Болезни Военный билет Призыв

P-n переход

pn переход это тонкая область, которая образуется в том месте, где контактируют два полупроводника разного типа проводимости. Каждый из этих полупроводников электрически нейтрален. Основным условием является то что в одном полупроводнике основные носители заряда это электроны а в другом дырки.

При контакте таких полупроводников в результате диффузии зарядов дырка из p области попадает в n область. Она тут же рекомбенирует с одним из электронов в этой области. В результате этого в n области появляется избыточный положительный заряд. А в p области избыточный отрицательный заряд.

Таким же образом один из электронов из n области попадает в p область, где рекомбенирует с ближайшей дыркой. Следствием этого также является образование избыточных зарядов. Положительного в n области и отрицательного в p области.

В результате диффузии граничная область наполняется зарядами, которые создают электрическое поле. Оно будет направлено таким образом, что будет отталкивать дырки находящиеся в области p от границы раздела. И электроны из области n также будут отталкиваться от этой границы.

Если говорить другими словами на границе раздела двух полупроводников образуется энергетический барьер. Чтобы его преодолеть электрон из области n должен обладать энергией больше чем энергия барьера. Как и дырка из p области.

Наряду с движением основных носителей зарядов в таком переходе существует и движение неосновных носителей зарядов. Это дырки из области n и электроны из области p. Они также двигаются в противоположную область через переход. Хотя этому способствует образовавшееся поле, но ток получается, ничтожно мал. Так как количество неосновных носителей зарядов очень мало.

Если к pn переходу подключить внешнюю разность потенциалов в прямом направлении, то есть к области p подвести высокий потенциал, а к области n низкий. То внешнее поле приведет к уменьшению внутреннего. Таким образом, уменьшится энергия барьера, и основные носители заряда смогут легко перемещаться по полупроводникам. Иначе говоря, и дырки из области p и электроны из области n будут двигаться к границе раздела. Усилится процесс рекомбинации и увеличится ток основных носителей заряда.

Рисунок 1 — pn переход, смещённый в прямом направлении

Если разность потенциалов приложить в обратном направлении, то есть к области p низкий потенциал, а к области n высокий. То внешнее электрическое поле сложится с внутренним. Соответственно увеличится энергия барьера не дающего перемещаться основным носителям зарядов через переход. Другими словами электроны из области n и дырки из области p будут двигаться от перехода к внешним сторонам полупроводников. И в зоне pn перехода попросту не останется основных носителей заряда обеспечивающих ток.

Рисунок 2 — pn переход, смещённый в обратном направлении

Если обратная разность потенциалов будет чрезмерно высока, то напряжённость поля в области перехода увеличится до тех пор, пока не наступит электрический пробой. То есть электрон ускоренный полем не разрушит ковалентную связь и не выбьет другой электрон и так далее.

Принцип действия полупроводниковых приборов объясняется свойствами так называемого электронно-дырочного перехода (p-n - перехода) - зоной раздела областей полупроводника с разным механизмами проводимости.

Электронно-дырочный переход - это область полупроводника, в которой имеет место пространственное изменение типа проводимости (от электронной n-области к дырочной p-области). Поскольку в р-области электронно-дырочного перехода концентрация дырок гораздо выше, чем в n-области, дырки из n -области стремятся диффундировать в электронную область. Электроны диффундируют в р-область.

Для создания в исходном полупроводнике (обычно 4-валентном германии или кремнии) проводимости n- или p-типа в него добавляют атомы 5-валентной или 3-валентной примесей соответственно (фосфор, мышьяк или алюминий, индий и др.)

Атомы 5-валентной примеси (доноры) легко отдают один электрон в зону проводимости, создавая избыток электронов в полупроводнике, не занятых в образовании ковалентных связей; проводник приобретает проводимость n-типа. Введение же 3-валентной примеси (акцепторов) приводит к тому, что последняя, отбирая по одному электрону от атомов полупроводника для создания недостающей ковалентной связи, сообщает ему проводимость p-типа, так как образующиеся при этом дырки (вакантные энергетические уровни в валентной зоне) ведут себя в электрическом или магнитном полях как носители положительных зарядов. Дырки в полупроводнике р-типа и электроны в полупроводнике n-типа называются основными носителями в отличие от неосновных (электроны в полупроводнике р-типа и дырки в полупроводнике n-типа), которые генерируются из-за тепловых колебаний атомов кристаллической решетки.

Если полупроводники с разными типами проводимости привести в соприкосновение (контакт создается технологическим путем, но не механическим), то электроны в полупроводнике n-типа получают возможность занять свободные уровни в валентной зоне полупроводника р-типа. Произойдет рекомбинация электронов с дырками вблизи границы разнотипных полупроводников.

Этот процесс подобен диффузии свободных электронов из полупроводника n-типа в полупроводник р-типа и диффузии дырок в противоположном направлении. В результате ухода основных носителей заряда на границе разнотипных полупроводников создается обедненный подвижными носителями слой, в котором в n-области будут находиться положительные ионы донорных атомов; а в p- области - отрицательные ионы акцепторных атомов. Этот обедненный подвижными носителями слой протяженностью в доли микрона и является электронно-дырочным переходом.

Потенциальный барьер в p-n переходе.

Если к полупроводнику приложить электрическое напряжение, то в зависимости от полярности этого напряжения р-n-переход проявляет совершенно различные свойства.

Свойства p-n перехода при прямом включении.


Свойства p-n перехода при обратном включении.


Итак, с определенной долей приближения можно считать, что электрический ток через р-n-переход протекает, если полярность напряжения источника питания прямая, и, напротив, тока нет, когда полярность обратная.

Однако, кроме зависимости возникшего тока от внешней энергии, например, источника питания или фотонов света, которая используется в ряде полупроводниковых приборов, существует термогенерация. При этом концентрация собственных носителей заряда резко уменьшается, следовательно, и I ОБР тоже.Таким образом, если переход подвергнуть воздействию внешней энергии, то появляется пара свободных зарядов: электрон – дырка. Любой носитель заряда, рожденный в области объемного заряда p n перехода, будет подхвачен электрическим полем E ВН и выброшен: электрон – в n –область, дырка – в p – область. Возникает электрический ток, который пропорционален ширине области объемного заряда. Это вызвано тем, что чем больше E ВН , тем шире область, где существует электрическое поле, в котором происходит рождение и разделение носителей зарядов. Как было сказано выше, скорость генерации носителей зарядов в полупроводнике зависит от концентрации и энергетического положения глубоких примесей, существующих в материале.

По этой же причине выше предельная рабочая температура полупроводника. Для германия она составляет 80º С, кремний: 150º С, арсенид галлия: 250º С (DE = 1,4 эВ). При большей температуре количество носителей заряда возрастает, сопротивление кристалла уменьшается, и полупроводник термически разрушается.

Вольт-амперная характеристика p-n перехода.

Вольт-амперная характеристика (ВАХ) являет­ся графической зависимостью протекающего через р-n переход тока от приложенного к нему внешнего напря­жения I=f(U) . Вольт-амперная характе­ристика р-n перехода при пря­мом и обратном включе­нии приведена ниже.

Она состоит из прямой (0-А) и обратной (0-В-С) ветвей; на вертикальной оси отложены значения прямого и обратного тока , а на оси абсцисс - значения прямого и обратного напряжения .

Напряжение от внешнего источника, подведенное к кристаллу с р-п переходом, практически полностью со­средотачивается на обедненном носителями переходе. В зависимости от полярности возможны два варианта включения постоянного напряжения - прямое и обрат­ное .

При прямом включении (рис. справа - верх) внешнее элект­рическое поле направлено навстречу внутреннему и частично или полиостью ос­лабляет его, снижает высо­ту потенциального барьера (Rпр ). При обратном включении (рис. справа - низ) элект­рическое поле совпадает по направлению с полем р-п перехода и приводит к росту потенциального барьера (Rобр ).

ВАХ p-n перехода описывает­ся аналитической функцией:

где

U - приложенное к переходу внешнее напряжение соответствующего знака;

Iо = Iт - обратный (тепловой) ток р-п перехода;

- температурный потенциал, где k - постоянная Больцмана, q - элементарный заряд (при T = 300К , 0,26 В ).

При прямом напряжении (U>0 ) - экспоненциальный член быстро возрастает [], единицей в скобках можно пренебречь и считать . При обратном напряжении (U<0 ) экспоненциальный член стремится к нулю, и ток через переход практически равен обратному току; Ip-n = -Io .

Вольт-амперная характеристика р-n-перехода показывает, что уже при сравнительно небольших прямых напряжениях сопротивление перехода падает, а прямой ток резко увеличивается.

Пробой p–n перехода.

Пробоем называют резкое изме­нение режима работы перехода, находящегося под обрат­ным напряжением.

Характерной особенностью этого из­менения является резкое уменьшение дифференциального сопротивления перехода (Rдиф ). Соответствующий участок вольт-ампер­ной характеристики изображен на рисунке справа (обратная ветвь). После начала пробоя незначительное увеличение об­ратного напряжения сопровождается резким увеличени­ем обратного тока. В процессе пробоя ток может увели­чиваться при неизменном и даже уменьшающемся (по модулю) обратном напряжении (в последнем случае дифференциальное сопротивление Rдиф оказывается отрицатель­ным).

Пробой бывает лавинный, тунельный, тепловой. И туннельный и лавинный пробой принято называть электрическим пробоем .

Подавляющее большинство современных полупроводниковых приборов функционируют благодаря тем явлениям, которые происходят на самих границах материалов, имеющих различные типы электропроводности.

Полупроводники бывают двух типов – n и p . Отличительной особенностью полупроводниковых материалов n -типа является то, в них в качестве носителей электрического заряда выступают отрицательно заряженные электроны . В полупроводниковых материалах p -типа эту же роль играют так называемые дырки , которые заряжены положительно. Они появляются после того, как от атома отрывается электрон , и именно поэтому и образуются положительный заряд.

Для изготовления полупроводниковых материалов n -типа и p -типа используются монокристаллы кремния. Их отличительной особенностью является чрезвычайно высокая степень химической чистоты. Существенно изменить электрофизические свойства этого материала можно, внося в него совсем незначительные, на первый взгляд, примеси.

Символ « n », используемый при обозначении полупроводников, происходит от слова «negative » («отрицательный »). Главными носителями заряда в полупроводниковых материалах n -типа являются электроны . Для того чтобы их получить, в кремний вводятся так называемые донорные примеси: мышьяк, сурьму, фосфор.

Символ « p », используемый при обозначении полупроводников, происходит от слова «positive » («положительный »). Главными носителями заряда в них являются дырки . Для того чтобы их получить, в кремний вводятся так называемые акцепторные примеси: бор, алюминий.

Число свободных электронов и число дырок в чистом кристалле полупроводника совершенно одинаково. Поэтому когда полупроводниковый прибор находится в равновесном состоянии, то электрически нейтральной является каждая из его областей.

Возьмем за исходное то, что n -область тесно соединена с p -областью. В таких случаях между ними образуется переходная зона, то есть некое пространство, которое обеднено зарядами. Его ёщё называют «запирающим слоем », где дырки и электроны , подвергаются рекомбинации. Таким образом, в месте соединения двух полупроводников, которые имеют различные типы проводимости, образуется зона, называемая p-n переходом .

В месте контакта полупроводников различных типов дырки из области p -типа частично следуют в область n -типа, а электроны, соответственно, – в обратном направлении. Поэтому полупроводник p -типа заряжается отрицательно, а n -типа – положительно. Эта диффузия, однако, длится только до тех пор, пока возникающее в зоне перехода электрическое поле не начинает ей препятствовать, в результате чего перемещение и электронов , и дырок прекращается.

В выпускаемых промышленностью полупроводниковых приборах для использования p-n перехода к нему необходимо приложить внешнее напряжение. В зависимости от того, какими будет его полярность и величина, зависит поведение перехода и проходящий непосредственно через него электрической ток. Если к p -области подключается положительный полюс источника тока, а к n -области – полюс отрицательный, то имеет место прямое включение p-n перехода . Если же полярность изменить, то возникнет ситуация, называемая обратным включением p-n перехода .

Прямое включение

Когда осуществляется прямое включение p-n перехода , то под воздействием внешнего напряжения в нем создается поле. Его направление по отношению к направлению внутреннего диффузионного электрического поля противоположно. В результате этого происходит падение напряженности результирующего поля, а запирающий слой сужается.

Вследствие такого процесса в соседнюю область переходит немалое количество основных носителей заряда. Это означает, что из области p в область n результирующий электрический ток будет протекать дырками , а в обратном направлении – электронами .

Обратное включение

Когда осуществляется обратное включение p-n перехода , то в образовавшейся цепи сила тока оказывается существенно ниже, чем при прямом включении. Дело в том, что дырки из области n будут следовать в область p , а электроны – из области p в область n . Невысокая сила тока обуславливается тем обстоятельством, что в области p мало электронов , а в области n, соответственно, – дырок .

Сильно зависит от концентрации примесей. Полупроводники, электрофизические свойства которых зависят от примесей других химических элементов, называются примесными полупроводниками. Примеси бывают двух видов донорной и акцепторной.

Донорной называется примесь, атомы которой дают полупроводнику свободные электроны, а получаемая в этом случае электропроводность, связанная с движением свободных электронов, - электронной . Полупроводник с электронной проводимостью называется электронным полупроводником и условно обозначается латинской буквой n - первой буквой слова «негативный».

Рассмотрим процесс образования электронной проводимости в полупроводнике. За основной материал полупроводника возьмём кремний (кремниевые полупроводники самые распространённые). У кремния (Si) на внешней орбите атома есть четыре электрона, которые обуславливают его электрофизические свойства (т.е. они перемещаясь под действием напряжения создают электрический ток). При введении в кремний атомов примеси мышьяка (As), у которого на внешней орбите пять электронов, четыре электрона вступают во взаимодействие с четырьмя электронами кремния, образуя ковалентную связь, а пятый электрон мышьяка остаётся свободным. При этих условиях он легко отделяется от атома и получает возможность перемещаться в веществе.

Акцепторной называется примесь, атомы которой принимают электроны от атомов основного полупроводника. Получаемая при этом электропроводность, связанная с перемещением положительных зарядов - дырок, называется дырочной. Полупроводник с дырочной электропроводностью называется дырочным полупроводником и условно обозначается латинской буквой p - первой буквой слова «позитивный».

Рассмотрим процесс образования дырочной проводимости. при введении в кремний атомов примеси индия (In), у которого на внешней орбите три электрона, они вступают в связь с тремя электронами кремния, но эта связь оказывается неполной: не хватает ещё одного электрона для связи с четвёртым электроном кремния. Атом примеси присоединяет к себе недостающий электрон от одного из расположенных поблизости атомов основного полупроводника, после чего он оказывается связанным со всеми четырьмя соседними атомами. Благодаря добавлению электрона он приобретает избыточный отрицательный заряд, то есть превращается в отрицательный ион. В тоже время атом полупроводника, от которого к атому примеси ушёл четвёртый электрон оказывается связанным с соседними атомами только тремя электронами. таким образом, возникает избыток положительного заряда и появляется незаполненная связь, то есть дырка .

Одним из важных свойств полупроводника является то, что при наличии дырок через него может проходить ток, даже если в нём нет свободных электронов. Это объясняется способностью дырок переходить с одного атома полупроводника на другой.

Перемещение «дырок» в полупроводнике

Вводя в часть полупроводника донорную примесь, а в другую часть - акцепторную, можно получить в нём области с электронной и дырочной проводимостью. На границе областей электронной и дырочной проводимости образуется так называемый электронно-дырочный переход.

P-N-переход

Рассмотрим процессы происходящий при прохождении тока через электронно-дырочный переход . Левый слой, обозначенный буквой n, имеет электронную проводимость. Ток в нём связан с перемещением свободных электронов, которые условно обозначены кружками со знаком «минус». Правый слой, обозначенный буквой p, обладает дырочной проводимостью. Ток в этом слое связан с перемещением дырок, которые на рисунке обозначены кружками с «плюсом».



Движение электронов и дырок в режиме прямой проводимости



Движение электронов и дырок в режиме обратной проводимости.

При соприкосновении полупроводников с различными типами проводимости электроны вследствие диффузии начнут переходить в p-область, а дырки - в n-область, в результате чего пограничный слой n-области заряжается положительно, а пограничный слой p-области - отрицательно. Между областями возникает электрическое поле, которое является как бы барьеров для основных носителей тока, благодаря чему в p-n переходе образуется область с пониженной концентрацией зарядов. Электрическое поле в p-n переходе называют потенциальным барьером, а p-n переход - запирающим слоем. Если направление внешнего электрического поля противоположно направлению поля p-n перехода («+» на p-области, «-» на n-области), то потенциальный барьер уменьшается, возрастает концентрация зарядов в p-n переходе, ширина и, следовательно, сопротивление перехода уменьшается. При изменении полярности источника внешнее электрическое поле совпадает с направлением поля p-n перехода, ширина и сопротивление перехода возрастает. Следовательно, p-n переход обладает вентильными свойствами.

Полупроводниковый диод

Диодом называется электро преобразовательный полупроводниковый прибор с одним или несколькими p-n переходами и двумя выводами. В зависимости от основного назначения и явления используемого в p-n переходе различают несколько основных функциональных типов полупроводниковых диодов: выпрямительные, высокочастотные, импульсные, туннельные, стабилитроны, варикапы.

Основной характеристикой полупроводниковых диодов является вольт-амперная характеристика (ВАХ). Для каждого типа полупроводникового диода ВАХ имеет свой вид, но все они основываются на ВАХ плоскостного выпрямительного диода, которая имеет вид:


Вольт-амперная характеристика (ВАХ) диода: 1 — прямая вольт-амперная характеристика; 2 — обратная вольт-амперная характеристика; 3 — область пробоя; 4 — прямолинейная аппроксимация прямой вольт-амперной характеристики; Uпор — пороговое напряжение; rдин — динамическое сопротивление; Uпроб — пробивное напряжение

Масштаб по оси ординат для отрицательных значений токов выбран во много раз более крупным, чем для положительных.

Вольт-амперные характеристики диодов проходят через нуль, но достаточно заметный ток появляется лишь при пороговом напряжении (U пор), которое для германиевых диодов равно 0,1 - 0,2 В, а у кремниевых диодов равно 0,5 - 0,6 В. В области отрицательных значений напряжения на диоде, при уже сравнительно небольших напряжениях (U обр.) возникает обратный ток (І обр). Этот ток создается неосновными носителями: электронами р-области и дырками n-области, переходу которых из одной области в другую способствует потенциальный барьер вблизи границы раздела. С ростом обратного напряжения увеличение тока не происходит, так как количество неосновных носителей, оказывающихся в единицу времени на границе перехода, не зависит от приложенного извне напряжения, если оно не очень велико. Обратный ток для кремниевых диодов на несколько порядков меньше, чем для германиевых. Дальнейшее увеличение обратного напряжения до напряжения пробоя (U проб) приводит к тому что электроны из валентной зоны переходят в зону проводимости, возникает эффект Зенера . Обратный ток при этом резко увеличивается, что вызывает нагрев диода и дальнейшее увеличение тока приводит к тепловому пробою и разрушению p-n-перехода.

Обозначение и определение основных электрических параметров диодов


Обозначение полупроводникового диода

Как указывалось ранее диод в одну сторону ток проводит (т. е. представляет собой в идеале просто проводник с малым сопротивлением), в другую – нет (т. е. превращается в проводник с очень большим сопротивлением), одним словом, обладает односторонней проводимостью . Соответственно выводов у него всего два. Они как повелось ещё со времён ламповой техники, называются анодом (положительным выводом) и катодом (отрицательным).

Все полупроводниковые диоды можно разделить на две группы: выпрямительные и специальные. Выпрямительные диоды , как следует из самого названия, предназначены для выпрямления переменного тока. В зависимости от частоты и формы переменного напряжения они делятся на высокочастотные, низкочастотные и импульсные. Специальные типы полупроводниковых диодов используют различные свойства p-n-переходов; явление пробоя, барьерную емкость, наличие участков с отрицательным сопротивлением и др.

Выпрямительные диоды

Конструктивно выпрямительные диоды делятся на плоскостные и точечные, а по технологии изготовления на сплавные, диффузионные и эпитаксиальные. Плоскостные диоды благодаря большой площади p-n-перехода используют для выпрямления больших токов . Точечные диоды имеют малую площадь перехода и, соответственно, предназначены для выпрямления малых токов . Для увеличения напряжения лавинного пробоя используют выпрямительные столбы, состоящие из ряда последовательно включенных диодов.

Выпрямительные диоды большой мощности называют силовыми . Материалом для таких диодов обычно служит кремний или арсенид галлия. Кремниевые сплавные диоды используют для выпрямления переменного тока с частотой до 5 кГц. Кремниевые диффузионные диоды могут работать на повышенной частоте, до 100 кГц. Кремниевые эпитаксиальные диоды с металлической подложкой (с барьером Шотки) могут использоваться на частотах до 500 кГц. Арсенидгалиевые диоды способны работать в диапазоне частот до нескольких МГц.

Силовые диоды обычно характеризуются набором статических и динамических параметров. К статическим параметрам диода относятся:

  • падение напряжения U пр на диоде при некотором значении прямого тока;
  • обратный ток I обр при некотором значении обратного напряжения;
  • среднее значение прямого тока I пр.ср. ;
  • импульсное обратное напряжение U обр.и. ;

К динамическим параметрам диода относятся его временные и частотные характеристики. К таким параметрам относятся:

  • время восстановления t вос обратного напряжения;
  • время нарастания прямого тока I нар. ;
  • предельная частота без снижения режимов диода f max .

Статические параметры можно установить по вольт-амперной характеристике диода.

Время обратного восстановления диода t вос является основным параметром выпрямительных диодов, характеризующим их инерционные свойства. Оно определяется при переключении диода с заданного прямого тока I пр на заданное обратное напряжение U обр. Во время переключения напряжение на диоде приобретает обратное значение. Из-за инерционности диффузионного процесса ток в диоде прекращается не мгновенно, а в течении времени t нар. По существу, происходит рассасывание зарядов на границе p-n-перехода (т. е. разряд эквивалентной емкости). Из этого следует, что мощность потерь в диоде резко повышается при его включении, особенно, при выключении. Следовательно, потери в диоде растут с повышением частоты выпрямляемого напряжения.

При изменении температуры диода изменяются его параметры. Наиболее сильно от температуры зависят прямое напряжение на диоде и его обратный ток. Приблизительно можно считать, что ТКН (температурный коэффициент напряжения) Uпр = -2 мВ/К, а обратный ток диодаимеет положительный коэффициент. Так при увеличении температуры на каждые 10 °С обратный ток германиевых диодов увеличивается в 2 раза, а кремниевых – 2,5 раз.

Диоды с барьером Шотки

Для выпрямления малых напряжений высокой частоты широко используются диоды с барьером Шотки . В этих диодах вместо p-n-перехода используется контакт металлической поверхности с . В месте контакта возникают обеднённые носителями заряда слои полупроводника, которые называются запорными. Диоды с барьером Шотки отличаются от диодов с p-n-переходом по следующим параметрам:

  • более низкое прямое падение напряжения;
  • имеют более низкое обратное напряжение;
  • более высокий ток утечки;
  • почти полностью отсутствует заряд обратного восстановления.

Две основные характеристики делают эти диоды незаменимыми: малое прямое падение напряжения и малое время восстановления обратного напряжения. Кроме того, отсутствие неосновных носителей, требующих время на обратное восстановление, означает физическое отсутствие потерь на переключение самого диода.

Максимальное напряжение современных диодов Шотки составляет около 1200 В. При этом напряжении прямое напряжение диода Шотки меньше прямого напряжения диодов с p-n-переходом на 0,2…0,3 В.

Преимущества диода Шотки становятся особенно заметны при выпрямлении малых напряжений. Например, 45-вольтный диод Шотки имеет прямое напряжение 0,4…0,6 В, а при том же токе диод с p-n-переходом имеет падение напряжения 0,5…1,0 В. При понижении обратного напряжения до 15 В прямое напряжение уменьшается до 0,3…0,4 В. В среднем применение диодов Шотки в выпрямителе позволяет уменьшить потери примерно на 10…15 %. Максимальная рабочая частота диодов Шотки превышает 200 кГц.

Теория это хорошо, но без практического применения это просто слова.

Особое значение имеют контакты полупроводников с различными типами проводимости, так называемыми p-n-переходы. На их основе создаются полупроводниковые диоды, детекторы, термоэлементы, транзисторы.

На рисунке 41 изображена схема p-n-перехода.

На границе полупроводников p-n-типа образуется так называемый «запирающий слой», обладающий рядам замечательных свойств, которые и обеспечили широкое применение p-n-переходов в электронике.

Поскольку концентрация свободных электронов в полупроводнике n-типа очень высока, а в полупроводнике p-типа во много раз меньше, на границе происходит диффузия свободных электронов из области n в область p.

То же самое можно сказать и о дырках; они диффундируют наоборот из p в n.

Из-за этого в пограничной области (в «запирающем слое») происходит интенсивная рекомбинация электронно-дырочных пар, запирающий слой обедняется носителями тока, его сопротивление резко возрастает.

В результате диффузии по обе стороны от границы образуются объёмный положительный заряд в области n и объёмный отрицательный заряд в p-области.

Таким образом, в запирающем слое возникает электрическое поле с напряжённостью , силовые линии которого направлены от n к p, а значит, и контактная разность потенциалов , где d к – толщина запирающего слоя. На рисунке 37 изображён график распределения потенциала в p-n-переходе.

За нулевой потенциал принят потенциал границы p и n областей.

Следует заметить, что толщина запирающего слоя очень мала и на рис. 42 её масштаб для наглядности сильно искажён.

Величина контактного потенциала тем больше, чем больше концентрация основных носителей; при этом толщина запирающего слоя уменьшается. Например, для германия при средних значениях концентрации атомов примеси.

U к = 0,3 – 0,4 (В)

d к = 10 -6 – 10 -7 (м)

Контактное электрическое поле тормозит диффузию электронов из n в p и дырок из p в n и очень быстро в запирающем слое устанавливается динамическое равновесие между электронами и дырками, движущимися вследствие диффузии (ток диффузии) и движение их под действием контактного электрического поля в противоположную сторону (дрейфовый ток или ток проводимости).

В установившемся режиме ток диффузии равен и противоположен току проводимости, и так как в этих токах принимают участие и электроны и дырки, полный ток через запирающий слой равен нулю.

На рисунке 43 изображены графики распределения энергии свободных электронов и дырок в p-n-переходе.

Из графиков видно, что электронам из n области, чтобы попасть в p область, нужно преодолеть высокий потенциальный барьер. Следовательно, это доступно очень немногим из них, наиболее энергичным.



В тоже время электроны из p области свободно проходят в n область, загоняемые туда контактным полем (катятся в «яму»).

Но в n-области концентрация свободных электронов ничтожна и в установившемся режиме незначительное одинаковое количество электронов движется через границу в противоположных направлениях.

Аналогичные рассуждения можно привести о движении дырок через границу p-n-перехода. В результате при отсутствии внешнего электрического поля, полный ток через запирающий слой равен нулю.

К полупроводнику p-типа p-n-перехода подсоединим положительный полюс источника тока, а к полупроводнику n-типа – отрицательный, как это показано на рисунке 44.

Тогда электрическое поле в этой конструкции, направленное от полупроводника p-типа к полупроводнику n-типа, способствует направленному движению дырок и электронов через запирающий слой, что приводит к обогащению запирающего слоя основными носителями тока и, следовательно, к уменьшению его сопротивления. Диффузионные токи существенно превосходят токи проводимости как образованные электронами, так и дырками. Через p-n-переход течёт электрический ток, благодаря направленному движению основных носителей.

При этом величина контактного потенциала (потенциальный барьер) резко падает, т.к. внешнее поле направлено против контактного. Это означает, что для создания тока достаточно подключить к p-n-переходу внешнее напряжение порядка лишь нескольких десятых долей одного вольта.

Возникающий здесь ток называется прямым током . В полупроводнике p-типа прямой ток представляет собой направленное движение дырок в направлении внешнего поля, а в полупроводнике n-типа – свободных электронов в противоположном направлении. Во внешних проводах (металлических) движутся только электроны. Они перемещаются в направлении от минуса источника и компенсируют убыль электронов, уходящих через запирающий слой в область p. А из p электроны через металл уходят к + источника. Навстречу электронам «дырки» из p-области движутся через запирающий слой в n-область.

Распределение потенциала в этом случае изображена на рисунке 45а

Пунктиром показано распределение потенциала в p-n-переходе при отсутствии внешнего электрического поля. Изменение потенциала вне запирающего слоя пренебрежимо мало.

На рис. 45б изображено распределение электронов и дырок в условиях прямого тока.

Из рисунка 40б видно, что потенциальный барьер резко упал, и основным носителям тока электронам и дыркам легко проникнуть через запирающий слой в «чужие» для них области.

Теперь подключим положительный полюс к полупроводнику n-типа, а отрицательный к p-типа. Под действием такого обратного напряжения через p-n-переход протекает так называемый обратный ток .

В этом случае напряжённости внешнего электрического и контактного полей сонаправлены, следовательно, напряжённость результирующего поля увеличивается и увеличивается потенциальный барьер, который становится практически непреодолимым для проникновения основных носителей через запирающий слой, и токи диффузии прекращаются. Внешнее поле стремится, как бы отогнать дырки и электроны друг от друга, ширина запирающего слоя и его сопротивление увеличиваются. Через запирающий слой проходит только токи проводимости, то есть токи, вызванные направленным движением неосновных носителей. Но поскольку концентрация неосновных носителей много меньше, чем основных, этот обратный ток много меньше прямого тока.

На рисунке 45в изображено распределение потенциала в p-n-переходе в случае обратного тока.

Замечательное свойство p-n-перехода заключается в его односторонней проводимости.

При прямом направлении внешнего поля от p к n – ток большой, а сопротивление маленькое.

При обратном направлении ток маленький, а сопротивление большое.