Болезни Военный билет Призыв

Основные законы геометрической оптики. Законы геометрической оптики

Основные законы геометрической оптики известны ещё с древних времен. Так, Платон (430 г. до н.э.) установил закон прямолинейного распространения света. В трактатах Евклида формулируется закон прямолинейного распространения света и закон равенства углов падения и отражения. Аристотель и Птолемей изучали преломление света. Но точных формулировок этих законов геометрической оптики греческим философам найти не удалось.Геометрическая оптика является предельным случаем волновой оптики, когда длина световой волны стремится к нулю. Простейшие оптические явления, например возникновение теней и получение изображений в оптических приборах, могут быть поняты в рамках геометрической оптики.

В основу формального построения геометрической оптики положено четыре закона , установленных опытным путем:· закон прямолинейного распространения света;· закон независимости световых лучей;· закон отражения;· закон преломления света.Для анализа этих законов Х. Гюйгенс предложил простой и наглядный метод, названный впоследствии принципом Гюйгенса .Каждая точка, до которой доходит световое возбуждение, является , в свою очередь, центром вторичных волн ; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту фронта действительно распространяющейся волны.

Основываясь на своем методе, Гюйгенс объяснил прямолинейность распространения света и вывел законы отражения и преломления .Закон прямолинейного распространения света свет в оптически однородной среде распространяется прямолинейно .Доказательством этого закона является наличие тени с резкими границами от непрозрачных предметов при освещении их источниками малых размеров.Тщательные эксперименты показали, однако, что этот закон нарушается, если свет проходит через очень малые отверстия, причем отклонение от прямолинейности распространения тем больше, чем меньше отверстия.

Тень, отбрасываемая предметом, обусловлена прямолинейностью распространения световых лучей в оптически однородных средах.Рис 7.1Астрономической иллюстрацией прямолинейного распространения света и, в частности, образования тени и полутени может служить затенение одних планет другими, например затмение Луны , когда Луна попадает в тень Земли (рис. 7.1). Вследствие взаимного движения Луны и Земли тень Земли перемещается по поверхности Луны, и лунное затмение проходит через несколько частных фаз (рис. 7.2).

Закон независимости световых пучков эффект, производимый отдельным пучком, не зависит от того , действуют ли одновременно остальные пучки или они устранены. Разбивая световой поток на отдельные световые пучки (например, с помощью диафрагм), можно показать, что действие выделенных световых пучков независимо.Закон отражения (рис. 7.3):· отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром , проведенным к границе раздела двух сред в точке падения угол падения α равен углу отражения γ: α = γ

Для вывода закона отражения воспользуемся принципом Гюйгенса. Предположим, что плоская волна (фронт волны АВ с , падает на границу раздела двух сред (рис. 7.4). Когда фронт волны АВ достигнет отражающей поверхности в точке А , эта точка начнет излучать вторичную волну .· Для прохождения волной расстояния ВС требуется время Δt = BC / υ . За это же время фронт вторичной волны достигнет точек полусферы, радиус AD которой равен: υ Δt = ВС. Положение фронта отраженной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC , а направление распространения этой волны – лучом II. Из равенства треугольников ABC и ADC вытекает закон отражения : угол падения α равен углу отражения γ. Закон преломления (закон Снелиуса ) (рис. 7.5):· луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела в точке падения, лежат в одной плоскости; · отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред .

Вывод закона преломления. Предположим, что плоская волна (фронт волны АВ ), распространяющаяся в вакууме вдоль направления I со скоростью с , падает на границу раздела со средой, в которой скорость ее распространения равна u (рис. 7.6).Пусть время, затрачиваемое волной для прохождения пути ВС , равно Dt . Тогда ВС = с Dt . За это же время фронт волны, возбуждаемой точкой А в среде со скоростью u , достигнет точек полусферы, радиус которой AD = u Dt . Положение фронта преломленной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC , а направление ее распространения – лучом III. Из рис. 7.6 видно, что , т.е. .Отсюда следует закон Снелиуса : .Несколько иная формулировка закона распространения света была дана французским математиком и физиком П. Ферма.

Физические исследования относятся большей частью к оптике, где он установил в 1662 г. основной принцип геометрической оптики (принцип Ферма). Аналогия между принципом Ферма и вариационными принципами механики сыграла значительную роль в развитии современной динамики и теории оптических инструментов.Согласно принципу Ферма , свет распространяется между двумя точками по пути, для прохождения которого необходимо наименьшее время . Покажем применение этого принципа к решению той же задачи о преломлении света.Луч от источника света S , расположенного в вакууме идет до точки В , расположенной в некоторой среде за границей раздела (рис. 7.7).

В каждой среде кратчайшим путем будут прямые SA и AB . Точку A охарактеризуем расстоянием x от перпендикуляра, опущенного из источника на границу раздела. Определим время, затраченное на прохождение пути SAB : .Для нахождения минимума найдем первую производную от τ по х и приравняем ее к нулю: ,отсюда приходим к тому же выражению, что получено исходя из принципа Гюйгенса: .Принцип Ферма сохранил свое значение до наших дней и послужил основой для общей формулировки законов механики (в том числе теории относительности и квантовой механики).Из принципа Ферма вытекает несколько следствий.Обратимость световых лучей : если обратить луч III (рис. 7.7), заставив его падать на границу раздела под углом β, то преломленный луч в первой среде будет распространяться под углом α, т. е. пойдет в обратном направлении вдоль луча I. Другой пример – мираж , который часто наблюдают путешественники на раскаленных солнцем дорогах. Они видят впереди оазис, но когда приходят туда, кругом оказывается песок. Сущность в том, что мы видим в этом случае свет, прошедший над песком. Воздух сильно раскален над самой дорогой, а в верхних слоях холоднее. Горячий воздух, расширяясь, становится более разреженным и скорость света в нем больше, чем в холодном. Поэтому свет проходит не по прямой, а по траектории с наименьшим временем, заворачивая в теплые слои воздуха.Если свет распространяется из среды с большим показателем преломления (оптически более плотной) в среду с меньшим показателем преломления (оптически менее плотной) ( > ), например из стекла в воздух, то, согласно закону преломления, преломленный луч удаляется от нормали и угол преломления β больше, чем угол падения α (рис. 7.8 а ).

С увеличением угла падения увеличивается угол преломления (рис. 7.8 б , в ), до тех пор, пока при некотором угле падения () угол преломления не окажется равным π/2.Угол называется предельным углом . При углах падения α > весь падающий свет полностью отражается (рис. 7.8 г ). · По мере приближения угла падения к предельному, интенсивность преломленного луча уменьшается, а отраженного – растет.· Если , то интенсивность преломленного луча обращается в нуль, а интенсивность отраженного равна интенсивности падающего (рис. 7.8 г ). · Таким образом , при углах падения в пределах от до π/2 , луч не преломляется , а полностью отражается в первую среду , причем интенсивности отраженного и падающего лучей одинаковы. Это явление называется полным отражением. Предельный угол определим из формулы: ; .Явление полного отражения используется в призмах полного отражения (Рис. 7.9).

Показатель преломления стекла равен n » 1,5, поэтому предельный угол для границы стекло – воздух = arcsin (1/1,5) = 42°.При падении света на границу стекло – воздух при α > 42° всегда будет иметь место полное отражение.На рис. 7.9 показаны призмы полного отражения, позволяющие:а) повернуть луч на 90°;б) повернуть изображение;в) обернуть лучи.Призмы полного отражения применяются в оптических приборах (например, в биноклях, перископах), а также в рефрактометрах, позволяющих определять показатели преломления тел (по закону преломления, измеряя , определяем относительный показатель преломления двух сред, а также абсолютный показатель преломления одной из сред, если показатель преломления второй среды известен).

Явление полного отражения используется также в световодах , представляющих собой тонкие, произвольным образом изогнутые нити (волокна) из оптически прозрачного материала.Рис. 7.10В волоконных деталях применяют стеклянное волокно, световедущая жила (сердцевина) которого окружается стеклом – оболочкой из другого стекла с меньшим показателем преломления. Свет, падающий на торец световода под углам больше предельного , претерпевает на поверхности раздела сердцевины и оболочки полное отражение и распространяется только по световедущей жиле.Световоды используются при создании телеграфно-телефонных кабелей большой емкости . Кабель состоит из сотен и тысяч оптических волокон тонких, как человеческий волос. По такому кабелю, толщиной в обычный карандаш, можно одновременно передавать до восьмидесяти тысяч телефонных разговоров.Кроме того, световоды используются в оптоволоконных электронно-лучевых трубках, в электронно-счетных машинах, для кодирования информации, в медицине (например, диагностика желудка), для целей интегральной оптики.

Границы применения:

Законы геометрической оптики выполняются достаточно точно лишь в том случае, если размеры препятствий на пути распространения света много больше длины световой волны.

Основной принцип:

Основным принципом геометрической оптики является понятие светового луча. В этом определении подразумевается, что направление потока лучистой энергии (ход светового луча) не зависит от поперечных размеров пучка света.

В силу того, что свет представляет собой волновое явление, имеет место интерференция, в результате которой ограниченный пучок света распространяется не в каком-то одном направлении, а имеет конечное угловое распределение т.е имеет место дифракция. Однако в тех случаях, когда характерные поперечные размеры пучков света достаточно велики по сравнению с длиной волны, можно пренебречь расходимостью пучка света и считать, что он распространяется в одном единственном направлении: вдоль светового луча.

Законы геометрической оптики:

«Закон прямолинейного распространения света» - в прозрачной однородной среде свет распространяется по прямым линиям. В связи с законом прямолинейного распространения света появилось понятие световой луч, которое имеет геометрический смысл как линия, вдоль которой распространяется свет.

«Закон независимого распространения лучей» - второй закон геометрической оптики, который утверждает, что световые лучи распространяются независимо друг от друга.

«Закон отражения света» - устанавливает изменение направления хода светового луча в результате встречи с отражающей (зеркальной) поверхностью: падающий и отражённый лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, и эта нормаль делит угол между лучами на две равные части.

«Закон преломления света (Закон Снеллиуса, или Снелла)» - когда свет достигает поверхности раздела двух прозрачных сред, часть его отражается, а остальная проходит сквозь границу. Преломлением света называют изменение направления распространения света при его прохождении через границу раздела двух сред.

«Закон обратимости светового луча» - согласно ему, луч света, распространившийся по определённой траектории в одном направлении, повторит свой ход в точности при распространении и в обратном направлении.

называется

5.2. ЗАКОН ПРЕЛОМЛЕНИЯ СВЕТА. АБСОЛЮТНЫЙ И ОТНОСИТЕЛЬНЫЙ ПОКАЗАТЕЛИ ПРЕЛОМЛЕНИЯ. ПОЛНОЕ И ВНУТРЕННЕЕ ОТРАЖЕНИЕ Зак.преломления-при прохождении света из одной прозрачной среды в другую прозрачную на границе раздела сред, световые лучи отклоняются от своего направления, причем отношение синуса падения к синусу угла преломления, является постоянной величиной для этих сред и

называетсяв точке падения, и эта нормаль делит угол между лучам на две равные части Угол падения=угол отражения, зеркально, идеально гладкая поверхность) Диффузное-(Если поверхность не гладкая-индикатриса рассеивания, свет рассеивается в разные стороны)

Геометри́ческая о́птика - раздел оптики, который изучает распространение света в прозрачных средах и вырабатывает правила построения изображений при прохождении лучей света в оптических системах (без учёта волновых свойств света).Свет рассматривается как луч. В случае излучения с длинами волн малыми по сравнению с размерами препятствий и деталями оптической системы и характерными расстояниями свет может рассматриваться как корпускулярное движение- предельный случай волнового.

Главным упрощением геометрической оптики является понятие светового луча. Принимается, что направление потока света не зависит от поперечных размеров пучка света.

Основной закон геометрической оптики : «Свет при распространении из одной точки в другую выбирает такой путь, которому соответствует экстремальное(минимальное или экстремальное) время на распространение между двумя точками среди бесконечного множества всевозможных ближайших путей ».(основной принцип геометрической оптики сформировался французским физиком Ферма )

Законы геометрической оптики:

1)закон прямолинейного распространения света(В оптически однородной среде (вакууме) лучи света распространяются прямолинейно).

2)закон независимости световых лучей.

3)закон преломления (Луч падающий, луч преломлённый и перпендикуляр к поверхности раздела лежат в одной плоскости. При прохождении света из одной прозрачной среды в другую на границе раздела сред световые лучи отклоняются от своего направления. Причём отношение sin угла падения к sin угла преломления является постоянным для 2 сред и наз. относит. показателем преломления).

Обратимость световых лучей:

Абсолютный показатель преломления- показатель преломления, полученный в том случае, если свет из вакуума падает на какую-либо среду.

Относительный показатель преломления - отношение абсолютных показателей преломления второй и первой сред.

Наоборот, при переходе из второй среды в первую:

Среда обладающая большим показателем, называется оптически более плотной

4)закон отражения(закон отражения(На границе двух сред возникает отражённый луч,лежащий в плоскости падения,т.е. в плоскости содержащей падающий луч и нормаль границы двух сред, восстановленную в точке падения, причём угол падения равен углу отражения).

Границы применимости геометрической оптики:
законы геометрической оптики выполняются достаточно точно, лишь в том случае,если размеры препятствия на пути распространения света много больше длины световой волны.

Закон преломления света

Преломление света - явление, при котором луч света, переходя из одной среды в другую, изменяет направление на границе этих сред.

Преломление света происходит по следующему закону:
Падающий и преломленный лучи и перпендикуляр, проведенный к границе раздела двух сред в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред:
,
где α - угол падения,
β - угол преломления,
n - постоянная величина, не зависящая от угла падения.

При изменении угла падения изменяется и угол преломления. Чем больше угол падения, тем больше угол преломления.
Если свет идет из среды оптически менее плотной в более плотную среду, то угол преломления всегда меньше угла падения: β < α.
Луч света, направленный перпендикулярно к границе раздела двух сред, проходит из одной среды в другую без преломления.

абсолютный показатель преломления вещества - величина, равная отношению фазовых скоростей света (электромагнитных волн) в вакууме и в данной среде n = c/v
Величина n, входящая в закон преломления, называется относительным показателем преломления для пары сред.

Величина n есть относительный показатель преломления среды В по отношению к среде А, а n" = 1/n есть относительный показатель преломления среды А по отношению к среде В.

Эта величина при прочих равных условиях больше единицы при переходе луча из среды более плотной в среду менее плотную, и меньше единицы при переходе луча из среды менее плотной в среду более плотную (например, из газа или из вакуума в жидкость или твердое тело). Есть исключения из этого правила, и потому принято называть среду оптически более или менее плотной, чем другая.

Луч, падающий из безвоздушного пространства на поверхность какой-нибудь среды В, преломляется сильнее, чем при падении на нее из другой среды А; показатель преломления луча, падающего на среду из безвоздушного пространства, называется его абсолютным показателем преломления.

(Абсолютный - относительно вакуума.
Относительный - относительно любого другого вещества (того же воздуха, например).
Относительный показатель двух веществ есть отношение их абсолютных показателей.)

Полное внутреннее отражение

Свет,распространяющийся в какой-либо среде, падает на границу раздела этой среды со средой менее плотной (т.е. абсолютный показатель преломления меньше).Возрастание доли отражённой энергии также происходит по мере увеличения угла падения, НО:

Начиная с некоторого угла падения вся световая энергия отражается от границы раздела. Угол падения,начиная с которого вся световая энергия отражается от границы раздела, называется предельным углом полного внутреннего отражения.

При падении света на границу раздела под предельным углом угол преломления равен 90 градусов:

sin угла преломления = 1/n

При углах падения, больших угла преломления,преломлённого луча не существует.

Пример: полное внутреннее отражение можно наблюдать на границе воздушных пузырьков в воде. Они блестят потому, что падающий на них солнечный свет полностью отражается,не проходя внутрь пузырьков.

Виды отражений:

Отражение света может быть зеркальным (то есть таким, как наблюдается при использовании зеркал) или диффузным (в этом случае при отражении не сохраняется путь лучей от объекта, а только энергетическая составляющая светового потока) в зависимости от природы поверхности.

Зеркальное отражение

Зеркальное отражение света отличает определённая связь положений падающего и отражённого лучей: 1) отражённый луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности, восстановленную в точке падения; 2) угол отражения равен углу падения. Интенсивность отражённого света (характеризуемая коэффициентом отражения) зависит от угла падения и поляризации падающего пучка лучей, а также от соотношения показателей преломления n 2 и n 1 2-й и 1-й сред. Количественно эту зависимость (для отражающей среды - диэлектрика) выражают формулы Френеля. Из них, в частности, следует, что при падении света по нормали к поверхности коэффициент отражения не зависит от поляризации падающего пучка и равен

В важном частном случае нормального падения из воздуха или стекла на границу их раздела (показатель преломления воздуха = 1,0; стекла = 1,5) он составляет 4 %.

Полное внутреннее отражение

Наблюдается для электромагнитных или звуковых волн на границе раздела двух сред, когда волна падает из среды с меньшей скоростью распространения (в случае световых лучей это соответствует бо́льшему показателю преломления).

С увеличением угла падения , угол преломления также возрастает, при этом интенсивность отражённого луча растет, а преломленного - падает (их сумма равна интенсивности падающего луча). При некотором критическом значении интенсивность преломленного луча становится равной нулю и происходит полное отражение света. Значение критического угла падения можно найти, положив в законе преломления угол преломления равным 90°:

Диффузное отражение света

Рассеяние света по всевозможным направлениям. Различают две осн. формы Д. о.: рассеяние света на микронеровностях поверхности (поверхностное рассеяние) и рассеяние в объёме тела, связанное с присутствием мелкодисперсных частиц (объёмное рассеяние). Свойства диффузно отражённого света зависят от условий освещения, оптич. свойств рассеивающего вещества и микрорельефа отражающей поверхности (см. Отражение света). Идеально рассеивающая поверхность имеет яркость во всех направлениях одинаковую, не зависящую от условий освещения. Для оценок светорассеивающих характеристик реальных объектов вводится коэф. Д. о., к-рый определяется как отношение светового потока, отражённого от данной поверхности, к потоку, отражённому идеальным рассеивателем. Спектральный состав, коэф. Д. о. и индикатриса яркости Д. о. света реальных объектов зависят от обеих форм рассеяния - поверхностного и объёмного.

Свет

1) Если предмет встречает прозрачное тело, то он проходит через него,а меньше отразится и поглотится.

2) Если предмет непрозрачный - отражение и поглощение света.

1. Коэффициент отражения- безразмерная физическая величина, характеризующая способность тела отражать падающее на него излучение. В качестве буквенного обозначения используется греческая или латинская .

Количественно коэффициент отражения равен отношению потока излучения, отраженного телом, к потоку, упавшему на тело:

2.Коэффициент пропускания - безразмерная физическая величина, равная отношению потока излучения , прошедшего через среду, к потоку излучения , упавшего на её поверхность:

3. Коэффициент поглощения - безразмерная физическая величина, характеризующая способность тела поглощать падающее на него излучение. В качестве буквенного обозначения используется греческая [

Численно коэффициент поглощения равен отношению потока излучения , поглощенного телом, к потоку излучения , упавшего на тело :

4.Коэффициент рассеяния - безразмерная физическая величина, характеризующая способность тела рассеивать падающее на него излучение. В качестве буквенного обозначения используется греческая .

Количественно коэффициент рассеяния равен отношению потока излучения , рассеянного телом, к потоку , упавшему на тело :

Вывод : Сумма коэффициента поглощения и коэффициентов отражения, пропускания и рассеяния равна единице. Это утверждение следует из закона сохранения энергии.

Оптическая плотность - мера ослабления света прозрачными объектами (такими, как кристаллы, стекла, фотоплёнка) или отражения света непрозрачными объектами (такими, как фотография, металлы и т. д.).

Вычисляется как десятичный логарифм отношения потока излучения падающего на объект, к потоку излучения прошедшего через него (отразившегося от него), то есть это есть логарифм от величины, обратной к коэффициенту пропускания (отражения):

(D = - lg T = lg (1/ T)

БИЛЕТ № 6

Белый свет и цветовая температура

6.1. БЕЛЫЙ СВЕТ. ЗАВИСИМОСТЬ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ОТ СКОРОСТИ РАСПРОСТРАНЕНИЯ ИЗЛУЧЕНИЯ(ДИСПЕРСИЯ СВЕТА) РАЗЛОЖЕНИЕ БЕЛОГО СВЕТА В СПЕКТР. Зависимость показателя преломления в прозрачной среде от длинны волны проходящего света-дисперсия света. Мера дисперсии-разность показателей преломления длинны волн. Свет проходит через призму Ньютона....... красного цвета-скорость распространения в среде максимальна, а степень преломления - минимальна, у света фиолетового цвета скорость распространения в среде минимальна, а степень преломления - максимальна.

Дисперсия света - Зависимость показателя преломления от частоты колебаний (или длины световой волны) называют дисперсией света. В подавляющем большинстве случаев с увеличением длины волны показатель преломления уменьшается. Такую дисперсию называют нормальной.

Белый свет - электромагнитное излучение видимого диапазона, которое вызывает в нормальном человеческом глазе световое ощущение, нейтральное по отношению к цвету.(или же когда все цвета спектра собираются воедино). Дисперсия света– зависимость показателя преломления в прозрачной среде от длинны волны. Луч белого света проходя через кристалл преломляется. Преломление происходит из за разных плотностей 2х сред, благодаря чему свет изменяется.

Дисперсия света (разложение света) - это явление, обусловленное зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее. из -за зависимости преломления света от скорости ее распространения луч белого света (так как он сложный), проходя через кристалл преломляется, так как он проходит из 1 среды в другую с разными плотностями и скорость света изменяется. Разложение белого света в спектр. Луч белого света, проходя через трехграннуюпризму, не только отклоняется, но и разлагается на составляющие цветные лучи. Это явление установил Исаак Ньютон. Ньютон направил луч солнечного света через маленькое отверстие на стеклянную призму. Попадая на призму, луч преломлялся и давал на противоположной стене спектр.

6.2. ЦВЕТОВОЙ ТРЕУГОЛЬНИК. ОСНОВНЫЕ И ДОПОЛНИТЕЛЬНЫЕ ЦВЕТА. ТРЕХКОМПОНЕНТНОСТЬ ЗРЕНИЯ. (По часовой стрелке расположение цветов с 12 часов: к,ж,з,г,с,п) Основные цвета: Синий, зеленый, красный-образуют белый цвет Дополнительные цвета: желтый, пурпурный, голубой. К+Г=Б;з+п=Б;с+ж=Б. К+З=Ж, З+С=Г, С+К=п Трехк.зрен.-глаз имеет три вида приемников лучистой энергии (колбочек), воспринимающих красную (длинноволновую), желтую (средневолновую) и голубую (коротковолновую) части видимого спектра. Красный воспринимает лучше,чем фиолетовый 6.3. АБСОЛЮТНО ЧЕРНОЕ ТЕЛО. ЕГО ЭТАЛОН И СПЕКТР ИЗЛУЧЕНИЯ. ЦВЕТОВАЯ ТЕМПЕРАТУРА. ЕДИНИЦА ИЗМЕРЕНИЯ ЦВЕТОВОЙ ТЕМПЕРАТУРЫ. А. Модель идеального источника излучения, не поглощает и не пропускает ничего при данной t. Испускает большое кол-во любого монохроматического излучения нежели какого либо др. источника. Б. Спектр излучения абсолютно чёрного тела определяется только его температурой. В этом случае тело полностью поглощает все падающее на него излучение. Если коэффициент поглощения равен единице(мах) для всех длин волн то такое тело называют абсолютно черным телом. Абсолютно черное тело излучает в любой области спектра больше энергии, чем всякое другое тело, имеющее ту же бтемпературу. Для довольно большой области спектра - от инфракрасного до ультрафиолетового излучения свойства ми абсолютно черного тела обладает поверхность, по крытая слоем копоти (раскаленный метал вольфрама) В. Цвет.t-t абсолют.черного тела,при котором относительный спектральный состав,его излуч.в определенном отношении подобен спектральному составу излуч.рассматриваемого реального тела. Измеряется в кельвах и миредах.

6.4 ВАЖНОСТЬ ПОНЯТИЯ ЦВЕТОВОЙ ТЕМПЕРАТУРЫ В ФОТОГРАФИИ. ИЗЛУЧЕНИЕ СЕРОГО ТЕЛА. РЕАЛЬНЫЕ ИСТОЧНИКИ ИЗЛУЧЕНИЯ, ИМЕЮЩИЕ РАСПРЕДЕЛЕНИЕ СПЕКТРАЛЬНОЙ ЭНЕРГИИ, ТОЖДЕСТВЕННОЕ ИЗЛУЧЕНИЮ ЧЕРНОГО ТЕЛА. ИСТОЧНИКИ ИЗЛУЧЕНИЯ, К КОТОРЫМ ПОНЯТИЕ ЦВЕТОВОЙ Т НЕ ПРИМЕНИМО. Для выбора бб. Серое тело, излучение тождественно серому телу, близко к черному телу. Тело, поглощения коэффициент которого меньше 1 и не зависит от длины волны излучения и абс. t. Серого излучения - теплового излучения, одинакового по спектр. составу с излучением абсолютно чёрного тела, но отличающегося от него меньшей энергетич. яркостью.

(Серые тела: пламя свечи, лампы накаливания, раскаленный метал). Понятие не применимо: лазер, светодиод, пары, люминесцентные, газоразрядная трубка. Фотоприемники

7.1 ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ. ЗАКОНЫ ФОТОЭФФЕКТА. ЭФФЕКТ ВНЕШНИЙ И ВНУТРЕННИЙ. ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ - выбивание светом электронов с поверхности токопроводящих материалов.

Зак.фотоэффекта 1.зависимость фотоизлучения. Сила фото тока излучения прямо пропорциональна падающему потоку излучения (освещенность) 2. Скорость тока излуч. Прямо пропорциональна падающему потоку излучения (освещенность) Скорость освобождаемых под действием электронов, скорость вылетающих электронов не зависит от освещенности, а определяется частотой излучения. (Синие отпечатки быстрее регистрируются) Чем больше частота, тем короче длинна волны, тем скорее полетит электрон 3. Красная граница-соответствует предельной длине волны, способной вызвать фотоэффект. E=h*v -полная энергия. Получение от электрона с частотой v, равняется произведению этой частоты на пост.Планка-6,6*10 в 36ой =h

Внешним фотоэффектом (фотоэлектронной эмиссией ) называется испускание электронов веществом под действием электромагнитных излучений. Внутренним фотоэффектом называется перераспределение электронов по энергетическим состояниям в твёрдых и жидких полупроводниках и диэлектриках, происходящее под действием излучений. Полупроводники в матрице из кремния, углерода, селен (не металл) SiO2(песок,поликристаллический кремний) Ток не течет,потенциальный барьер не преодолен,если нагретьмпроводник, то проводимость будет/доп.возникновение зарядов. Pтипа-больше дырок Nтипа-больше электронов Но если у нас будет не+-, а -+,то если мы нагреем ток преодолеет барьер. + протоны - электроны Галогенид серебра (желтый)

На улице начинает темнеть, буреть, пахнуть хлором

Основные законы геометрической оптики были известны задолго до установления физической природы света.

Закон прямолинейного распространения света : в оптически однородной среде свет распространяется прямолинейно. Опытным доказательством этого закона могут служить резкие тени, отбрасываемые непрозрачными телами при освещении светом источника достаточно малых размеров («точечный источник»). Другим доказательством может служить известный опыт по прохождению света далекого источника сквозь небольшое отверстие, в результате чего образуется узкий световой пучок. Этот опыт приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет. Следует отметить, что закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через малые отверстия, размеры которых сравнимы с длиной волны. Таким образом, геометрическая оптика, опирающаяся на представление о световых лучах, есть предельный случай волновой оптики при λ → 0. Границы применимости геометрической оптики будут рассмотрены в разделе о дифракции света.

На границе раздела двух прозрачных сред свет может частично отразиться так, что часть световой энергии будет распространяться после отражения по новому направлению, а часть пройдет через границу и продолжит распространяться во второй среде.

Закон отражения света : падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения ). Угол отражения γ равен углу падения α.

Закон преломления света : падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред:

Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ 1 к скорости их распространения во второй среде υ 2:



Рис 3.1.1 иллюстрирует законы отражения и преломления света.

Среду с меньшим абсолютным показателем преломления называют оптически менее плотной.

При переходе света из оптически более плотной среды в оптически менее плотнуюn 2 <n 1 (например, из стекла в воздух) можно наблюдать явление полного отражения , то есть исчезновение преломленного луча. Это явление наблюдается при углах падения, превышающих некоторый критический угол α пр, который называется предельным углом полного внутреннего отражения (см. рис. 3.1.2).

Для угла падения α = α пр sin β = 1; значение sin α пр = n 2 / n 1 < 1.

Если второй средой является воздух (n 2 ≈ 1), то формулу удобно переписать в виде

Явление полного внутреннего отражения находит применение во многих оптических устройствах. Наиболее интересным и практически важным применением является создание волоконных световодов , которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей (рис 3.1.3). Научно-техническое направление, занимающееся разработкой и применением оптическихсветоводов, называется волоконной оптикой .



Введение.

Уже в древности наметились три основных подхода к решению вопроса о природе света. Эти три подхода в последующем оформились в две конкурирующие теории – корпускулярную и волновую теории света.

Подавляющее большинство древних философов и ученых рассматривало свет как некие лучи, соединяющие светящееся тело и человеческий глаз. При этом одни из них полагали, что лучи исходят из глаз человека, они как бы ощупывают рассматриваемый предмет. Эта точка зрения имела большое число последователей, среди которых был Эвклид. Формулируя первый закон геометрической оптики, закон прямолинейного распространения света, Эвклид писал: “Испускаемые глазами лучи распространяются по прямому пути”. Такого же взгляда придерживался Птолемей и многие другие ученые и философы.

Однако позже, уже в средние века, такое представление о природе света теряет свое значение. Все меньше становится ученых, следующих этим взглядам. И к началу XVII в. эту точку зрения можно считать уже забытой. Другие, наоборот, считали, что лучи испускаются светящимся телом и, достигая человеческого глаза, несут на себе отпечаток светящегося предмета. Такой точки зрения придерживались атомисты Демокрит, Эпикур, Лукреций.

Последняя точка зрения на природу света уже позже, в XVII в., оформилась в корпускулярную теорию света, согласно которой свет есть поток каких-то частиц, испускаемых светящимся телом.

Третья точка зрения на природу света была высказана Аристотелем. Он рассматривал свет как распространяющееся в пространстве (в среде) действие или движение. Мнение Аристотеля в его время мало кто разделял. Но в дальнейшем, опять же в XVII в., его точка зрения получила развитие и положила начало волновой теории света.

К середине XVII века накопились факты, которые толкали научную мысль за пределы геометрической оптики. Одним из первых ученых, подтолкнувшим научную мысль к теории волновой природы света, был чешский ученый Марци. Его работы известны не только в области оптики, но также и в области механики и даже медицины. В 1648 им открыто явление дисперсии света.

В XVII в. в связи с развитием оптики вопрос о природе света стал вызывать все больший и больший интерес. При этом постепенно происходит образование двух противоположных теорий света: корпускулярной и волновой. Для развития корпускулярной теории света была более благоприятная почва. Действительно, для геометрической оптики представление о том, что свет есть поток особых частиц, было вполне естественным. Прямолинейное распространение света, а также законы отражения и преломления хорошо объяснялись с точки зрения этой теории.

Общее представление о строении вещества также не вступало в противоречие с корпускулярной теорией света. В то время в основе взглядов на строение вещества лежала атомистика. Все тела состоят из атомов. Между атомами существует пустое пространство. В частности, тогда считали, что межпланетное пространство является пустым. В нем и распространяется свет от небесных тел в виде потоков световых частиц. Поэтому вполне естественно, что в XVII в. было много физиков, которые придерживались корпускулярной теории света. В это же время начинает развиваться и представление о волновой природе света. Родоначальником волновой теории света можно считать Декарта.

Единство корпускулярных и волновых свойств электромагнитного излучения.

Рассмотренные в данном разделе явления- излучение чёрного тела, фотоэффекта, эффект Комптона- служат доказательством квантовых(корпускулярных) представлений о свете как о потоке фотонов. С другой стороны, такие явления, как интерференция, дифракция и поляризация света, убедительно подтверждают волновую (электромагнитную) природу света. Наконец, давление и преломление света объясняются как волновой, так и квантовой теориями. Таким образом, электромагнитное излучение обнаруживает удивительное единство, казалось бы, взаимоисключающих свойств- непрерывных(волны) и дискретных(фотоны), которые взаимно дополняют друг друга.

Более детальное рассмотрение оптических явлений приводит к выводу, что свойства непрерывности, характерные для электромагнитного поля световой волны, не следует противопоставлять свойствам дискретности, характерным для фотона. Свет, обладая одновременно корпускулярными и волновыми свойствами, обнаруживает определённые закономерности в их проявлении. Так, волновые свойства света проявляются в закономерностях его распространения, интерференции, дифракции, поляризации, а корпускулярные – в процессах взаимодействия света с веществом. Чем больше длина волны, тем меньше энергия и импульс фотона и тем труднее обнаруживаются квантовые свойства света (с этим связано, например, существование красной границы фотоэффекта). Наоборот, чем меньше длина волны, тем больше энергия и импульс фотона и тем труднее обнаруживается волновые свойства (например, волновые свойства (дифракция) рентгеновского излучения обнаружены лишь после применения в качестве дифракционной решётки кристаллов).

Взаимосвязь между двойственными корпускулярно-волновыми свойствами света можно объяснить, если использовать, как это делает квантовая оптика, статистический подход к рассмотрению закономерностей рассмотрения света. Например, дифракция света на щели состоит в том, что при прохождении света через щель происходит перераспределение фотонов в пространстве. Так как вероятность попадания фотонов в различные точки экрана неодинакова, то и возникает дифракционная картина. Освещённость экрана пропорциональна вероятности попадания фотонов на единицу площади экрана. С другой стороны, по волновой теории, освещённость пропорциональна квадрату амплитуды световой волны той же точке экрана. Следовательно, квадрат амплитуды световой волны в данной точке пространства является мерой вероятности попадания фотонов в данную точку.

Волновые свойства света.

Дисперсия.

Ньютон обратился к исследованию цветов, наблюдаемых при преломлении света, в связи с попытками усовершенствования телескопов. Стремясь получить линзы возможно лучшего качества, Ньютон убедился, что главным недостатком изображений является наличие окрашенных краёв. Исследуя окрашивание при преломлении, Ньютон сделал свои величайшие оптические открытия.

Сущность открытий Ньютона поясняется следующими опытами (рис.1) свет от фонаря освещает узкое отверстие S (щель). При помощи линзы L изображение щели получается на экране MN в виде короткого белого прямоугольника S`. Поместив на пути призму P, ребро которой параллельно щели, обнаружим, что изображение щели сместится и превратится в окрашенную полоску, переходы цветов, в которой от красного к фиолетовому подобны наблюдаемым в радуге. Это радужное изображение Ньютон назвал спектром.

Если прикрыть щель цветным стеклом, т.е. если направлять на призму вместо белого света цветной, изображение щели сведется к цветному прямоугольнику, располагающему на соответствующем месте спектра, т.е. в зависимости от цвета свет будет отклоняться на различные углы от первоначального изображения S`. Описанное наблюдения показывает, что лучи разного цвета различно преломляются призмой.

Это важное заключение Ньютон проверил многими опытами. Важнейший из них состоял в определении и показателя преломления лучей различного цвета, выделенных из спектра. Для этой цели в экране MN , на котором получается спектр, прорезалось отверстие; перемещая экран, можно было выпустить через отверстие узкий пучок лучей того или иного цвета. Такой способ выделения однородных лучей более совершенен, чем выделение при помощи цветного стекла. Опыты обнаружили, что такой выделенный пучок, преломляясь во второй призме, уже не растягивает полоску. Такому пучку соответствует определенный показатель преломления, значение которого зависит от цвета выделенного пучка.

Описанные опыты показывают, что для узкого цветного пучка, выделенного из спектра, показатель преломления имеет вполне определенное значение, тогда как преломление белого света можно только приблизительно охарактеризовать одним каким то значением этого показателя. Сопоставляя подобные наблюдения, Ньютон сделал вывод, что существуют простые цвета, не разлагающиеся при прохождении через призму, и сложные, представляющие совокупность простых, имеющих разные показатели преломления. В частности, солнечный свет есть такая совокупность цветов, которая при помощи призмы разлагается, давая спектральное изображение щели.

Таким образом, в основных опытах Ньютона заключались два важных открытия:

1)Свет различного цвета характеризуется различными показателями преломления в данном веществе (дисперсия).

2)Белый цвет есть совокупность простых цветов.

Мы знаем в настоящее время, что разным цветам соответствуют различные длины световых волн. Поэтому первое открытие Ньютона можно сформулировать следующим образом:

Показатель преломления вещества зависит от длины световой волны.

Обычно он увеличивается по мере уменьшения длины волны.

Дифракция.

У световой волны не происходит изменения геометрической формы фронта при распространении в однородной среде. Однако если распространение света осуществляется в неоднородной среде, в которой, например, находятся не прозрачные экраны, области пространства со сравнительно резким изменением показателя преломления и т. п., то наблюдается искажение фронта волны. В этом случае происходит перераспределение интенсивности световой волны в пространстве. При освещении, например, непрозрачных экранов точечным источником света на границе тени, где согласно законам геометрической оптики должен был бы проходить скачкообразный переход от тени к свету, наблюдается ряд тёмных и светлых полос, часть света проникает в область геометрической тени. Эти явления относятся к дифракции света.

Итак, дифракция света в узком смысле - явление огибания светом контура непрозрачных тел и попадание света в область геометрической тени; в широком смысле - всякое отклонение при распространении света от законов геометрической оптики.

Определение Зоммерфельда: под дифракцией света понимают всякое отклонение от прямолинейного распространения, если оно не может быть объяснено как результат отражения, преломления или изгибания световых лучей в средах с непрерывно меняющимся показателем преломления.

Если в среде имеются мельчайшие частицы (туман) или показатель преломления заметно меняется на расстояниях порядка длины волны, то в этих случаях говорят о рассеянии света и термин «дифракция» не употребляется.

Различают два вида дифракции света. Изучая дифракционную картину в точке наблюдения, находящейся на конечном расстоянии от препятствия, мы имеем дело с дифракцией Френеля. Если точка наблюдения и источник света расположены от препятствия так далеко, что лучи, падающие на препятствие, и лучи, идущие в точку наблюдения, можно считать параллельными пучками, то говорят о дифракции в параллельных лучах – дифракции Фраунгофера.

Теория дифракции рассматривает волновые процессы в тех случаях, когда на пути распространения волны имеются какие – либо препятствия.

С помощью теории дифракции решают такие проблемы, как защита от шумов с помощью акустических экранов, распространение радиоволн над поверхностью Земли, работа оптических приборов (так как изображение, даваемое объективом, - всегда дифракционная картина), измерения качества поверхности, изучение строения вещества и многие другие.

Поляризация

Явления интерференции и дифракции, послужившие для обоснования волновой природы света, не дают еще полного представления о характере световых волн. Новые черты открывает нам опыт над прохождением света через кристаллы, в частности через турмалин.

Возьмем две одинаковые прямоугольные пластинки турмалина, вырезанные так, что одна из сторон прямоугольника совпадает с определенным направлением внутри кристалла, носящим название оптической оси. Наложим одну пластинку на другую так, чтобы оси их совпадали по направлению, и пропустим через сложенную пару пластинок узкий пучок света от фонаря или солнца. Так как турмалин представляет собой кристалл буро – зеленого цвета, то след прошедшего пучка на экране представится в виде тёмно – зеленого пятнышка. Начнем поворачивать одну из пластинок вокруг пучка, оставляя вторую неподвижной. Мы обнаружим, что след пучка становится слабее, и когда пластинка повернётся на 90 0 , он совсем исчезнет. При дальнейшем вращении пластинки проходящий пучок вновь начнет усиливаться и дойдет до прежней интенсивности, когда пластинка повернется на 180 0 , т.е. когда оптические оси пластинок вновь расположатся параллельно. При дальнейшем вращении турмалина пучок вновь слабеет.

Можно объяснить все наблюдающиеся явления, если сделать следующие выводы.

Световые колебания в пучке направлены перпендикулярно к линии распространения света (световые волны поперечны).

Турмалин способен пропускать световые колебания только в том случае, когда они направлены определенным образом относительно его оси.

В свете фонаря(солнца) представлены поперечные колебания любого направления и притом в одинаковой доле, так что ни одно направление не является преимущественным.

Вывод 3 объясняет, почему естественный свет в одинаковой степени проходит через турмалин при любой его ориентации, хотя турмалин, согласно выводу 2, способен пропускать световые колебания только определенного направления. Прохождение естественного света через турмалин приводит к тому, что из поперечных колебаний отбираются только те, которые могут пропускаться турмалином. Поэтому свет, прошедший через турмалин, будет представлять собой совокупность поперечных колебаний одного направления, определяемого ориентацией оси турмалина. Такой свет мы будем называть линейно поляризованным, а плоскость, содержащую направление колебаний и ось светового пучка, - плоскостью поляризации.

Теперь становится понятным опыт с прохождением света через две последовательно поставленные пластинки турмалина. Первая пластинка поляризует проходящий через неё пучок света, оставляя в нем колебания только одного направления. Эти колебания могут пройти через второй турмалин полностью только в том случае, когда направление их совпадает с направлением колебаний, пропускаемых вторым турмалином, т.е. когда его ось параллельна оси первого. Если же направление колебаний в поляризованном свете перпендикулярно к направлению колебаний, пропускаемых вторым турмалином, то свет будет полностью задержан. Если направление колебаний в поляризованном свете составляет острый угол с направлением, пропускаемым турмалином, то колебания будут пропущены лишь частично.

Квантовые свойства света.

Фотоэффект.

Гипотеза Планка о квантах послужила основой для объяснения явления фотоэлектрического эффекта, открытого в 1887г. немецким физиком Генрихом Герцем.

Явление фотоэффекта обнаруживается при освещении цинковой пластины, соединенной со стержнем электрометра. Если пластине и стержню передан положительный заряд, то электрометр не разряжается при освещении пластины. При сообщении пластине отрицательного электрического заряда электрометр разряжается, как только на пластину попадает ультрафиолетовое излучение. Этот опыт доказывает, что с поверхности металлической пластины под действием света могут освобождаться отрицательные электрические заряды. Измерение заряда и массы частиц, вырываемых светом, показало, что эти частицы – электроны.

Фотоэффекты бывают нескольких видов: внешний и внутренний фотоэффект, вентильный фотоэффект и ряд других эффектов.

Внешним фотоэффектом называют явление вырывания электронов из вещества под действием падающего на него света.

Внутренним фотоэффектом называют появление свободных электронов и дырок в полупроводнике в результате разрыва связей между атомами за счет энергии света, падающего на полупроводник.

Вентильным фотоэффектом называют возникновение под действием света электродвижущей силы в системе, содержащей контакт двух различных полупроводников или полупроводника и металла.

Эффект Комптона.

Наиболее полно корпускулярные свойства света проявляются в эффекте Комптона. Американский физик А. Комптон (1892-1962), исследуя в 1923 г. Рассеяние монохроматического рентгеновского излучения веществами с лёгкими атомами (парафин, бор), обнаружил, что в составе рассеянного излучения наряду с излучением первоначальной длины волны наблюдается также более длинноволновое излучение.

Эффектом Комптона называется упругое рассеяние коротковолнового электромагнитного излучения (рентгеновского и гамма-излучений) на свободных(или слабосвязанных) электронах вещества, сопровождающееся увеличением длины волны. Этот эффект не укладывается в рамки волновой теории, согласно которой длина волны при рассеянии изменяться не должна: под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому излучает рассеянные волны той же частоты.

Объяснение эффекта Комптона дано на основе квантовых представлений о природе света. Если считать, как это делает квантовая теория, что излучение имеет корпускулярную природу.

Эффект Комптона наблюдается не только на электронах, но и на других заряженных частицах, например протонах, однако из-за большой массы протона его отдача «просматривается» лишь при рассеянии фотонов очень высоких энергий.

Как эффект Комптона, так и фотоэффект на основе квантовых представлений обусловлены взаимодействием фотонов с электронами. В первом случае фотон рассеивается, во втором- поглощается. Рассеяние происходит при взаимодействии фотона со свободными электронами, а фотоэффект – со связанными электронами. Можно показать, что при столкновении фотона со свободными электронами не может произойти поглощения фотона, так как это находится в противоречии с законами сохранения импульса и энергии. Поэтому при взаимодействии фотонов со свободными электронами может наблюдаться только их рассеяние, .т.е. эффект Комптона.

Заключение.

Итак, свет корпускулярен в том смысле, что его энергия, импульс, масса и спин локализованы в фотонах, а не размыты в пространстве, но не в том, что фотон может находиться в данном точно определенном месте пространства. Свет ведет себя как волна в том смысле, что распространение и распределение фотонов в пространстве носят вероятный характер: вероятность того, что фотон находится в данной точке определяется квадратом амплитуды в этой точке. Но вероятностный (волновой) характер распределения фотонов в пространстве не означает, что фотон в каждый момент времени находится в какой-то одной точке.

Таким образом, свет сочетает в себе непрерывность волн и дискретность частиц. Если учтем, что фотоны существуют только при движении (со скоростью с), то приходим к выводу, что свету одновременно присущи как волновые, так и корпускулярные свойства. Но в некоторых явлениях при определенных условиях основную роль играют или волновые, или корпускулярные свойства и свет можно рассматривать или как волну, или как частицы (корпускулы).

Корпускулярно-волновой дуализм 1. Сущность дуализма в оптике2. История возникновения Сущность дуализма в оптике Определение 1 Существование у света свойств и волны и потока частиц (корпускул) называют корпускулярно -- волновым дуализмом. Противоположность свойств частиц и волн в рамках классической физики не дает возможности утверждать, что свет является одновременно и волной и потоком частиц. Смысл корпускулярно - волнового дуализма свойств света в том, что он может описываться с использованием волновых представлений или корпускулярных понятий, что зависит от условий эксперимента. Нам известны убедительные эмпирические факты, доказывающие волновую природу света (опыты по интерференции, дифракции, поляризации). Но экспериментальные доказательства корпускулярных проявлений света не менее убедительны (эффект Комптона, фотоэффект, тепловое излучение). Ограничения в применении образов классической физики для описания свойств света проявляются также в условности применения образов волн и корпускул. Так, используя корпускулярные представления при описании фотоэффекта надо помнить, что свойства фотона существенно отличаются от свойств частиц в классической физике. Его масса покоя считается равной нулю, скорость движения в любой инерциальной системе отсчета одинакова, всегда отлична от нуля. При этом рассматривая свет как совокупность частиц (фотонов) для нахождения их массы следует использовать волновую характеристику -- частоту.
При рассмотрении волновых явлений, таких как интерференция и дифракция света для фиксации соответствующей картины требуется применение фотоэлемента, что означает использование квантовых свойств света для визуализации его волновых свойств. История возникновенияБольшой период развития оптики как науки связан с противоборством двух взглядов на природу света. Так в XVII веке имелось две теории света. Корпускулярная теория, ее сторонником был И. Ньютон, обладавший неоспоримым авторитетом. Ньютон считал свет потоком частиц, которые перемещаются от источника света во все стороны. Ньютон, используя свои представления, объяснил прямолинейность распространения света, но не смог объяснить законы отражения и преломления. Ярким представителем противоположного направления, представлявшего свет как совокупность волн, был Х. Гюйгенс. Гюйгенс считал свет волной, которая распространяется в эфире, все заполняющей и везде проникающей среде. Теория, предложенная Гюйгенсом, объяснила дифракцию и интерференцию, но не смогла дать объяснение прямолинейному распространению света. Примечание 1 В течение долго времени не было единого представления о природе света. Корпускулярные теории менялись на волновые. Ни одна теория не могла стать единственной, принятой всеми. В семидесятых годах XIX века Максвелл изложил свою электромагнитную теорию. Показал, что свет является электромагнитной волной, что было подтверждено опытами. Свет стали считать электромагнитной волной. Волновая теория стала считаться доказанной окончательно.

Однако волновая теория света в ее электромагнитной форме стала недостаточной для толкования всех оптических явлений. Впервые это проявилось при исследовании проблем равновесного (абсолютно черного) излучения. Формулу, которая согласовывается с опытом для всего диапазона волн, предложил М. Планк на основе новых, квантовых представлений. Изначально они касались только природы света, но позднее проникли во все разделы физики. Оказалось, что представления классической физики, которые базируются на основе понятий, связанных с макроскопическими объектами, не применимы или используются с существенными ограничениями в области атомных масштабов. Идеи Планка легли в основу новой физики, квантовой физики. Так Планк предположил, что излучение и поглощение света веществом происходит конечными порциями -- квантами. Согласовывая свою гипотезу с законами термодинамики и электродинамики, Планк принял энергию кванта равной:где h=Джс6,63⋅10−34Дж⋅с -- постояннаяПланка. СамПланкполагал, чтоквантовыесвойствасветпроявляеттольковактахизлученияипоглощениясвета. Всеостальноепроисходитврамкахтеории Максвелла. Определение 2 Эйнштейн развил квантовую теорию. Он заключил, что и при распространении в пространстве свет ведет себя как совокупность частиц (фотонов), имеющих энергию, которая определяется выражением (1). Это было не простым возвратом к Ньютоновской теории корпускул, так как фотоны принципиально отличаются от частиц в механике. Фотоны имеют волновые свойства. Эта особенность фотонов и называется корпускулярно -- волновым дуализмом.
Корпускулярно-волновой дуа­лизм

КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ, фундаментальное свойство природы, являющееся физической основой квантовой механики и заключающееся в том, что всем микрообъектам присущи одновременно и корпускулярные, и волновые свойства. Любая волна обладает дискретными значениями энергии и импульса, кратными элементарным порциям (квантам) энергии ξ и импульса р, равными

ξ = ħω, р = ħk,(*)

где ħ - универсальная величина размерности действия, названная Планка постоянной, ω - циклическая частота волны, k - её волновой вектор. Движение любой частицы с энергией ξ и импульсом р связано с волной, частота и волновой вектор которой определяются соотношением (*).

Впервые корпускулярно-волновой дуализм был установлен для света. Выполненные к концу 19 века опыты по интерференции, дифракции и поляризации света, казалось, однозначно свидетельствовали о его волновой природе и доказывали, что свет, в согласии с теорией Максвелла, представляет собой электромагнитные волны. Однако в 1900 году М. Планк показал, что для объяснения законов равновесного теплового излучения необходимо принять гипотезу о дискретном характере излучения квантами с энергией, определяемой соотношением (*). Планк использовал для кванта энергии соотношение ξ = hν, но впоследствии выяснилось, что вместо частоты ν и постоянной h удобнее пользоваться циклической частотой ω = 2πν и постоянной h = h/2π. В 1905 году А. Эйнштейн, исходя из Вина закона излучения, показал, что в области больших частот излучение ведёт себя так, как если бы оно состояло из независимых квантов энергии, и объяснил на этой основе законы фотоэффекта. В 1909 Й. Штарк указал, что квант энергии излучения, движущийся со скоростью света с, должен обладать импульсом р = (ħω/с)n, т. е. должен вести себя как частица (здесь n - единичный вектор вдоль направления движения частицы). Этот факт подтвердился после открытия Комптона эффекта (1922) и таким образом была окончательно установлена двойственная природа света.

В наиболее отчётливой форме наличие корпускулярно-волнового дуализма для света было выявлено в 1909 году А. Эйнштейном, показавшим, что закон излучения Планка приводит к тому, что флуктуация энергии излучения содержит два члена, один из которых описывает флуктуации для совокупности классических световых волн, а второй - флуктуации энергии газа, состоящего из независимых частиц.

Для установления всеобщего характера корпускулярно-волнового дуализма решающее значение имело изучение законов движения электронов в атоме. В 1913 году Н. Бор использовал постоянную Планка для определения стационарных состояний в атоме водорода. При этом ему удалось объяснить наблюдаемые на опыте спектральные закономерности и выразить через заряд электрона, его массу и постоянную Планка радиус атома и Ридберга постоянную, оказавшиеся в хорошем согласии с экспериментальными данными. Способ определения стационарных состояний электронов в атомах был усовершенствован А. Зоммерфельдом, показавшим, что для стационарных орбит классическое действие является целым, кратным 2πh.

Успех теории Бора, объяснившей атомные явления на основе квантовых представлений и постоянной Планка (которая до этого, казалось, связывала лишь корпускулярные и волновые характеристики электромагнитного излучения), навёл на мысль о существовании корпускулярно-волнового дуализма и для электронов. В связи с этим Л. де Бройль в 1923 году высказал гипотезу о всеобщем характере корпускулярно-волнового дуализма. Согласно этой гипотезе, не только электромагнитным волнам соответствуют частицы, но и частицам (например, электронам) должны соответствовать волны. Де Бройль отметил релятивистскую инвариантность соотношения (*), связывающего четырёхмерный вектор энергии-импульса частицы (ξ/с, р) с четырёхмерным волновым вектором (ω/с, k), и высказал предположение о том, что волновая механика частиц должна находиться в таком же соотношении с классической механикой, как волновая оптика с геометрической оптикой. Невозможность описать волновые явления (например, интерференцию) с помощью частиц, движущихся по определённым траекториям, была преодолена в квантовой механике на основе суперпозиции состояний принципа и его статистической интерпретации.

Прямое доказательство существования волновых свойств электронов впервые получили в 1927 году американские физики К. Дэвиссон и Л. Джермер, которые наблюдали интерференционные максимумы при отражении электронов от монокристаллов никеля. Позднее интерференционные эффекты были обнаружены для пучков атомов гелия, молекул водорода и других частиц, то есть универсальность корпускулярно-волнового дуализма была подтверждена экспериментально.

В явном виде корпускулярно-волновой дуализм присутствует в квантовой теории поля, где частицы (и квазичастицы) представляют собой возбуждённые состояния полей.

Геометрическая оптика использует представление о световых лучах, распространяющихся независимо друг от друга, прямолинейных в однородной среде, отражающихся и преломляющихся на границах сред с разными оптическими свойствами. Вдоль лучей происходит перенос энергии световых колебаний.

Показатель преломления среды. Оптические свойства прозрачной среды характеризуются показателем преломления который определяет скорость (точнее, фазовую скорость) световых волн:

где с - скорость света в вакууме. Показатель преломления воздуха близок к единице (пвозд воды его значение равно 1,33, а у стекла в зависимости от сорта может составлять от 1,5 до 1,95. Особенно велик показатель преломления алмаза - приблизительно 2,5.

Значение показателя преломления, вообще говоря, зависит от длины волны Я (или от частоты : Эту зависимость называют дисперсией света. Например, у хрусталя (свинцового стекла) показатель преломления плавно меняется от 1,87 для красного света с длиной волны до 1,95 для синего света с

Показатель преломления связан с диэлектрической проницаемостью среды (для данной длины волны или частоты) соотношением Среда с большим значением показателя преломления называется оптически более плотной.

Законы геометрической оптики. Поведение световых лучей подчиняется основным законам геометрической оптики.

1. В однородной среде световые лучи прямолинейны (закон прямолинейного распространения света).

2. На границе двух сред (или на границе среды с вакуумом) возникает отраженный луч, лежащий в плоскости, образуемой падающим лучом и нормалью к границе, т. е. в плоскости падения, причем угол отражения равен углу падения (рис. 224):

(закон отражения, света).

3. Преломленный луч лежит в плоскости падения (при падении света на границу изотропной среды) и образует с нормалью к границе угол (угол преломления), определяемый соотношением

(закон преломления света или закон Снеллиуса).

При переходе света в оптически более плотную среду луч приближается к нормали Отношение называют относительным показателем преломления двух сред (или показателем преломления второй среды относительно первой).

Рис. 224. Отражение и преломление спета на плоской границе двух сред

При падении света из вакуума на границу среды с показателем преломления закон преломления принимает вид

Для воздуха показатель преломления близок к единице поэтому и при падении света из воздуха на некоторую среду можно пользоваться формулой (4).

При переходе света в оптически менее плотную среду угол падения не может превышать предельного значения так как угол преломления не может превышать (рис. 225):

Если угол падения происходит полное отражение, т. е. вся энергия падающего света возвращается в первую, оптически более плотную, среду. Для границы стекло - воздух

Рис. 225. Предельный угол полного отражения

Принцип Гюйгенса и законы геометрической оптики. Законы геометрической оптики были установлены задолго до выяснения природы света. Эти законы могут быть выведены из волновой теории на основе принципа Гюйгенса. Их применимость ограничена явлениями дифракции.

Остановимся подробнее на переходе от волновых представлений о распространении света к представлениям геометрической оптики. С помощью принципа Гюйгенса по заданной волновой поверхности падающей волны можно построить волновые поверхности преломленной и отраженной волн. При этом следует учесть, что световые лучи перпендикулярны волновым поверхностям.

Рассмотрим плоскую световую волну, падающую из среды 1 (с показателем преломления на плоскую границу раздела со средой 2 (с показателем преломления под углом (рис. 226). Угол падения - это угол между падающим лучом и нормалью к границе раздела.

Рис. 226. Построение Гюйгенса для отражения и преломления света

В то же время - это угол между границей раздела и волновой поверхностью падающей волны. Пусть в некоторый момент эта волновая поверхность занимает положение Спустя время она достигнет точки В границы раздела. За это же время вторичная волна из точки А, распространяющаяся в среде X, расширится до радиуса Подставляя сюда получаем Отсюда ясно, что волновая поверхность отраженной волны, представляющая собой огибающую всех вторичных сферических волн с центрами на отрезке наклонена к границе раздела на угол который равен (равенство углов и следует из равенства прямоугольных треугольников и имеющих общую гипотенузу и равные катеты и Таким образом, отраженный луч перпендикулярный фронту отраженной волны, образует с нормалью угол равный углу падения

Аналогично из этого построения Гюйгенса можно получить и закон преломления. В среде 2 вторичные волны распространяются со скоростью и поэтому выходящая из точки А сферическая волна спустя время имеет радиус Подставляя сюда находим Разделив обе части этого равенства на приходим к соотношению

которое, очевидно, совпадает с законом преломления (3), так как угол наклона волновой поверхности волны в среде 2 есть в то же время и угол между преломленным лучом и нормалью к границе раздела (угол преломления, рис. 226).

Отражение и преломление на искривленной поверхности. Плоская волна характеризуется тем свойством, что ее волновые поверхности представляют собой неограниченные плоскости, а направление ее распространения и амплитуда везде одинаковы. Часто электромагнитные волны, не являющиеся плоскими, можно приближенно рассматривать как плоские на небольшом участке пространства. Для этого необходимо, чтобы амплитуда и направление распространения волны почти не менялись на протяжении расстояний порядка длины волны. Тогда также можно ввести понятие лучей, т. е. линий, касательная к которым в каждой точке совпадает с направлением распространения волны. Если при этом граница раздела двух сред, например поверхность линзы, может считаться приблизительно плоской на расстояниях порядка длины волны, то поведение лучей света на такой границе будет описываться теми же законами отражения и преломления.

Изучение законов распространения световых волн в этом случае составляет предмет геометрической оптики, поскольку в этом приближении оптические законы можно сформулировать на языке геометрии. Многие оптические явления, такие, как, например, прохождение света через оптические системы, формирующие изображение, можно рассматривать исходя из представления о световых лучах, совершенно отвлекаясь от волновой природы света. Поэтому представления геометрической оптики справедливы лишь в той степени, в какой можно пренебречь явлениями дифракции световых волн. Дифракция сказывается тем слабее, чем меньше длина волны. Это значит, что геометрическая оптика соответствует предельному случаю малых длин волн:

Физическую модель пучка световых лучей можно получить, если пропустить свет от источника пренебрежимо малого размера через небольшое отверстие в непрозрачном экране. Выходящий из отверстия свет заполняет некоторую область, и если длина волны пренебрежимо мала по сравнению с размерами отверстия, то на небольшом расстоянии от него можно говорить о пучке световых лучей с резкой границей.

Интенсивность отраженного и преломленного света. Законы отражения и преломления позволяют определить только направление соответствующих световых лучей, но ничего не говорят об их интенсивности. Между тем опыт показывает, что соотношение интенсивностей отраженного и преломленного лучей, на которые расщепляется исходный луч на границе раздела, сильно зависит от угла падения. Например, при нормальном падении света на поверхность стекла отражается около 4% энергии падающего светового пучка, а при падении на поверхность воды - только 2 %. Но при скользящем падении поверхности стекла и воды отражают почти все падающее излучение. Благодаря этому мы можем любоваться зеркальными отражениями берегов в спокойной прозрачной воде горных озер.

Рис. 227. У естественного спета колебания сектора Е происходят по всевозможных направлениях в плоскости, перпендикулярной лучу

Естественный свет. Световая волна, как и любая электромагнитная волна, поперечна: вектор Е лежит в плоскости, перпендикулярной направлению распространения. Испускаемый обычными источниками (например, раскаленными телами) свет неполяризован. Это значит, что в световом луче колебания вектора Е происходят во всевозможных направлениях в плоскости, перпендикулярной направлению луча (рис. 227). Такой неполяризованный свет называется естественным. Его можно представить как некогерентную смесь двух световых волн одинаковой интенсивности, линейно поляризованных в двух взаимно перпендикулярных направлениях. Эти направления можно выбрать произвольно.

Поляризация света при отражении. При изучении отражения неполяризованного света от границы раздела сред удобно выбрать одно из двух независимых направлений вектора Е в плоскости падения, а второе - перпендикулярно ей. Условия отражения этих двух волн оказываются различными: волна, у которой вектор Е перпендикулярен плоскости падения (т. е. параллелен границе раздела) при всех углах падения (кроме 0 и 90°), отражается сильнее. Поэтому отраженный свет оказывается частично поляризованным, а при отражении под некоторым определенным углом (для стекла около 56°) - полностью поляризованным.

Этим обстоятельством пользуются для устранения бликов, например при фотографировании пейзажа с водной поверхностью. Подбирая должным образом ориентацию поляризационного светофильтра, пропускающего световые колебания только определенной поляризации, можно практически полностью устранить блики на фотографии.

Принцип Ферма. Основные законы геометрической оптики - закон прямолинейного распространения света в однородной среде, законы отражения и преломления света на границе раздела двух сред - могут быть получены с помощью принципа Ферма. Согласно этому принципу действительный путь распространения монохроматического луча света есть путь, для прохождения которого свету требуется экстремальное (как правило, минимальное) время по сравнению с любым другим близким к нему мыслимым путем между теми же точками.

Рис. 228. К выводу закона отражения света из принципа Ферма

Возьмем для примера закон отражения света. Сразу видно, что он непосредственно следует из принципа Ферма. Пусть луч света, вышедшего из точки А, отражается от зеркала в некоторой точке С и приходит в заданную точку В (рис. 228). Согласно принципу Ферма, проходимый светом путь должен быть короче любого другого пути по близкой траектории, например Чтобы найти положение точки отражения С, отложим на опущенном из точки А перпендикуляре к зеркалу отрезок равный и соединим точки А и В отрезком прямой.

Пересечение этого отрезка с поверхностью зеркала и дает положение точки С. Действительно, легко видеть, что и потому путь света из точки А в точку В равен отрезку Путь света из А в В через любую другую точку равный будет длиннее, так как прямая - это кратчайшее расстояние между двумя точками А и В. Из рис. 228 сразу видно, что именно такое положение точки С соответствует равенству углов падения и отражения:

Рис. 229. Мнимое изображение точки А в плоском зеркале

Изображение в плоском зеркале. Точка А, расположенная симметрично точке А относительно поверхности плоского зеркала, представляет собой изображение точки А в этом зеркале. В самом деле, узкий пучок лучей, выходящих из

А, отражающихся в зеркале и попадающих в глаз наблюдателя (рис. 229), будет казаться выходящим из точки А. Создаваемое плоским зеркалом изображение называется мнимым, так как в точке А пересекаются не сами отраженные лучи, а их продолжения назад. Очевидно, что изображение протяженного предмета в плоском зеркале будет равным по размерам самому предмету.

Что такое световые лучи? Как это понятие соотносится с понятием волновой поверхности? Какое отношение имеют лучи к направлению распространения световых колебаний?

В каких условиях можно использовать представление о световых лучах?

Что такое показатель преломления среды? Как он связан со скоростью распространения света?

Сформулируйте основные законы геометрической оптики. Что такое плоскость падения? Объясните на основе соображений симметрии, почему луч как при отражении, так и при преломлении не выходит из этой плоскости.

При каких условиях отражение света на границе раздела будет полным? Что такое предельный угол полного отражения?

Поясните, как можно получить законы прямолинейного распространения, отражения и преломления на основе принципа Гюйгенса.

Почему законы отражения и преломления света, сформулированные для плоской границы раздела, можно применять и в случае искривленных поверхностей (линзы, капли воды и др.)?

Приведите примеры наблюдавшихся вами явлений, свидетельствующих о зависимости интенсивности отраженного света от угла падения.

Почему при отражении естественного света получается частично поляризованный свет?

Сформулируйте принцип Ферма и покажите, что из него следует закон отражения света.

Докажите, что изображение предмета в плоском зеркале равно по размерам самому предмету.

Принцип Ферма и формула линзы. Скорость света в среде с показателем преломления равна Поэтому принцип Ферма можно сформулировать как требование минимальности оптической длины луча при распространении света между двумя заданными точками. Под оптической длиной луча понимается произведение показателя преломления на длину пути луча. В неоднородной среде оптическая длина складывается из оптических длин на отдельных участках. Использование этого принципа позволяет рассмотреть некоторые задачи с несколько иной точки зрения, чем при непосредственном применении законов отражения и преломления. Например, при рассмотрении фокусирующей оптической системы вместо применения закона преломления можно просто потребовать равенства оптических длин всех лучей.

Получим с помощью принципа Ферма формулу тонкой линзы, не прибегая к закону преломления. Для определенности будем рассматривать двояковыпуклую линзу со сферическими преломляющими поверхностями, радиусы кривизны которых равны (рис. 230).

Хорошо известно, что с помощью собирающей линзы можно получить действительное изображение точки. Пусть предмет, его изображение. Все лучи, исходящие из и прошедшие через линзу, собираются в одной точке Пусть лежит на главной оптической оси линзы, тогда изображение также лежит на оси. Что значит получить формулу линзы? Это значит установить связь между расстояниями от предмета до линзы и от линзы до изображения и величинами, характеризующими данную линзу: радиусами кривизны ее поверхностей и показателем преломления

Из принципа Ферма следует, что оптические длины всех лучей, выходящих из источника и собирающихся в точке, являющейся его изображением, одинаковы. Рассмотрим два из этих лучей: один, идущий вдоль оптической оси, второй - через край линзы (рис. 230а).

Рис. 230. К вьшоду формулы тонкой линзы

Несмотря на то, что второй луч проходит большее расстояние, его путь в стекле короче, чем у первого, так что время распространения света для них одинаково. Выразим это математически. Обозначения величин всех отрезков указаны на рисунке. Приравняем оптические длины первого и второго лучей:

Выразим по теореме Пифагора:

Теперь воспользуемся приближенной формулой которая справедлива при с точностью до членов порядка Считая малым по сравнению с с точностью до членов порядка имеем

Аналогично для получаем

Подставляем выражения (8) и (9) в основное соотношение (7) и приводим подобные члены:

В этой формуле в случае тонкой линзы можно пренебречь величинами в знаменателях правой части по сравнению с и очевидно, что в левой части выражения следует сохранить, ибо этот член стоит множителем.

С той же точностью, что и в формулах (8) и (9), с помощью теоремы Пифагора можно представить в виде (рис. 230б)

Теперь остается только подставить эти выражения в левую часть формулы (10) и сократить обе части равенства на :

Это и есть искомая формула тонкой линзы. Вводя обозначение

ее можно переписать в виде

Фокусное расстояние линзы. Из формулы (12) нетрудно понять, что есть фокусное расстояние линзы: если источник находится на бесконечности (т.е. на линзу падает параллельный пучок лучей), его изображение находится в фокусе. Полагая получаем

Аберрации. Полученное свойство фокусировки параллельного пучка монохроматических лучей является, как видно из проделанного вывода, приближенным и справедливо лишь для узкого пучка, т. е. для лучей, не слишком сильно отстоящих от оптической оси. Для широких пучков лучей имеет место сферическая аберрация, проявляющаяся в том, что далекие от оптической оси лучи пересекают ее не в фокусе (рис. 231). В результате изображение бесконечно удаленного точечного источника, создаваемое широким пучком лучей, преломленных линзой, оказывается несколько размытым.

Кроме сферической аберрации, линза как оптический прибор, формирующий изображение, обладает рядом других недостатков.

Например, даже узкий параллельный пучок монохроматических лучей, образующий некоторый угол с оптической осью линзы, после преломления не собирается в одну точку. При использовании немонохроматического света у линзы проявляется еще и хроматическая аберрация, связанная с тем, что показатель преломления зависит от длины волны. В результате, как видно из формулы (11), узкий параллельный пучок лучей белого света пересекается после преломления в линзе не в одной точке: лучи каждого цвета имеют свой фокус.

При конструировании оптических приборов удается в большей или меньшей степени устранить эти недостатки путем применения специально рассчитанных сложных многолинзовых систем. Однако одновременно устранить все недостатки невозможно. Поэтому приходится идти на компромисс и, рассчитывая оптические приборы, предназначенные для определенной цели, добиваться устранения одних недостатков и мириться с присутствием других. Например, объективы, предназначенные для наблюдения объектов малой яркости, должны пропускать возможно больше света, что вынуждает мириться с некоторыми аберрациями, неизбежными при использовании широких пучков света.

Рис. 231. Сферическая аберрация линзы

Для объективов телескопов, где изучаемыми объектами являются звезды - точечные источники, расположенные вблизи оптической оси прибора, особенно важно устранить сферическую и хроматическую аберрацию для широких пучков, параллельных оптической оси. Устранить хроматическую аберрацию проще всего путем использования в оптической системе отражения вместо преломления. Так как лучи всех длин волн отражаются одинаково, то телескоп-рефлектор, в отличие от рефрактора, полностью лишен хроматической аберрации. Если при этом еще надлежащим образом выбрать форму поверхности отражающего зеркала, то можно полностью избавиться и от сферической аберрации для пучков, параллельных оптической оси. Для получения точечного осевого изображения зеркало должно быть параболическим.

Возводя обе части в квадрат и приводя подобные члены, найдем

Это уравнение параболы.

Рис. 232. Все параллельные лучи после отражения от параболического зеркала собираются в точке

Параболические зеркала используются во всех крупнейших телескопах. В этих телескопах устранены сферическая и хроматическая аберрации; однако параллельные пучки, идущие даже под небольшими углами к оптической оси, после отражения не пересекаются в одной точке и дают сильно искаженные внеосевые изображения. Поэтому пригодное для работы поле зрения оказывается очень небольшим, порядка нескольких десятков угловых минут,

Поясните, почему применительно к фокусирующей оптической системе принцип Ферма формулируется как условие равенства оптических длин всех лучей от точки предмета до ее изображения.

Выведите с помощью принципа Ферма закон преломления света на границе раздела двух сред.

Сформулируйте приближения, при выполнении которых справедлива формула тонкой линзы.

В чем проявляются сферическая и хроматическая аберрации линзы?

Какие преимущества и какие недостатки имеет параболическое зеркало по сравнению со сферическим?

Покажите, что эллиптическое зеркало отражает все лучи, вышедшие из одного фокуса эллипсоида, в другой фокус.

В основе разработки практически всех оптических приборов и систем лежат законы распространения света. Некоторые из них учитывают двойственную природу света, некоторые - нет. Наиболее общие законы распространения света, не связанные с его природой, рассматриваются именно в геометрической оптике. С этими законами вам и предстоит познакомиться на этом уроке.

Тема: Оптика

Урок: Законы геометрической оптики

Геометрическая оптика является самой древней частью оптики как науки.

Геометрическая оптика - это раздел оптики, в котором рассматривают вопросы распространения света в различных оптических системах (линзах, призмах и т. д.) без рассмотрения вопроса о природе света.

Одним из основных понятий в оптике и, в частности, в геометрической оптике, является понятие луча.

Световой луч - линия, вдоль которой распространяется световая энергия.

Световой луч - это пучок света, толщина которого много меньше расстояния, на которое он распространяется. Такое определение близко, например, к определению материальной точки, которое дается в кинематике.

Первый закон геометрической оптики (Закон о прямолинейном распространении света): в однородной прозрачной среде свет распространяется прямолинейно.

По теореме Ферма: свет распространяется по такому направлению, время распространения по которому будет минимально.

Второй закон геометрической оптики (Законы отражения):

1. Отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром к границе раздела двух сред.

2. Угол падения равен углу отражения (см. Рис. 1).

∟α = ∟β

Рис. 1. Закон отражения

Третий закон геометрической оптики (Закон преломления) (см. Рис. 2)

1. Преломленный луч лежит в одной плоскости с падающим лучом и перпендикуляром, восстановленным в точку падения.

2. Отношение синуса угла падения к синусу угла преломления есть величина, постоянная для данных двух сред, которая называется показателем преломления (n).

Интенсивность отраженного и преломленного луча зависит от того, какова среда и что собой представляет граница раздела.

Рис. 2. Закон преломления

Физический смысл показателя преломления:

Показатель преломления является относительным, так как измерения проводятся относительно двух сред.

В том случае, если одна из сред - это вакуум:

С - скорость света в вакууме,

n - абсолютный показатель преломления, характеризующий среду относительно вакуума.

Если свет переходит из оптически менее плотной среды в оптически более плотную среду, то скорость света уменьшается.

Оптически более плотная среда - среда, в которой скорость света меньше.

Оптически менее плотная среда - среда, в которой скорость света больше.

Существует предельный угол преломления - наибольший угол падения луча, при котором еще имеет место преломление при переходе луча в менее плотную среду. При углах падения больше предельного происходит полное внутреннее отражение (см. Рис. 3).

Рис. 3. Закон полного внутреннего отражения

Границы применимости геометрической оптики заключаются в том, что необходимо учитывать размер препятствий для света.

Свет характеризуется длиной волны, равной примерно 10 -9 метра

Если препятствия больше длины волны, то можно использовать размеры геометрической оптики.

  1. Физика. 11 класс: Учебник для общеобразоват. учреждений и шк. с углубл. изучением физики: профильный уровень / А.Т. Глазунов, О.Ф. Кабардин, А.Н. Малинин и др. Под ред. А.А. Пинского, О.Ф. Кабардина. Рос. акад. наук, Рос. акад. образования. - М.: Просвещение, 2009.
  2. Касьянов В.А. Физика. 11 кл.: Учеб. для общеобразоват. учреждений. - М.: Дрофа, 2005.
  3. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. - М.: Просвещение, 2010.
  1. Санкт-Петербургская Школа ().
  2. AYP.ru ().
  3. Техническая и учебно-методическая документація ().

Рымкевич А.П. Физика. Задачник. 10-11 кл. - М.: Дрофа, 2010. - № 1023, 1024, 1042, 1054.

  1. Зная скорость света в вакууме, найдите скорость света в алмазе.
  2. Почему, сидя у костра, мы видим предметы, расположенные напротив, колеблющимися?
  3. Прокомментируйте опыт: положите монетку на стол и поставьте на нее пустую стеклянную банку (см. Рис. 4). Посмотрите на монетку сбоку сквозь стенку банки (или попросите кого-нибудь смотреть на монетку). Налейте воды полную банку и посмотрите вновь сбоку на дно банки. Куда исчезла монетка?