, так и второй, основывается на равности углов, получаемых при пересечении их третьей линией. Допускаем, что /3 = /2, а угол 1 = /3, поскольку он вертикален ему. Таким образом, и /2 будет равен углу1, однако следует учитывать, что как угол 1, так и угол 2 являются внутренними, накрест лежащими углами. Следовательно, нам остается применить свои знания, а именно то, что два отрезка будут параллельными, если при их пересечении третьей прямой образованные, накрест лежащие углы будут равными. Таким образом, мы выяснили, что АВ || СD.

Нам удалось доказать, что при условии параллельности двух перпендикуляров к одной прямой, согласно соответствующей теореме, признак параллельности прямых очевиден.

Третий признак параллельности

Существует еще и третий признак параллельности, который доказывается посредством суммы односторонних внутренних углов. Такое доказательство признака параллельности прямых позволяет сделать вывод, что две прямые будут параллельны, если при пересечении их третье прямой, сумма полученных односторонних внутренних углов, будет равна 2d. См. рисунок 192.

Которые лежат в одной плоскости и либо совпадают, либо не пересекаются. В некоторых школьных определениях совпадающие прямые не считаются параллельными, здесь такое определение не рассматривается.

Свойства

  1. Параллельность - бинарное отношение эквивалентности , поэтому разбивает всё множество прямых на классы параллельных между собой прямых.
  2. Через любую точку можно провести ровно одну прямую, параллельную данной. Это отличительное свойство евклидовой геометрии , в других геометриях число 1 заменено другими (в геометрии Лобачевского таких прямых минимум две)
  3. 2 параллельные прямые в пространстве лежат в одной плоскости.
  4. При пересечении 2 параллельных прямых третьей, называемой секущей :
    1. Секущая обязательно пересекает обе прямые.
    2. При пересечении образуется 8 углов, некоторые характерные пары которых имеют особые названия и свойства:
      1. Накрест лежащие углы равны.
      2. Соответственные углы равны.
      3. Односторонние углы в сумме составляют 180°.

В геометрии Лобачевского

В геометрии Лобачевского в плоскости через точку Невозможно разобрать выражение (лексическая ошибка): C вне данной прямой AB

Проходит бесконечное множество прямых, не пересекающих A B . Из них параллельными к A B называются только две.

Прямая C E называется равнобежной (параллельной) прямой A B в направлении от A к B , если:

  1. точки B и E лежат по одну сторону от прямой A C ;
  2. прямая C E не пересекает прямую A B , но всякий луч, проходящий внутри угла A C E , пересекает луч A B .

Аналогично определяется прямая, равнобежная A B в направлении от B к A .

Все остальные прямые, не пересекающие данную, называются ультрапараллельными или расходящимися .

См. также


Wikimedia Foundation . 2010 .

  • Скрещивающиеся прямые
  • Нестерихин, Юрий Ефремович

Смотреть что такое "Параллельные прямые" в других словарях:

    ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ - ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ, непересекающиеся прямые, лежащие в одной плоскости … Современная энциклопедия

    ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ Большой Энциклопедический словарь

    Параллельные прямые - ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ, непересекающиеся прямые, лежащие в одной плоскости. … Иллюстрированный энциклопедический словарь

    Параллельные прямые - в евклидовой геометрии, прямые, которые лежат в одной плоскости и не пересекаются. В абсолютной геометрии (См. Абсолютная геометрия) через точку, не лежащую на данной прямой, проходит хотя бы одна прямая, не пересекающая данную. В… … Большая советская энциклопедия

    параллельные прямые - непересекающиеся прямые, лежащие в одной плоскости. * * * ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ, непересекающиеся прямые, лежащие в одной плоскости … Энциклопедический словарь

    ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ - в евклидовой геометрии прямые, к рые лежат в одной плоскости и не пересекаются. В абсолютной геометрии через точку, не лежащую на данной прямой, проходит хотя бы одна прямая, не пересекающая данную. В евклидовой геометрии существует только одна… … Математическая энциклопедия

    ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ - непересекающиеся прямые, лежащие в одной плоскости … Естествознание. Энциклопедический словарь

    Параллельные миры в фантастике - Возможно, эта статья содержит оригинальное исследование. Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление. Дополнительные сведения могут быть на странице обсуждения. У это … Википедия

    Параллельные миры - Параллельный мир (в фантастике) реальность, существующая каким то образом одновременно с нашей, но независимо от неё. Эта автономная реальность может иметь различные размеры: от небольшой географической области до целой вселенной. В параллельном … Википедия

    Параллельные - линии Прямые линии называются П., если ни они, ни ихпродолжения взаимно не пересекаются. Весточки одной из таких прямыхнаходятся на одинаковом расстоянии от другой. Однако, принято говорить: две П. прямые пересекаются в бесконечности. Такой… … Энциклопедия Брокгауза и Ефрона

Книги

  • Комплект таблиц. Математика. 6 класс. 12 таблиц + методика , . Таблицы отпечатаны на плотном полиграфическом картоне размером 680 х 980 мм. В комплект входит брошюра с методическими рекомендациями для учителя. Учебный альбом из 12 листов. Делимость…

На плоскости прямые называются параллельными, если у них нет общих точек, то есть они не пересекаются. Для обозначения параллельности используют специальный значок || (параллельные прямые a || b).

Для прямых, лежащих в пространстве, требования отсутствия общих точек недостаточно - чтобы они в пространстве были параллельными, они должны принадлежать одной плоскости (иначе они будут скрещивающимися).

За примерами параллельных прямых далеко идти не надо, они сопровождают нас повсюду, в комнате - это линии пересечения стены с потолком и полом, на тетрадном листе - противоположные края и т.д.

Совершенно очевидно, что, имея параллельность двух прямых и третью прямую, параллельную одной из первых двух, она будет параллельна и второй.

Параллельные прямые на плоскости связаны утверждением, которое не доказывается с помощью аксиом планиметрии. Его принимают как факт, в качестве аксиомы: для любой точки на плоскости, не лежащей на прямой, существует единственная прямая, которая проходит через нее параллельно данной. Эту аксиому знает каждый шестиклассник.

Ее пространственное обобщение, то есть утверждение, что для любой точки в пространстве, не лежащей на прямой, существует единственная прямая, которая проходит через нее параллельно данной, легко доказывается с помощью уже известной нам аксиомы параллельности на плоскости.

Свойства параллельных прямых

  • Если любая из параллельных двух прямых параллельна третьей, то они взаимно параллельны.

Этим свойством обладают параллельные прямые и на плоскости, и в пространстве.
В качестве примера рассмотрим его обоснование в стереометрии.

Допустим параллельность прямых b и с прямой a.

Случай, когда все прямые лежат в одной и той же плоскости оставим планиметрии.

Предположим, a и b принадлежат плоскости бетта, а гамма - плоскость, которой принадлежат a и с (по определению параллельности в пространстве прямые должны принадлежать одной плоскости).

Если допустить, что плоскости бетта и гамма различные и отметить на прямой b из плоскости бетта некую точку B, то плоскость, проведенная через точку B и прямую с должна пересечь плоскость бетта по прямой (обозначим ее b1).

Если бы полученная прямая b1 пересекала плоскость гамма, то, с одной стороны, точка пересечения должна была бы лежать на a, поскольку b1 принадлежит плоскости бетта, а с другой, она должна принадлежать и с, поскольку b1 принадлежит третьей плоскости.
Но ведь параллельные прямые a и с пересекаться не должны.

Таким образом, прямая b1 должна принадлежать плоскости бетта и при этом не иметь общих точек с a, следовательно, согласно аксиоме параллельности, она совпадает с b.
Мы получили совпадающую с прямой b прямую b1, которая принадлежит одной и той же плоскости с прямой с и при этом ее не пересекает, то есть b и с - параллельны

  • Через точку, которая не лежит на заданной прямой, параллельная данной может проходить лишь одна единственная прямая.
  • Лежащие на плоскости перпендикулярно третьей две прямые параллельны.
  • При условии пересечения плоскости одной из параллельных двух прямых, эту же плоскость пересекает и вторая прямая.
  • Соответствующие и накрест лежащие внутренние углы, образованные пересечением параллельных двух прямых третьей, равны, сумма у образовавшихся при этом внутренних односторонних равна 180°.

Верны и обратные утверждения, которые можно принять за признаки параллельности двух прямых.

Условие параллельности прямых

Сформулированные выше свойства и признаки представляют собой условия параллельности прямых, и их вполне можно доказать методами геометрии. Иначе говоря, для доказательства параллельности двух имеющихся прямых достаточно доказать их параллельность третьей прямой либо равенство углов, будь то соответствующих или накрест лежащих, и т.п.

Для доказательства в основном используют метод «от противного», то есть с допущения, что прямые непараллельны. Исходя из этого допущения, легко можно показать, что в этом случае нарушаются заданные условия, например, накрест лежащие внутренние углы оказываются неравными, что и доказывает некорректность сделанного допущения.