Болезни Военный билет Призыв

По какой шкале классифицируются. Типы измерительных шкал. Шкалы дают возможность

Аннотация: Понятие шкалирования. Существующие виды шкал и их области применения. Причины появления шкал.

ШКА"ЛА, ы , ж . [латин. scala - лестница].- 1 . Линейка с делениями в различных измерительных приборах. Ш. термометра . 2 . Ряд величин, цифр в восходящем или нисходящем порядке (спец.). Ш. температуры больного. Ш. заболеваний. Ш. заработной платы .

Типы шкал :

Шкалы измерений принято классифицировать по типам измеряемых данных, которые определяют допустимые для данной шкалы математические преобразования, а также типы отношений, отображаемых соответствующей шкалой. Современная классификация шкал была предложена в 1946 году Стэнли Смитом Стивенсом.

Шкала наименований (номинальная, классификационная)

Используется для измерения значений качественных признаков. Значением такого признака является наименование класса эквивалентности, к которому принадлежит рассматриваемый объект . Примерами значений качественных признаков являются названия государств, цвета, марки автомобилей и т.п. Такие признаки удовлетворяют аксиомам тождества:

При большом числе классов используют иерархические шкалы наименований. Наиболее известными примерами таких шкал являются шкалы, используемые для классификации животных и растений.

С величинами, измеряемыми в шкале наименований, можно выполнять только одну операцию - проверку их совпадения или несовпадения. По результатам такой проверки можно дополнительно вычислять частоты заполнения (вероятности) для различных классов, которые могут использоваться для применения различных методов статистического анализа - критерия согласия Хи-квадрат, критерия Крамера для проверки гипотезы о связи качественных признаков и др.

Порядковая шкала (или ранговая)

Строится на отношении тождества и порядка. Субъекты в данной шкале ранжированы. Но не все объекты можно подчинить отношению порядка. Например, нельзя сказать что больше, круг или треугольник, но можно выделить в этих объектах общее свойство-площадь, и таким образом становится легче установить порядковые отношения. Для данной шкалы допустимо монотонное преобразование. Такая шкала груба, потому что не учитывает разность между субъектами шкалы. Пример такой шкалы: балльные оценки успеваемости (неудовлетворительно, удовлетворительно, хорошо, отлично), шкала Мооса.

Интервальная шкала

Здесь происходит сравнение с эталоном. Построение такой шкалы позволяет большую часть свойств существующих числовых систем приписывать числам, полученным на основе субъективных оценок. Например, построение шкалы интервалов для реакций. Для данной шкалы допустимым является линейное преобразование. Это позволяет приводить результаты тестирования к общим шкалам и осуществлять, таким образом сравнение показателей. Пример: шкала Цельсия.

Шкала отношений

В шкале отношений действует отношение "во столько-то раз больше". Это единственная из четырех шкал имеющая абсолютный ноль. Нулевая точка характеризует отсутствие измеряемого качества. Данная шкала допускает преобразование подобия ( умножение на константу). Определение нулевой точки - сложная задача для исследований, накладывающая ограничение на использование данной шкалы. С помощью таких шкал могут быть измерены масса, длина , сила, стоимость (цена). Пример: шкала Кельвина (температур, отсчитанных от абсолютного нуля, с выбранной по соглашению специалистов единицей измерения - Кельвин).

Шкала разностей

Начало отсчета произвольно, единица измерения задана. Допустимые преобразования - сдвиги. Пример: измерение времени.

Абсолютная шкала

В ней присутствует дополнительный признак - естественное и однозначное присутствие единицы измерения. Эта шкала имеет единственную нулевую точку. Пример: число людей в аудитории.

Из рассмотренных шкал первые две являются неметрическими, а остальные - метрическими.

С вопросом о типе шкалы непосредственно связана проблема адекватности методов математической обработки результатов измерения. В общем случае адекватными являются те статистики, которые инвариантны относительно допустимых преобразований используемой шкалы измерений.

Использование в психометрии . Используя различные шкалы, можно производить различные психологические измерения. Самые первые методы психологических измерений были разработаны в психофизике. Основной задачей психофизиков являлось то, каким образом определить, как соотносятся физические параметры стимуляции и соответствующие им субъективные оценки ощущений. Зная эту связь , можно понять, какое ощущение соответствует тому или иному признаку. Психофизическая функция устанавливает связь между числовым значением шкалы физического измерения стимула и числовым значением психологической или субъективной реакцией на этот стимул.

Шкала Цельсия

1701 года в Швеции. Область его интересов: астрономия, общая физика, геофизика. Преподавал в Упсальском университете астрономию, основал там астрономическую обсерваторию.

Цельсий первым измерил яркость звезд, установил взаимосвязь между северным сиянием и колебаниями в магнитном поле Земли.

Он принимал участие в Лапландской экспедиции 1736-1737 годов по измерению меридиана. По возвращении из полярных областей Цельсий начал активную работу по организации и строительству астрономической обсерватории в Упсале и в 1740 стал ее директором. Умер Андерс Цельсий 25 марта 1744 года. В честь него назван минерал цельзиан – разновидность бариевого полевого шпата.

В технике, медицине, метеорологии и в быту используется шкала Цельсия, в которой температура тройной точки воды равна 0,01 , и следовательно точка замерзания воды при давлении в 1 атм равна 0 . В настоящее время шкалу Цельсия определяют через шкалу Кельвина: градус Цельсия равен кельвину, . Таким образом, точка кипения воды, изначально выбранная Цельсием, как реперная точка, равная 100 , утратила свое значение , и по современным оценкам температура кипения воды при нормальном атмосферном давлении составляет около 99,975 . Шкала Цельсия практически очень удобна, поскольку вода очень распространена на нашей планете и на ней основана наша жизнь. Ноль Цельсия - особая точка для метеорологии, поскольку связана с замерзанием атмосферной воды. Шкала предложена Андерсом Цельсием в 1742 г.

Шкала Фаренгейта

Габриэль Фаренгейт . Даниэль Габриэль Фаренгейт (Daniel Gabriel (1686–1736) - немецкий физик. Родился 24 мая 1686 в Данциге (ныне Гданьск, Польша). Изучал физику в Германии, Голландии и Англии. Почти всю жизнь прожил в Голландии, где занимался изготовлением точных метеорологических приборов. В 1709 изготовил спиртовой, в 1714 – ртутный термометр, использовав новый способ очистки ртути. Для ртутного термометра Фаренгейт построил шкалу,имеющую три реперные точки: соответствовал температуре смеси вода – лед – нашатырный спирт, – температуре тела здорового человека, а в качестве контрольной температуры было принято значение для точки таяния льда. Температура кипения чистой воды по шкале Фаренгейта составила . Шкала Фаренгейта применяется во многих англоязычных странах, хотя постепенно уступает место шкале Цельсия. Помимо изготовления термометров, Фаренгейт занимался усовершенствованием барометров и гигрометров. Исследовал также зависимость изменения температуры кипения жидкости от атмосферного давления и содержания в ней солей, обнаружил явление переохлаждения воды, составил таблицы удельных весов тел. Умер Фаренгейт в Гааге 16 сентября 1736.

В Англии и, в особенности, в США используется шкала Фаренгейта. Ноль градусов Цельсия - это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия.

В настоящее время принято следующее определение шкалы Фаренгейта : это температурная шкала , 1 градус которой (1 ) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия () соотношением . Предложена Г. Фаренгейтом в 1724.

Шкала Реомюра

Рене Реомюр . Рене Антуан де Реомюр (Rene Antoin de Reaumur) родился 28

февраля 1683 года в Ла-Рошель, французский естествоиспытатель, иностранный почетный член Петербургской АН (1737). Труды по регенерации, физиологии, биологии колоний насекомых. Предложил температурную шкалу, названную его именем. Он усовершенствовал некоторые способы приготовления стали, им, одним из первых, были сделаны попытки научного обоснования некоторых процессов литья, написал работу "Искусство превращения железа в сталь". Он пришел к ценному выводу: железо, сталь, чугун, различаются по количеству некоторой примеси. Добавляя эту примесь к железу, путем цементации или сплавления с чугуном, Реомюр получал сталь. В 1814 году К. Каретен доказал, что этой примесью является углерод.

Реомюр дал способ приготовления матового стекла.

Сегодня память связывает его имя только лишь с изобретением долго

использовавшейся температурной шкалы. На самом же деле Рене Антуан Фершант де Реомюр, живший в 1683-1757 годах, главным образом, в Париже, относился к тем ученым, универсальность которых в наше время - время узкой специализации - трудно себе представить. Реомюр был одновременно техником, физиком и естествоиспытателем. Большую известность за пределами Франции он приобрел как энтомолог. В последние годы своей жизни Реомюр пришел к идее, что поиски таинственной преобразующей силы следует вести в тех местах, где ее проявление наиболее очевидно - при преобразовании пищи в организме, т.е. при ее усвоении. Скончался 17 октября 1757 года в замке Бермовдьер близ Сен-Жюльен-дю-Терру(Майенн).

Предложена в 1730 году Р. А. Реомюром, который описал изобретенный им спиртовой термометр.

Единица - градус Реомюра (), равен 1/80 части температурного интервала между опорными точками - температурой таяния льда () и кипения воды ()

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции, на родине автора.

Сравнение температурных шкал
Описание Кельвин Цельсий Фаренгейт Ньютон Реомюр
Абсолютный ноль 0 -273.15 -459.67 -90.14 -218.52
Температура таяния смеси Фаренгейта (соли и льда в равных количествах) 255.37 -17.78 0 -5.87 -14.22
Температура замерзания воды (нормальные условия) 273.15 0 32 0 0
Средняя температура человеческого тела 310.0 36.8 98.2 12.21 29.6
Температура кипения воды (нормальные условия) 373.15 100 212 33 80
Температура поверхности Солнца 5800 5526 9980 1823 4421

Температурные шкалы , системы сопоставимых числовых значений температуры. Температура не является непосредственно измеряемой величиной; ее значение определяют по температурному изменению какого-либо удобного для измерения физического свойства термометрического вещества. Выбрав термометрическое вещество и свойство, необходимо задать начальную точку отсчета и размер единицы температуры - градуса. Таким образом, определяют эмпирические температурные шкалы (далее Т.ш.). В Т. ш. обычно фиксируют две основные температуры, соответствующие точкам фазовых равновесий однокомпонентных систем (так называемые реперные или постоянные точки), расстояние между которыми называется основным температурным интервалом шкалы. В качестве реперных точек используют: тройную точку воды, точки кипения воды, водорода и кислорода, точки затвердевания серебра, золота и др. Размер единичного интервала (единицы температуры) устанавливают как определенную долю основного интервала. За начало отсчета Т. ш. принимают одну из реперных точек. Так можно определить эмпирическую (условную) Т. ш. по любому термометрическому свойству . Если принять, что связь между и температурой линейна, то температура , где , и - числовые значения свойства при температуре , в начальной и конечной точках основного интервала, - размер градуса, - число делений основного интервала.

В Цельсия шкале, например, за начало отсчета принята температура затвердевания воды (таяния льда), основной интервал между точками затвердевания и кипения воды разделен на 100 равных частей ().

Т. ш. представляет собой, таким образом, систему последовательных значений температуры, связанных линейно со значениями измеряемой физической величины (эта величина должна быть однозначной и монотонной функцией температуры). В общем случае Т. ш. могут различаться по термометричкому свойству (им может быть тепловое расширение тел, изменение электрического сопротивления проводников с температурой и т. п.), по термометрическому веществу (газ, жидкость, твердое тело), а также зависеть от реперных точек. В простейшем случае Т. ш. различаются числовыми значениями, принятыми для одинаковых реперных точек. Так, в шкалах Цельсия (), Реомюра () и Фаренгейта () точкам таяния льда и кипения воды при нормальном давлении приписаны разные значения температуры. Соотношение для пересчета температуры из одной шкалы в другую:

Непосредственный пересчет для Т. ш., различающихся основными температурами, без дополнительных экспериментальных данных невозможен. Т. ш., различающиеся по термометрическому свойству или веществу, существенно различны. Возможно неограниченное число не совпадающих друг с другом эмпирических Т. ш., так как все термометрические свойства связаны с температурой нелинейно и степень нелинейности различна для разных свойств и вещественную температуру, измеренную по эмпирической Т. ш., называют условной ("ртутная", "платиновая" температура и т. д.), ее единицу - условным градусом. Среди эмпирических Т. ш. особое место занимают газовые шкалы, в которых термометрическим веществом служат газы ("азотная", "водородная", "гелиевая" Т. ш.). Эти Т. ш. меньше других зависят от применяемого газа и могут быть (введением поправок) приведены к теоретической газовой Т. ш. Авогадро, справедливой для идеального газа. Абсолютной эмпирической Т. ш. называют шкалу, абсолютный нуль которой соответствует температуре, при которой численное значение физического свойства (например, в газовой Т. ш. Авогадро абсолютный нуль температуры соответствует нулевому давлению идеального газа). температуры ( по эмпирической Т. ш.) и ( по абсолютной эмпирической Т. ш.) связаны соотношением , где - абсолютный нуль эмпирической Т. ш. (введение абсолютного нуля является экстраполяцией и не предполагает его реализации).

Принципиальный недостаток эмпирической Т. ш. - их зависимость от термометрического вещества - отсутствует у термодинамической Т. ш., основанной на втором начале термодинамики. При определении абсолютной термодинамической Т. ш. ( шкала Кельвина) исходят из Карно цикла . Если в цикле Карно тело, совершающее цикл, поглощает теплоту при температуре и отдает теплоту при температуре , то отношение не зависит от свойств рабочего тела и позволяет по доступным для измерений величинам и определять абсолютную температуру. Вначале основной интервал этой шкалы был задан точками таяния льда и кипения воды при атмосферном давлении, единица абсолютной температуры соответствовала части основного интервала, за начало отсчета была принята точка таяния льда. В 1954 Х Генеральная конференция по мерам и весам установила термодинамическую Т. ш. с одной реперной точкой - тройной точкой воды, температура которой принята 273,16 К (точно), что соответствует . температура в абсолютной термодинамической Т. ш. измеряется в кельвинах (К). Термодинамическая Т. ш., в которой для точки таяния льда принята температура , называется стоградусной. Соотношения между температурами, выраженными в шкале Цельсия и абсолютной термодинамической Т. ш.:

так что размер единиц в этих шкалах одинаков. В США и некоторых др. странах, где принято измерять температуру по шкале Фаренгейта, применяют также абсолютную Т. ш. Ранкина. Соотношение между кельвином и градусом Ранкина: , по шкале Ранкина точка таяния льда соответствует , точка кипения воды .

Любая эмпирическая Т. ш. приводится к термодинамической Т. ш. введением поправок, учитывающих характер связи термометрического свойства с термодинамической температурой. Термодинамическая Т. ш. осуществляется не непосредственно (проведением цикла Карно с термометрическим веществом), а с помощью других процессов, связанных с термодинамической температурой. В широком интервале температур (примерно от точки кипения гелия до точки затвердевания золота) термодинамические Т. ш. совпадают с Т. ш. Авогадро, так что термодинамическую температуру определяют по газовой, которую измеряют газовым термометром. При более низких температурах термодинамическая Т. ш. осуществляется по температурной зависимости магнитной восприимчивости парамагнетиков, при более высоких - шкала несколько раз переопределялась (МТШ-48, МПТШ-68, МТШ-90): менялись реперные температуры, методы интерполяции, но принцип остался тот же - основой шкалы является набор фазовых переходов чистых веществ с определенными значениями термодинамических температур и интерполяционные приборы, градуированные в этих точках. В настоящее время действует шкала МТШ-90. Основной документ (Положение о шкале) устанавливает определение Кельвина, значения температур фазовых переходов (реперных точек) и методы интерполяции.

Используемые в быту температурные шкалы - как Цельсия, так и Фаренгейта (используемая, в основном, в США), - не являются абсолютными и поэтому неудобны при проведении экспериментов в условиях, когда температура опускается ниже точки замерзания воды, из-за чего температуру приходится выражать отрицательным числом. Для таких случаев были введены абсолютные шкалы температур.

Одна из них называется шкалой Ранкина, а другая - абсолютной термодинамической шкалой (шкалой Кельвина); температуры по ним измеряются, соответственно, в градусах Ранкина () и кельвинах (К). Обе шкалы начинаются при температуре абсолютного нуля. Различаются они тем, что кельвин равен градусу Цельсия, а градус Ранкина - градусу Фаренгейта. Температуре замерзания воды при стандартном атмосферном давлении соответствуют , , .

Масштаб шкалы Кельвина привязан к тройной точке воды (273,16 К), при этом от нее зависит постоянная Больцмана. Это создает проблемы с точностью интерпретации измерений высоких температур. Сейчас МБМВ рассматривает возможность перехода к новому определению кельвина и фиксированию постоянной Больцмана, вместо привязки к температуре тройной точки.

Краткие итоги : обучающийся познакомился с классификацией шкал и их областью применения.

Набор для практики

Вопросы :

  1. Когда и кем была предложена современная классификация шкал?
  2. Дайте определение слову ШКАЛА.
  3. Перечислите все известные Вам виды шкал и объясните в чем их различия?
  4. Почему шкалы используются в психометрии?
  5. Какие шкалы больше всего используются в Англии и Америке?
  6. Какая из вышеописанных шкал появилась первой?
  7. В какой стране дольше всего использовалась шкала Реомюра?
  8. В чем измеряется температура в абсолютной термодинамической температурной шкале?
  9. Назовите примеры абсолютных шкал температур.
  10. Чему равно соотношение между кельвином и градусом Ранкина?

Упражнения

  1. Нарисуйте схему, отражающую современную классификацию шкал. Можете ли составить шкалы по иерархии.
  2. Определите значение температуры в разных температурных шкалах(по Фаренгейту, по Кельвину)

Известное изречение гласит «все познается в сравнении».

Сравнение - познавательная операция , заключающаяся в нахождении сходства и различия между предметами, явлениями, событиями и лежащая в основе суждений о сходстве или различии объектов. (Под объектами здесь и далее подразумеваются материальные тела, вещества, процессы, явления, события и т.п., их свойства и состояния.)
Сравнение - один из главных способов познания окружающего мира . При сравнении устанавливают закономерности, присущие объектам, системам объектов и их характеристикам. Если один объект или его характеристика используются как основа для определения других объектов или характеристик, то его/еѐ рассматривают как меру сравнения (меру). А процедуру сравнения с мерой (определения мерой - Ожегов С.И. Словарь русского языка,1985 г.) называют измерением. При сравнении меры могут быть представлены в виде образцов продукции, описаний или изображений животных и растений, образцов состава или свойств веществ, графиков, формул, мер длины и т.д.

Для идентификации объектов и их характеристик во множестве их проявлений требуется большое количество и разнообразие мер. С учетом особенностей измеряемых объектов и задач измерений меры группируют и используют для построения шкал измерений.

Шкала измерений - упорядоченное множество проявлений количественных или качественных характеристик объектов, а также самих объектов. Указанное множество может быть образовано из наименований и обозначений (в том числе в цифровой форме) объектов и их характеристик, а также из значений и числовых значений (для количественных характеристик).

Согласно РМГ 83-2007 «шкала измерений - отображение множества различных проявлений количественного или качественного свойства на принятое по соглашению упорядоченное множество чисел или другую систему логически связанных знаков (обозначений)» . «Измерение - сравнение конкретного проявления измеряемого свойства (величины) со шкалой измерений этого свойства (величины) в целях получения результата измерений (оценки свойства или значения величины)».

На шкалах измерений меры могут присутствовать непосредственно - в вещественной форме или опосредствованно в виде меток (наименований, обозначений, графических символов, чисел и т.п.), в соответствие которым поставлены конкретные вещественные меры или их описания. Меткам устанавливают определенные позиции на шкале. Промежуточные позиции (отметки) шкалы могут быть получены путем разбиения еѐ на интервалы на основе выбранного принципа построения шкалы. В этом случае позиции, которым соответствуют меры, выступают в качестве опорных (реперных) точек.

Под качественной характеристикой в определении шкалы измерений и далее понимается описание объектов, их свойств и состояний, в словесной форме, в том числе с использованием наименований и обозначений.
Количественная характеристика - характеристика, которая может быть представлена числовым значением, равным отношению количественного содержания этой характеристики к еѐ базовой реализации, называемой единицей измерения.

В теории измерений различают пять основных типов шкал: наименований, порядка, разностей (интервалов), отношений и абсолютные. (Тип шкалы - набор признаков, классифицирующий данную шкалу измерений).

Шкала наименований - шкала, состоящая из множества наименований (обозначений) объектов или проявлений их характеристик, в соответствии которым поставлено описание объекта (конкретная реализация объекта, его графическое изображение, математическая формула, график и т.п.) или проявлений его характеристик .

Наименование (обозначение) в этом случае рассматривают как обобщенную характеристику объекта или его свойств и состояний. С помощью шкалы наименований устанавливают эквивалентность (равноценность) измеряемого объекта или его характеристик и описания, поставленному в соответствие тому или иному наименованию (обозначению). Это позволяет отнести объект к какой-либо группе или выделить его, путем присвоения индивидуального наименования (обозначения), после чего наименования (обозначения) применяются как идентификаторы объектов (характеристик объектов). При построении шкал наименований могут использоваться числа, но лишь как метки объектов. Примерами таких шкал являются: атласы цветов (до 1000 наименований), запахов (сырой, затхлый, кислый и т.д.), вкуса (чистый, полный, гармоничный и т.д.); множество номеров телефонов, автомашин, паспортов; разделение людей по полу, расе, национальности; классификаторы промышленной продукции, специальностей высшего образования; терминологические справочники и т.п.

Числа, знаки, обозначения, наименования, составляющие шкалу наименований, разрешается менять местами. Для результатов измерений, полученных с использованием этой шкалы, нет отношений типа "больше — меньше", не применимы понятия единица измерения, нуль, размерность. С ними могут проводиться только некоторые математические операции. Например, числа нельзя складывать и вычитать, но можно подсчитывать, сколько раз (как часто) встречается то или иное число.

Шкала порядка - шкала наименований (обозначений) объектов или проявлений их характеристик, расположенных в порядке возрастания или убывания по уровню проявления или значимости . Процедура расположения по порядку возрастания или убывания называется ранжированием (выстраиванием по рангу). Фиксированные точки на шкале порядка называют опорными или реперными. Отсюда происходит другое название шкал порядка - реперные шкалы. У реперных шкал может присутствовать нулевая отметка. Однако единица измерения для них отсутствует. Часто отметки шкал порядка и, соответственно, результаты измерений - это числовые метки (баллы, степени, уровни).
Недостаток реперных шкал - неопределѐнность интервалов между реперными точками.
Примеры шкал порядка : пятибалльная система оценок знаний учащихся, оценка уровня мастерства спортсменов на соревнованиях, шкала ветров по Бофорту ("штиль", "слабый ветер", "умеренный ветер" и т.д.), шкала силы землетрясений. В минералогии используется шкала Мооса, по которому минералы классифицируются согласно критерию твердости. А именно: тальк имеет балл 1, гипс - 2, кальций - 3, флюорит - 4, апатит - 5, ортоклаз - 6, кварц - 7, топаз - 8, корунд - 9, алмаз - 10. Минерал с большим номером является более твердым, чем минерал с меньшим номером, при нажатии царапает его. Здесь же следует упомянуть шкалы твердости Бринеля, Виккерса, Роквелла. Номера домов также измерены в порядковой шкале - они показывают, в каком порядке стоят дома вдоль улицы. Номера томов в собрании сочинений писателя или номера дел в архиве предприятия обычно связаны с хронологическим порядком их создания.

Порядковые шкалы используют при оценке качества продукции и услуг в квалиметрии (буквальный перевод: измерение качества). Так единица продукции оценивается как годная или не годная. При более тщательном анализе используется шкала с тремя градациями: есть значительные дефекты - присутствуют только незначительные дефекты - нет дефектов. Иногда применяют четыре градации: имеются критические дефекты (делающие невозможным использование) - есть значительные дефекты - присутствуют только незначительные дефекты - нет дефектов. Аналогичный смысл имеет сортность продукции - высший сорт, первый сорт, второй сорт,…

Оценки экспертов часто осуществляются с использованием шкал порядка. Типичным примером являются задачи ранжирования и классификации промышленных объектов, подлежащих экологическому страхованию.
В отличие от шкалы наименований шкала порядка позволяет не только установить факт равенства или неравенства измеряемых объектов, но и определить характер неравенства в виде суждений: "больше — меньше", "лучше — хуже" и т.п. Однако нельзя утверждать, что землетрясение в 2 балла (лампа качнулась под потолком) ровно в 5 раз слабее, чем землетрясение в 10 баллов (полное разрушение всего на поверхности земли).
Шкалы наименований и порядка, для которых не определены единицы измерений, называют также условными шкалами или не метрическими шкалами.

Шкала разностей (интервалов) - шкала значений количественной характеристики, для которой существует условная (принятая по соглашению) единица измерения (масштаб) и условный нуль, устанавливаемый произвольно либо в соответствии с некоторыми традициями и договоренностью . Шкала интервалов - это шкала порядка, в которой числа не только упорядочены по рангам, но и разделены определенными интервалами. Это позволяет судить не только о том, что одна величина больше другой, но и на сколько больше. Для результатов измерений, полученных с использованием шкал интервалов, возможны такие математические действия, как сложение и вычитание, применимы процедуры определения математического ожидания, стандартного отклонения и др. Однако сказать во сколько раз одна величина больше другой невозможно, так как начало отсчета (нулевая точка) выбирается произвольно.
Примерами шкал интервалов являются шкалы времени и температуры (в градусах Цельсия или Фаренгейта). По шкале интервалов измеряют потенциальную энергию или координату точки, расположенной на прямой. В этих случаях на шкале нельзя отметить ни естественное начало отсчета, ни естественную единицу измерения. Исследователь должен сам задать точку отсчета и сам выбрать единицу измерения. Допустимыми преобразованиями в шкале интервалов являются линейные возрастающие преобразования, т.е. линейные функции. Температурные шкалы Цельсия и Фаренгейта связаны именно такой зависимостью: 0С = 5/9 (0F - 32), где 0С - температура (в градусах) по шкале Цельсия, а 0F - температура по шкале Фаренгейта.

Шкала отношений - шкала значений количественной характеристики, для которой определена (по соглашению) единица измерения и существует естественный нуль, не зависящий от произвола наблюдателя (например, абсолютный нуль температурной шкалы). Шкалы отношений - это шкалы длин, термодинамической температуры, массы, силы света, уровня звука, жесткости воды и многих других количественных характеристик. Любое измерение по шкале отношений заключается в сравнении количественной характеристики с единицей измерения и выражении первой через вторую в кратном или дольном отношении.
Это наиболее совершенная и информативная шкала. Результаты измерений в ней можно вычитать, умножать и делить. В некоторых случаях возможна и операция суммирования. Допустимость тех или иных математических операций определяется природой количественной характеристики.

Абсолютная шкала - шкала числовых значений количественной характеристики . Отличительные признаки абсолютных шкал: наличие естественного нуля и отсутствие необходимости в единице измерений. С использованием абсолютных шкал измеряют коэффициенты усиления, ослабления, амплитудной модуляции, нелинейных искажений, отражения, коэффициент полезного действия и т. п. Результаты измерений в абсолютных шкалах при необходимости выражают в процентах, промилле, байтах, битах, децибелах.
Разновидностью абсолютных шкал являются дискретные (счетные) шкалы, в которых результат измерения выражается числом частиц, квантов, или других объектов, эквивалентных по проявлению измеряемого свойства. Например, шкалы для электрического заряда ядер атомов, числа квантов (в фотохимии), количества информации. Иногда за единицу измерений (со специальным названием) в таких шкалах принимают какое-то определенное число частиц (квантов), например один моль - число частиц, равное числу Авогадро.
Абсолютная шкала, диапазон значений которой находится в пределах от нуля до единицы (или некоторого предельного значения по спецификации шкалы) называют абсолютной ограниченной шкалой.

Шкалы разностей (интервалов), отношений и абсолютные классифицируют как метрические или физические шкалы . Эти шкалы допускают логарифмическое преобразование, часто применяемое на практике, что приводит к изменению типа шкал. Такие шкалы называют логарифмическими . Практическое распространение получили логарифмические шкалы на основе применения систем десятичных и натуральных логарифмов, а также логарифмов с основанием два.

Практически реализация шкал измерений достигается путем стандартизации как самих шкал и единиц измерений, так и, при необходимости, способов и условий (спецификаций) их однозначного воспроизведения.
Измерение с помощью шкал заключается в установлении соответствия объекта или его характеристики отметке на шкале измерений. После чего объекту измерений приписывают количественную или качественную определенность, соответствующую выявленной отметке шкалы.

Рассмотрим основные типы шкал измерения и соответствующие им группы допустимых преобразований.

Все шкалы делят на две группы – шкалы качественных признаков и шкалы количественных признаков .

К шкалам качественных признаков относятся номинальная и порядковая шкалы.

Шкала наименований (номинальная шкала). Измерения в этой шкале призваны для того чтобы различать объекты. То есть фиксируется только два отношения: ”равно” “не равно”. Единственно допустимой операцией с измерениями в номинальной шкале является счет. Так фиксируются такие характеристики, как собственные имена людей, национальность, название населенных пунктов. С такими измерениями недопустимы математические операции такие как сложение или умножения. Не имеет смысла складывать, например, номера телефонов.

Порядковая шкала это шкала рангов, в которой числа присваиваются объектам для отражения относительной выраженности некоторых характеристик у тех или иных объектов. Простейшим примером являются оценки знаний учащихся. В этой шкале можно задать профессиональный статус. Таблица данных содержит информацию только трех эмпирических отношениях: ”<, >, =”. Допустимыми преобразованиями для данного типа шкал являются все монотонные преобразования, т.е. такие, которые не нарушают порядка следования значений измеренных величин. Такие данные не содержат информации на сколько отличается один ранг от другого.

Как показали многочисленные опыты, человек более правильно (и с меньшими затруднениями) отвечает на вопросы качественного, например, сравнительного, характера, чем количественного. Так, ему легче сказать, какая из двух гирь тяжелее, чем указать их примерный вес в граммах.

К количественным шкалам относятся: “шкала интервалов”, “шкала отношений”, “абсолютная шкала”.

Интервальная шкала это числовая шкала, в которой количественно равные промежутки отображают. Интервальная шкала содержит не только всю информацию, заложенную в порядковой шкале, но позволяет сравнить различия между ними. Разница между двумя смежными значениями шкалы идентична разнице между двумя любыми другими смежными значениями интервальной шкалы. Между значениями интервальной шкалы существует постоянный или равный интервал. Интервальная шкала используется, например, при измерении температуры.

В интервальной шкале расположение точки отсчета не фиксируется. Точка начала отсчета и единицы измерения выбираются произвольно. Любое линейное преобразование сохраняет свойства шкалы. Здесь x – первоначальное значение шкалы, y – преобразованное значение шкалы, b – положительная константа.

В шкале отношений по сравнению с интервальной шкалой определена еще и точка начала отсчета. Общеизвестными примерами измерения в этой шкале являются рост, вес, количество денег. Относительные шкалы допускают только преобразование . Один и тот же эмпирический смысл имеют значения: 12 кг, 12 000 г, 0,012 т.


Абсолютная шкала допускает преобразование только в форме тождества . Этот тип шкалы удобен для записи количества элементов в некотором конечном множестве. Если пересчитав количество яблок, один исследователь запишет в таблицу данных значение 6, а другой VI, то достаточно знать, что 6 означает тоже самое, что и VI, то есть 6=VI.

Относительная информативность измерений в различных шкалах повышается в порядке рассмотрения шкал. Различные шкалы требуют разработки своих методов анализа. При совместном рассмотрении признаков, измеренных в различных шкалах, используются методы преобразования измерительных шкал. Преобразовывать даны из одной шкалы в другую можно только с понижением мощности шкалы.

На сегодняшний день различают четыре основных типа шкал измерений: номинальная, порядковая, интервальная и относительная. Каждый тип шкалы обладает определенными признаками, которые рассматриваются ниже; сейчас же рассмотрим какую роль играет техника измерений в процессе классификации.

Часто при классификации исследователь не имеет возможности численно измерить исследуемый параметр. Например, отношение человека к чему-либо, степень его предпочтения и т.д. Способы измерения в данном случае отличаются от традиционных способов. Измерением в данном случае будет считаться любой способ приписывания числовых значений символам, которые отражают качественные характеристики объектов. При этом должны существовать устойчивые взаимосвязи между символами и качествами, которые они отражают. Иными словами, для осуществления кластеризации объекта с качественными характеристиками необходимо использовать приемы техники шкалирования.

В процессе использования техники шкал традиционно выделяют ряд стадий, качество выполнения которых оказывает непосредственное влияние на результат выделения кластеров. На первом этапе необходимо дать четкое определение тому, что собираются измерять. Далее следует указать, как измерение будет осуществлено на практике или что/кто конкретно подлежит измерению. После чего выбирают тип шкалы измерения, который предопределяет метод сбора информации. Любые измерения связаны с ошибками, но поскольку измерение в данном случае имеет специфику, то исследователь может самостоятельно оценить некоторые случайные отклонения исследуемого параметра и исключить его из кластера. Традиционно объекты наблюдения могут быть представлены в следующих типах шкал.

1 тип: номинальная или шкала наименований

Этот базовый и самый примитивный тип шкалы. При его использовании каждому объекту присваивается только идентификационный номер, как, например, номера игроков в спортивной команде, номера телефонов и т.д.

Операции в данной шкале:

Title="(A=~B)~,~(A~B)">

2 тип: порядковая шкала

Этот тип шкалы определяет порядок или ранг объектов наблюдения. Расстояния между объектами, которые следуют друг за другом (по убыванию или по возрастанию) не являются равными. На основании результата ранжирования нельзя сказать, что расстояние между свойствами объектов и равны расстоянию между свойствами объектов и . Часто данный тип шкалы еще называют шкалой восприятия . Например, оценка качества вина по десятибалльной шкале – наиболее понравившееся качество 10 баллов, наименее – 1 балл.

Операции в данной шкале:

Title="(A=~B)~,~(A~B)~,~(A>~B)~,~(A

3 тип: интервальная шкала

В отличие от порядковой шкалы, здесь имеет значение не только порядок следования величин, но и величина интервала между ними. Пример для данного типа шкалы: температура воды в море утром – 18 градусов, вечером – 24, т.е. вечерняя на 5 градусов выше, но нельзя сказать, что она в 1.33 раз выше.

Операции, которые можно выполнять на базе этой шкалы:

Title="(A=~B)~,~(A~B)~,~(A>~B)~,~(A

4 тип: относительная или шкала отношений

В отличие от интервальной шкалы может отражать то, во сколько один показатель больше другого. Относительная шкала имеет нулевую точку, которая характеризует отсутствие измеряемого качества. Например: цена на товар. Здесь за точку отсчета можно взять «ноль» рублей. Отметим, что на практике не часто удается привести измерения к данному типу шкалы.

Операции для данной шкалы:

Title="(A=~B)~,~(A~B)~,~(A>~B)~,~(A

Данный вид шкалы отражает прямые свойства объекта, имеющие объективный характер: пол, возраст, национальность, образование, род занятий, должность, место проживания, принадлежность к политическим партиям и т.п.

Такая шкала ничего не измеряет, а только указываются свойства объекта.

Пример: – специалист низкой квалификации; – специалист средней квалификации; – специалист высокой квалификации.

2. Порядковая (ранговая) - это полностью упорядоченная шкала, в которой значения переменных даны в определенной последовательности, в определенном порядке (ранге), чаще от более важного значения до менее значимого, в которых выражается отношение респондента к чему-либо, кому-либо.

Она упорядочивает объекты по степени выраженности их свойств, признаков в рамках отношений "больше–меньше", представляя тем самым определенную иерархию этих признаков, свойств и сравнений.

Данная шкала с помощью чисел может показывать порядок расположения субъективных оценок респондента, предлагаемых в анкете или оценок его самоощущения. Такая шкала чаще всего измеряет степень согласия с утверждением или уровень удовлетворенности чем-либо, кем-либо. Варианты ответов идут от максимально положительного к отрицательному или наоборот.

Например, на вопрос "удовлетворены ли Вы своей учебой?" ответы могут быть расположены в такой последовательности: 1) вполне удовлетворен; 2) удовлетворен; 3) скорее удовлетворен, чем неудовлетворен; 4) затрудняюсь ответить; 5) скорее неудовлетворен, чем удовлетворен; 6) неудовлетворен; 7) совершенно неудовлетворен.

3.Интервальная - это шкала, в которой значения даны в определенных пределах (интервалах) и выражены в числах. Например, при определении уровня доходов, возраста, стажа работы, периодичности каких-либо действий. В данном типе шкалы используется числовая система измерения в определенных интервалах, т.е. здесь присутствует единица измерения.

Например:

Возраст, годы: 15-19, 20-24, 25-29, 30-34.

4.Шкалы для измерения установок и отношений.

3 шкалы установок: 1) Шкала Терстоуна, известная как метод равных (или субъективно равных) интервалов 2) Шкала Лейкерта или метод суммарных оценок 3) Шкала Гуттмана

Установка отражает ценностное отношение респондента к объекту, психологически выраженное в его готовности положительной или отрицательной реакции на него. Установка показывает сочетание позитивных и негативных чувств респондента по отношению к объекту. Выбор респондентом того или иного суждения будет говорить о степени выраженности его эмоционального отношения к предмету установки.

Использование установочных шкал отличается тем, что цифра приписывается самим респондентам, а не оцениваемым объектам.

5.Оценочные шкалы - это такие шкалы, в которых респонденты с помощью чисел измеряют объекты (суждения, ценности, явления, проблемы). Здесь цифры приписываются объектам, их свойствам.

Например, оценивается уровень доверия к власти, качество работы и т.д. Затем по этим числам вычисляется усредненная величина, отражающая мнение всех респондентов.

6.Метрическая шкала - это шкала, представляющая исчисление эмпирического показателя в абсолютных числах. Она показывает линейное расположение данных, т.е. линейку, на которой можно изобразить данные, непосредственно характеризующие свойства объекта (сколько лет, величина времени, средств, объема и т.п.). Таким образом представляют некоторые количественные данные о деятельности респондентов.