Болезни Военный билет Призыв

По реакции поликонденсации возможно получение. Технические способы проведения поликонденсации. Способы проведения поликонденсации

Первые упоминания о сложном полиэфире датируются 1833 г., когда ученые Гей-Люссак и Пелуза синтезировали полиэфир на основе молочной кислоты. В 1901 г. Смит впервые синтезировал полиэфиры на основе фталевой кислоты и глицерина, а также нашел им применение в формовочных композициях. В 1941г. Уинфилд и Диксон синтезировали полиэтилентерефталат (ПЭТФ), производство которого в современном мире составляет 68 млн тонн в год.

Ведущую роль в полиуретановой промышленности занимают простые полиэфиры (80%), несмотря на это сложные полиэфиры имеют специфические применения, благодаря уникальным свойствам. Высокое сопротивление к истиранию полиуретанов, основанных на сложных полиэфирах, а также химическая стойкость к растворителям способствовали их интенсивному использованию в покрытиях и для производства подошв обуви. Высокая термическая и окислительная стабильность ароматических полиэфиров используется при производстве жестких изоциануратных пен. Способность к удлинению и растяжению привела к использованию сложных полиэфиров в компонентах для производства эластичных пен.

Сложные полиэфиры получают путем реакции поликонденсации между дикарбоновыми кислотами (а также их производными - эфирами и ангидридами) и диолами (или полиолами), а также путем реакции полимеризации , в результате раскрытия колец циклических эфиров - лактонов и циклических карбонатов.

Рассмотрим основные классы сложных полиэфиров:

Линейные и слаборазветвленные алифатические полиэфиры

Алифатические сложные полиэфиры образуются в результате реакции поликонденсации двухосновной карбоновой кислоты (адипиновой, себациновой, глутаровой) с гликолями (диэтиленгликоль, этиленгликоль, пропиленгликоль, 1,4-бутандиол, 1,6 - гександиол) и разветвляющими агентами (глицерин, триметилолпропан и пентаэритритол). В отличие от простых полиэфиров сложные полиэфиры имеют широкое молекулярно-массовое распределение.

Алифатические сложные полиэфиры чаще всего представляют собой воскообразные твердые вещества с температурой плавления приблизительно 60ᵒС. Исключением являются диэтиленгликоль и 1,2-пропиленгликоль, которые образуют жидкие полиэфиры. Сопротивление гидролизу полиуретанов, основанных на сложных полиэфирах, увеличивается с удлинением цепи сложного полиэфира, так как снижаются остаточная кислотность и уровень катализатора, а разветвление цепи и число полиэфирных связей возрастают. Также это приводит к снижению набухания полиуретанов в растворителях и маслах.

Для термопластов используются воскообразные сложные полиэфиры на основе адипиновой кислоты, этиленгликоля, 1,4 - бутандиола и 1,6 гександиола. Сложные полиэфиры благодаря наличию водородных связей между молекулами показывают более высокие физико-механические показатели, чем простые полиэфиры. Однако есть и недостатки, при повышенных влажности и температуре термопласты на основе сложных полиэфиров подвергаются микробиологическому воздействию. Это ограничивает их применение в тропическом климате. Использование термопластов также ограничено в холодном климате из-за низкой эластичности при отрицательных температурах.

Для эластичных пен используются жидкие сложные полиэфиры с молекулярной массой от 2000 до 3000 г/моль и функциональность 2,05 - 2,2 на основе адипиновой кислоты и диэтиленгликоля, а также применяются разветвители цепи - глицерин, триметилолпропан и пентаэритритол. Сложные полиэфиры имеют вязкость выше, чем простые, что способствует стабилизации ячейки при росте пены. Первичные гидроксильные группы стимулируют раннее гелеобразование при подъеме пены. Поэтому при использовании сложных полиэфиров требуется меньшее количество аминных катализаторов.

Первые промышленные марки эластичных ППУ изготавливали на основе слаборазветвленных сложных полиэфиров и ТДИ. Эластичные ППУ на основе сложных полиэфиров в настоящее время применяются в производстве дублированных тканей, чемоданов, сумок, а также деталей внутренней отделки автомобилей, которые должны быть стойкими к растворителям и иметь повышенную прочность.

На основе стандартных марок сложных полиэфиров с молекулярной массой 2000 г/моль получают материалы с относительным удлинением 150-300% в зависимости от плотности и рецептуры ППУ. Более мягкие ППУ, получаемые на основе ТДИ 80/20, при изоцианатном индексе 90-98 имеют относительное удлинение при разрыве 350-450% и применяются главным образом для дублирования тканей. Типичный полужеский блочный ППУ образуется в результате взаимодействия ТДИ со смесью 50:50 стандартного сложного полиэфира и сильноразветвленного сложного полиэфира.

Сложные полиэфиры также используются как исходные компоненты для полиуретановых клеев. В качестве гидроксилсодержащих соединений применяют полиэфир, например, на основе себациновой кислоты, глицерина и гликоля. В качестве изоцианатов используют ТДИ, МДИ, продукты реакции ТДИ с триметилолпропаном и другими многоатомными спиртами.

Ароматические сложные полиэфиры.

Ароматические сложные полиэфиры применяются в жестких полиуретановых и полиизоцианутратных пенах.

Развитие высоко сшитых быстрых полиизоцианутратных PIR пен привело к активному применению сложных полиэфиров, так как высокая функциональность полиэфира не требуется, сшивку обеспечивают изоцианураты. Полиизоциануратные пены – это гибридные структуры, содержащие как полиуретановые группы, так и изоциануратные кольца. Изоцианатный индекс находится в диапазоне от 200 до 300 и выше. PIR пенопласты имеют более высокую температуру эксплуатации 140⁰С против 100⁰С и меньшую скорость распространения пламени.

Главное достоинство PIR – стойкость к воздействию открытого огня – обусловлена образованием под действием высокой температуры пламени сетки из карбонизированного материала, сохраняющей макроструктуру исходного пенопласта. Этот материал (пенококс) – разрушается очень медленно, играя роль барьера, препятствующего распространению пламени. Кроме того, из-за образования кокса при горении выделяется значительно меньше тепла. Уретановые структуры разрушаются при 200⁰С при этом коксуются на 20%, тогда как изоциануратные структуры разрушаются при 325⁰С и коксуются на 50%.

Термическая стабильность и коксование также зависит от полиольной структуры. Ароматические структуры менее горючи алифатических. Все это привело к распространению ароматических сложных полиэфиров с низкой функциональностью, низкой вязкостью и низкой себестоимостью.

Полиэфиры на основе ПЭТФ находят применение для жестких PUR пен: например, полиэфир с эквивалентным весом 181 г/моль, функциональностью 2,3, гидроксильным числом 295-335 мгKOH/г и вязкостью 8000-10000мПа.с при 25°C.

Для производства PIR пен используют сложный полиэфир на основе ПЭТФ с эквивалентным весом 238 г/моль, функциональностью 2, гидроксильным числом 230-250 мгKOH/г и вязкостью 2700-5500мПа.с при 25°C.

Применение ароматических сложных полиэфиры на основе фталевого ангидрида в быстрых PIR/PUR пенах приводит к хорошим физико-механическим свойствам, низкому дымообразованию, термической стабильности и огнестойкости. Проблема плохой совместимости полиэфиров на основе фталевого ангидрида со вспенивающими агентами решается путем введения в состав растительных масел, использования в системах эмульгаторов, аминов и простых полиэфиров.

Для производства PIR-панелей используются в основном ароматические сложные полиэфиры на основе ФА со следующими параметрами: гидроксильное число от 190 до 320 мг KOH/г, функциональность 2 – 2,4, кислотное число менее 1,0 мг KOH/г, вязкость (25 °C) от 2000 до 9000 мПа.с.

Поликапролактоны - образуются за счет открытия колец ԑ-капролактонов в присутствии инициаторов и катализаторов. Поликапролактоны имеют гораздо более узкое молекулярно-массовое распределение, нежели полиэфиры на основе двухосновных карбоновых кислот и низкую вязкость. Введение поликапролактонов в систему позволяет достичь высокой гидролитической стабильности из-за присутствия относительно длинных повторяющихся гидрофобных сегментов (СH 2) n и требуемой эластичности даже при низких температурах, однако их использование в промышленности ограничено их высокой себестоимостью.

Поликапролактоны преимущественно используют в двухкомпонентных лакокрасочных материалах с высоким сухим остатком. В данной области они составляют конкуренцию полиэфирполиолам, стоимость которых меньше. Поликапролактоновые полиэфиры также находят применение в качестве сегментов в других полимерах. Например, их рекомендуют использовать в рецептуре лакокрасочного материала, наносимого методом катионного электроосаждения, для пластифицирования эпоксидной смолы или в качестве мягких сегментов в полиуретановых дисперсиях.

Поликарбонаты

Поликарбонаты высокопрозрачные, теплостойкие, обладают хорошими механическими свойствами, не подвержены гидролизу, так как каталитически активные карбоксильные группы отсутствуют. Поликарбонаты при комнатной температуре являются твердыми веществами, в зависимости от массы температура плавления лежит в диапазоне от 40-60⁰С.

Высокомолекулярные поликарбонаты используют для окраски строительных деталей и конструкций, отделки автомобилей, в электронике. Низкомолекулярные поликарбонаты 1000-4000 г/моль представляют больший интерес для ЛК-отрасли. Они отверждаются продуктами присоединения алифатических и циклоалифатических полиизоцианатов. В результате получаются продукты с высокой атмосферостойкостью.

Олигоэфиракрилаты

Продукты, полученные на основе сложных полиэфиров с концевыми гидроксильными группами в присутствии акриловой кислоты. Такие продукты с двойными связями используют в лакокрасочных материалах, отверждаемых под действием УФ-лучей. В результате радикальной полимеризации в присутствии УФ-инициаторов продукты сшиваются, образуя правильную сетчатую структуру. На свойства покрытий оказывают влияние размер и состав полиэфирного сегмента. Разветвленные полиэфиры с низкой молекулярной массой создают плотную сетчатую структуры, тогда как длинные алифатические цепи приводят к эластичности пленки.

Вконтакте

Сложными полиэфирами называют высокомолекулярные соединения, содержащие в макромолекуле сложноэфирные связи

В соответствии с системой химической классификации В.В. Коршака полиэфиры могут быть карбоцепными и гетероцепными. У первых эфирные группы находятся в боковой цепи, а у вторых - в основной цепи макромолекулы. В данной главе рас­сматриваются гетероцепные полиэфиры. Они могут быть разбиты на три группы: полиэфиры с алифатическим звеном, полиэфиры с ароматическим звеном и полиэфиры с гетероциклическим звеном. Широкое распространение в технике нашли гетероцепные сложные полиэфиры с алифатическим насыщенным и ненасыщенным звеном и полиэфиры с ароматическим звеном. Их строение в общем виде может быть изображено формулой

В зависимости от того, содержит ли полиэфир ненасыщенные или насыщенные груп­пы, их делят на ненасыщенные полиэфиры (НПЭФ) и насыщенные полиэфиры (ПЭФ).

Важное значение для производства пластмасс имеют НПЭФ, представляющие собой в неотвержденном состоянии олигомерные (то есть сравнительно низкомолеку­лярные) продукты поликонденсации ди- или полифункциональных кислот со спиртами при обязательном участии а) малеинового ангидрида или фумаровой кислоты - полиэфирмалеинаты (полиэфирфумараты) или б) непредельных одноосновных кислот (метакриловой, акриловой) - полиэфиракрилаты. Полиэфирмалеинаты содержат реакционноспособные двойные связи между углеродными атомами в цепи олигомера, а полиэфиракрилаты - на концах цепей олигомера.

Ненасыщенность олигомеров определяет их способность к сополимеризации с дру­гими винильными мономерами или гомополимеризации, приводящей к их отверждению и сшивке.

Промышленное освоение НПЭФ началось с 1951 г. Объем их производства в мире в настоящее время составляет более 3 млн т в год и определяется в основном масштабами производства стеклопластиков, используемых в строительстве, судостроении, электротехнике и автомобилестроении. При изготовлении стеклопластиков используется 60-80% всего производства НПЭФ. Остальное количество НПЭФ потребляется в мебельной и радиотехнической промышленности для получения покрытий, заливочных материалов, замазок и клеев.

Ассортимент НПЭФ, выпускаемых отечественной промышленностью, насчитывает более 20 марок.

Из насыщенных ПЭФ широкое применение находят полиэтилентерефталат и по­ликарбонат. В последние годы начат выпуск политетраметилентерефталата(полибу- тилентерефталата) и полиарилатов - новых термопластичных ПЭФ.

Исходные продукты

Из разнообразных видов сырья, предложенных для получения полиэфиров, наи­большее практическое применение получили гликоли (этиленгликоль, диэтиленгликоль, пропиленгликоль, дипропиленгликоль), глицерин, пентаэритрит, аллиловый спирт (табл. 15.1), 4,4"-дигидроксидифенилалканы (например, 4,4"-дигидроксидифенил-2-пропан), кислоты (терефталевая, адипиновая, себациновая, метакриловая) и ангидриды кислот (фталевой, малеиновой).



Этиленгликоль НОСН 2 СН 2 ОН (гликоль) получают гидратацией окиси этилена. Это гигроскопичная бесцветная жидкость, почти без запаха, растворяющаяся в воде и спирте.

Диэтиленгликоль НОСН 2 СН 2 ОСН 2 СН 2 ОН и триэтиленгликоль НОСН 2 СН 2 ОСН 2 СН 2 ОСН 2 СН 2 ОН приготовляют из этиленгликоля и окиси этилена. Они представляют собой бесцветные прозрачные жидкости, хорошо растворимые в воде и спирте.

1,2-Пропиленгликоль НОСН 2 СН(СН 3)ОН получают из окиси пропилена. Он является гигроскопичной бесцветной жидкостью, не имеющей запаха. С водой и спиртом смешивается во всех отношениях.

Дипропиленгликоль НОСН 2 СН(СН 3)ОСН 2 СН(СН 3)ОН получают из пропи- ленгликоля и окиси пропилена. Он представляет собой бесцветную вязкую жидкость, смешивающуюся с водой и ароматическими углеводородами.

Глицерин НОСН 2 СНОНСН 2 ОН получают омылением жиров и синтетическим путем из пропилена.

Аллиловый спирт СН 2 =СН-СН 2 ОН готовят омылением хлористого аллила при повышенной температуре (170°С) в присутствии щелочи. Хлористый аллил получают в промышленности высокотемпературным хлорированием пропилена. Аллиловый спирт - бесцветная жидкость с острым запахом, хорошо растворяющаяся в воде, спирте, ацетоне, диэтиловом эфире. Он вступает во все реакции, свойственные первичным спиртам и этиленовым соединениям.

4,4"-Дигидроксидифенил-2-пропан (дифенилолпропан, диан, бисфенол А)

получают взаимодействием фенола и ацетона в присутствии серной кислоты, ра­створяется в ацетоне, спирте, бензоле, уксусной кислоте; плавится при 156-157°С.


Чаще всего применяют ее диметиловый эфир, плавящийся при 142°С (терефталевая кислота сублимируется при 300°С).

Малеиновый ангидрид получают окислением бензола на ванадиевом катализаторе.

Это кристаллическое вещество с температурой плавления 53°С; растворяется в воде, спирте, бензоле, хлороформе.

Фумаровая кислота НОСОСН = СНСООН - транс-изомер α,β-ненасыщенной дикарбоновой кислоты. Она может быть получена изомеризацией при нагревании 50%-ного раствора малеиновой кислоты в малеиновом ангидриде.

Адипиновая кислота НОСО(СН 2) 4 СООН растворяется в воде и этиловом спирте (1,5 г и 0,6 г в 100 мл при 15°С соответственно). Температура плавления - 152°С.

Себациновая кислота НОСО(СН 2) 8 СООН - плохо растворяется в воде, раство­рима в спирте и эфире. Температура плавления - 133 °С.

Метакриловая кислота СН 2 = С(СН 3)СООН растворима в воде. Температура плавления - 16 °С, температура кипения - 160,5 °С.

Диметакрилаттриэтиленгликоля СН 2 =С(СН 3)СОО(СН 2 СН 2 О) 3 ОС(СН 3)=СН 2 используется в производстве ненасыщенных полиэфирных смол.

Изобретение относится к способу получения полиэфира методом поликонденсации полифункциональных органических соединений природного происхождения с адипиновой или себациновой кислотой и к утилизации отходов лесохимической промышленности. Полученный полимер может быть использован в качестве связующего в производстве древесно-волокнистых или древесно-стружечных плит. Техническая задача - упрощение технологии получения полиэфира, снижение температуры плавления получаемого полимера и сохранение прочности композиционных материалов на основе данного полиэфира. Предложен способ получения полиэфира поликонденсацией между субериновыми кислотами (СК), адипиновой (АК) или себациновой (СебК) кислотой и диамином, выбранным из п-фенилендиамина (п-ФД), о-фенилендиамина (о-ФД) и гексаметилендиамина (ГМДА) при массовом соотношении СК:(АК или СебК):(п-ФД, или о-ФД, или ГМДА)=10:(2-4):(3,1-6,2), причем процесс проводят при температуре 150-220°С в течение 1,5-2,5 часа. 1 з.п. ф-лы, 2 табл.

Изобретение относится к области полимерной химии и утилизации отходов лесохимической промышленности, а именно к способу получения полиэфира, методом поликонденсации полифункциональных органических соединений природного происхождения с адипиновой или себациновой кислотой. Получаемый полимер может быть использован в качестве связующего в производстве древесно-волокнистых или древесно-стружечных плит.

Субериновые кислоты представляют собой смесь алифатических C 18 -С 32 моно- и дикарбоновых насыщенных и ненасыщенных окси- и эпоксикислот. Наличие всех этих функциональных групп дает возможность использовать их в качестве мономеров при получении высокомолекулярных соединений по методу поликонденсации.

Таблица 1

Состав субериновых кислот

Кислота % по массе
Октадекан-9-ен-1,18-диовая 2,1-3,9
Октадекан-1,18-диовая 0,5-1,5
18-Гидроксиоктадец-9-еновая 6,0-17,1
9,16- и 10,16-Дигидроксигексадекановая 2,3-6,2
9,10-Эпокси-18-гидроксиоктадекановая 29,2-43,2
20-Гидроксиэйкозановая 2,3-4,4
9,10,18 - Тригидроксиоктадекановая 6,3-11,4
Докозан-1,22-диовая 3,6-7,4
22-Гидроксидокозановая 11,7-17,4
Прочие 9,5-14,7

В таблице 1 приведены кислоты с наибольшим содержанием в бересте (Кислицын А.Н. Экстрактивные вещества бересты: выделение, состав, свойства, применение. Химия древесины. - 1994. - №3. - C.11).

В уровне техники известны исследования в области получения полимеров на основе субериновых кислот, а именно: лаковых смол, получаемых методом конденсации бетулино-субериновых смесей с фталевым ангидридом (Поварнин И.Г. Спиртовые мебельные лаки отечественного лесохимического сырья. - М., 1949, с.78-80).

Существенным недостатком данного способа является то, что он требует большого количества времени и энергозатрат (продолжительность процесса конденсации составляет 16 часов, при температуре 170°С), что в свою очередь делает данный способ получения полимера экономически невыгодным. Дополняющим недостатком данных полимеров является то, что такие смолы после холодной сушки обладают плохими адгезионными свойствами, а после горячей сушки оказываются очень хрупкими.

Известны также полиуретаны, получаемые на основе субериновых кислот (Cordeiro N., Belgacem M.N., Candini A., Pascoal Neto С., Urethanes and polyurethanes from suberin: 1.Kinetic study// Industrial Crops and Products, Vol.6, Iss.2. - 1997. - P.163-167).

Недостатком таких полимеров является то, что они высокоэластичны и их переработка возможна только через растворы, что резко снижает их область применения в качестве связующих.

Также известны смолы, приготовляемые на основе этерифицированных бетулином субериновых кислот (Поварнин И.Г. Спиртовые мебельные лаки из отечественного лесохимического сырья. М., Всесоюзное кооперативное изд-во, 1949, с.71-73). Такие смолы хорошо растворяются в ряде органических растворителей, таких как скипидар, бензол, спиртбензол, ацетаты, этилметилкетон, и имеют хорошую адгезию к стеклу и металлу. Однако существенным недостатком этих смол является плохая адгезия к дереву, что исключает возможность их применения в производстве ДВП и ДСП.

Наиболее близким аналогом к заявляемому изобретению является способ получения полиэфира путем поликонденсации бетулина с дикарбоновой кислотой в инертной среде (азот) при постоянном перемешивании в диапазоне температур 256-260°С и продолжительности процесса 22-24 часа (патент РФ №2167892, МПК C 08 G 63/197, опубл. в Бюлл. изоб. №15, 27.05.2001; Орлова Т.В., Немилов В.Е., Царев Г.И., Войтова Н.В. Способ получения полиэфира). Температура плавления данных полиэфиров составляет 200-230°С. Древесно-волокнистые композиты на основе данных полиэфиров обладают прочностью на растяжение 65-77 МПа.

Недостаток данного способа получения связующего состоит в том, что он является достаточно энергоемким, поскольку температура процесса конденсации составляет 256-260°С и продолжительность соответственно 22-24 часа.

Техническим результатом настоящего изобретения является упрощение технологии получения полиэфира за счет снижения температуры поликонденсации и снижения продолжительности процесса при одновременном снижении температуры плавления полученного полимера, а также при одновременном сохранении прочности композиционных материалов на основе данного полиэфира.

Поставленная цель достигается тем, что в заявляемом способе получения полиэфира, заключающемся в поликонденсации полифункциональных органических соединений природного происхождения с адипиновой кислотой или себациновой при повышенной температуре в инертной среде (азот), процесс поликонденсации осуществляют между: субериновыми кислотами (СК), адипиновой кислотой (АК), n-фенилендиамином (n-ФД), себациновой кислотой (СебК), о-фенилендиамином (о-ФД), гексаметилендиамином (ГДА) при массовом соотношении СК: АК или СебК: n-ФД, или о-ФД, или ГДА - 10:(2÷4):(3,1÷6,2), причем процесс проводят при температуре 150-220°С и продолжительности процесса 1,5-2,5 часа.

Существенными отличиями заявляемого изобретения является использование в определенном соотношении с субериновыми кислотами дикарбоновой кислоты и диамина, в качестве которых используются адипиновая кислота или себациновая кислота и n-фенилендиамин, или о-фенилендиамин, или гексаметилендиамин. Выбор адипиновой кислоты и себациновой кислоты обусловлен тем, что они способны конденсироваться в линейную макромолекулу и тем самым препятствовать образованию пространственной сетки при поликонденсации субериновых кислот, а n-фенилендиамин, о-фенилендиамин и гексаметилендиамин были выбраны с целью регулирования температуры плавления и жесткости цепи полимера.

Согласно заявляемому техническому решению поликонденсация мономеров происходит за счет взаимодействия реакционноспособных групп субериновых кислот, таких как карбоксильные, гидроксильные и эпоксидные группы между собой и с аминогруппами n-фенилендиамина (о-фенилендиамина или гексаметилендиамина) и карбоксильными группами адипиновой кислоты (себациновой кислоты), эти взаимодействия можно изобразить с помощью следующих реакций.

Из представленных выше реакций отчетливо видно, что в структуре получаемого полимера образуются простые эфирные связи (реакция 2), сложные эфирные связи (реакция 1), амидные связи (реакция 4) и аминные связи (реакция 5).

Таким образом получены новые полиэфироамиды, сополимеры субериновых кислот, адипиновой кислоты (или себациновой) и n-фенилендиамина (или о-фенилендиамина, или гексаметилендиамина), обладающие разветвленной структурой и степенью превращения до 0,99.

Заявляемый способ реализуется следующим образом.

Пример 1. В реактор загружаются субериновые кислоты, адипиновая кислота и n-фенилендиамин в соотношении СК:АК:ПФД, равном 10:2:3,1, подается азот, после чего реактор нагревается до 150°С, и реакцию поликонденсации проводят в течение 1,5 часа при перемешивании, после окончания процесса полученный полимер выгружается.

В таблице 2 приведены параметры и показатели процесса и характеристики готовой продукции.

Преимущество предлагаемого изобретения по сравнению с прототипом заключается в том, что процесс поликонденсации субериновых кислот с бифункциональными веществами, такими как адипиновая, себациновая кислоты, n-фенилендиамин, о-фенилендиамин и гексаметилендиамин, осуществляется при более низкой температуре (до 220°С) и продолжительности процесса 1,5-2,5 часа, что значительно упрощает технологию процесса синтеза полимера. Дополнительным преимуществом является то, что температура плавления полученных полиэфироамидов ниже, чем у прототипа, и составляет 133-149°С.

Полученные полиэфиры с показателями по степени превращения 0,80-0,99 и температурой плавления 133-149°С берут в соотношении 20:80 с древесным волокном, прессуют при t - 200°С и давлении 6 МПа в течение 1 мин/мм толщины. Готовая продукция (древесно-волокнистые плиты) обладают прочностью 77-83 МПа, что в 1,5-2 раза выше показателя ГОСТ на промышленно выпускаемые аналоги. Прочность оценивалась по методике ГОСТ 11262-80.

Из экспериментальных данных, приведенных в таблице 2, видно, что в сравнении с прототипом по заявляемому способу получен полиэфир с температурой плавления 133-149°С, что дает возможность его использования в качестве связующего в технологии полимерных композиционных материалов. Получаемые таким образом материалы обладают высокими прочностными свойствами, не уступающими прототипу.

Из таблицы 2 видно, что при повышении температуры процесса поликонденсации (примеры №1-3) степень превращения полученного полиэфира увеличивается, а также увеличивается прочность древесно-волокнистых плит.

При увеличении продолжительности процесса (примеры №2, 4, 5) также наблюдается возрастание степени превращения и температуры плавления получаемых полиэфиров, при этом прочность плит лежит в диапазоне, соответствующем прочности плит, получаемых по прототипу.

Изменение соотношения компонентов (примеры №1, 7, 12) во всем диапазоне заявляемых температур и продолжительности процесса позволяет получить плиты с прочностью, равной прочности плит, соответствующих прототипу.

Таблица 2

Параметры процесса поликонденсации и характеристики получаемых полимеров

№/№ Соотношение компонентов, мас.% Температура,Продолжительность процесса, ч Степень превращения Температура плавления, °С Прочность плит, МПа
Субериновые кислоты: адипиновая кислота: n-фенилендиамин
1 10:2:3,1 150 1,5 0,85 139 77
2 10:2:3,1 180 1,5 0,87 142 78
3 10:2:3,1 220 1,5 0,88 143 79
4 10:2:3,1 180 2 0,90 146 79
5 10:2:3,1 180 2,5 0,95 148 83
6 10:3:4,6 150 1,5 0,83 138 77
7 10:3:4,6 180 1,5 0,88 143 78
8 10:3:4,6 220 1,5 0,94 148 83
9 10:3:4,6 150 2 0,86 140 78
10 10:3:4,6 150 2,5 0,93 147 83
11 10:4:6,2 150 1,5 0,80 137 77
12 10:4:6,2 180 1,5 0,89 145 79
13 10:4:6,2 220 1,5 0,95 149 79
14 10:4:6,2 150 2 0,86 140 78
15 10:4:6,2 150 2,5 0,97 149 78
Субериновые кислоты: адипиновая кислота: о-фенилендиамин
16 10:3,8:6,0 200 2,3 0,98 146 78
Субериновые кислоты: себациновая кислота: n-фенилендиамин
17 10:3,4:6,1 215 2,5 0,98 146 77
Субериновые кислоты: себациновая кислота: о-фенилендиамин
18 10:3,1:6,1 210 2,4 0,99 144 78
Субериновые кислоты: адипиновая кислота: гексаметилендиамин
19 10:3,9:6,0 220 2,5 0,98 136 77
Субериновые кислоты: себациновая кислота: гексаметилендиамин
20 10:3,8:6,0 215 2,5 0,99 133 77
Прототип (Бетулин: себациновая кислота)
21 1:1,034 260 23 0,996 200 65-77

Замена адипиновой кислоты на себациновую кислоту в полиэфире (пример №18) также позволяет получить плиты с прочностью, не уступающей прототипу. Замена n-фенилендиамина на о-фенилендиамин (пример №17, 19) или гексаметилендиамин (пример №20, 21) в случае использования себациновой или адипиновой кислоты также позволяет получить плиты с прочностью соответствующей прочности плит по прототипу.

Также надо отметить, что во всех случаях степень превращения полиэфиров по заявляемому способу ниже, чем у прототипа, но прочность получаемых плит равна прочности плит по прототипу. Температура плавления получаемых полиэфиров по заявляемому способу не зависимо от соотношения компонентов и компонентного состава меньше, чем у прототипа, что делает процесс получения древесно-волокнистых плит более экономичным.

1. Способ получения полиэфира, заключающийся в поликонденсации полифункциональных органических соединений природного происхождения с адипиновой кислотой или себациновой при повышенной температуре в инертной среде, отличающийся тем, что процесс поликонденсации осуществляют между субериновыми кислотами, адипиновой кислотой или себациновой и n-фенилендиамином, или о-фенилендиамином, или гексаметилендиамином при массовом соотношении субериновые кислоты: адипиновая или себациновая кислота: п-фенилендиамин, или о-фенилендиамин, или гексаметилендиамин - 10:(2÷4):(3,1÷6,2) при температуре 150-220°С.

2. Способ по п.1, отличающийся тем, что продолжительность процесса поликонденсации составляет 1,5-2,5 ч.

Похожие патенты:

Изобретение относится к способу получения различных биоразлагаемых алифатических и алифатически-ароматических сложных полиэфиров из одной или нескольких алифатических дикарбоновых кислот или сложных эфиров этих кислот и одного или нескольких алифатических диолов или смеси различных алифатических и ароматических дикарбоновых кислот и алифатических диолов

Настоящее изобретение относится к биоразлагаемому смешанному алифатически-ароматическому сложному полиэфиру, пригодному для экструзионного покрытия, содержащему звенья, образованные из по меньшей мере дикарбоновой кислоты и по меньшей мере диола, с длинноцепочечными разветвлениями, и, по существу, свободному от геля, характеризующемуся вязкостью при сдвиге от 800 до 1600 Па*с, константой термостойкости менее чем 1,5*10-4, прочностью расплава от 2 до 4,5 г и относительным удлинением при разрыве более 30. Биоразлагаемый сложный полиэфир может быть получен посредством способа реактивной экструзии, из линейного предшественника полиэфира, содержащего звенья, образованные дикарбоновой кислотой и диолом, и имеющего показатель текучести расплава от 5 г/10 мин до 30 г/10 мин и содержание концевой ненасыщенности от 0,1 до 1% моль/моль. Способ осуществляют с добавлением пероксидов, эпоксидов и карбодиимидов. Также объектами изобретения являются слоистое изделие, состоящее по меньшей мере из основы, и по меньшей мере первого слоя, состоящего из сложного полиэфира в соответствии с изобретением, растяжимая пленка, многослойные пленки и композиция, пригодная для нанесения покрытия методом экструзии, состоящая из биоразлагаемого смешанного алифатически-ароматического сложного эфира и полимера молочной кислоты. Технический результат - получение биоразлагаемых сложных полиэфиров, обладающих физико-химическими характеристиками, дающими возможность получать тонкие пленки с высокой стабильностью расплава и высокой прозрачностью. 8 н. и 13 з.п. ф-лы, 7 ил., 4 пр.

Настоящее изобретение относится к пенополиуретанам, полученным из сложных полиэфирполиолов, полученных реакцией диолов со смесью двухосновных кислот, произведенных из смеси динитрильных соединений, получаемых как побочные продукты в производстве адипонитрила путем гидроцианирования бутадиена. Пенополиуретан получен реакцией: a) полиизоцианата и b) полиэфирполиола, который получен полимеризацией смеси полиольных мономеров и мономерных двухосновных кислот, причем указанные мономерные двухосновные кислоты состоят из по меньшей мере одной смеси М двухосновных кислот, имеющей следующий весовой состав: метилглутаровая кислота (MGA): 80-95% этилянтарная кислота (ESA): 0-10% адипиновая кислота (АА): 5-15%, где двухосновные кислоты смеси М могут полностью или частично находиться в форме ангидрида, и где реакцию осуществляют в присутствии пено- или порообразователя и катализатора. Технический результат - пенополиуретаны согласно изобретению имеют повышенный уровень физических свойств, сравнимый со свойствами пенополиуретанов, применяющихся, в частности, в обувной промышленности.15 з.п.ф-лы,5 табл.,5пр.

Настоящее изобретение относится к контейнеру для пищевых продуктов или напитков, содержащему полиэтилентерефталатный полимер. Описан контейнер для пищевых продуктов или напитков, содержащий полиэтилентерефталатный полимер, где указанный полимер содержит терефталатный компонент и диольный компонент, где терефталатный компонент выбран из терефталевой кислоты, диметилтерефталата, изофталевой кислоты и их комбинаций, и диольный компонент выбран из этиленгликоля, циклогександиметанола и их комбинаций, причем оба компонента - терефталатный и диольный, частично или полностью получены из, по меньшей мере, одного материала на основе биосырья. Технический результат - получение контейнера для пищевых продуктов или напитков, содержего полиэтилентерефталат, производимый из возобновляемых ресурсов, обладающий теми же свойствами что полиэтилентерефталат, полученный из нефти. 1 н. и 13 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

Настоящее изобретение относится к получению и применению сложных полиэфирполиолов. Описан способ получения сложных полиэфирполиолов, в котором: на стадии a) смешивают, по меньшей мере, один ангидрид карбоновой кислоты (A), выбираемый из группы, состоящей из фталевого ангидрида, ангидрида тримеллитовой кислоты и ангидрида пиромеллитовой кислоты, и диэтиленгликоль (B) и подвергают их взаимодействию, причем молярное отношение компонентов (B) к (A) находится в пределах от 1,5:1,0 до 0,7:1,0, а общее содержание компонентов (A) и (B) в расчете на массу всех компонентов смеси находится в пределах от 66 до 90 мас.%, a на стадии b) к сложному полиэфирполиолу со стадии a) добавляют диэтиленгликоль (B), причем сложный полиэфирполиол со стадии a) имеет более высокую молекулярную массу, чем сложный полиэфирполиол со стадии b), сложный полиэфирполиол со стадии a) имеет молекулярную массу в пределах 1400 и 430 г/моль и гидроксильное число в пределах между 80 и 260 мг КОН/кг, сложный полиэфирполиол со стадии b) имеет молекулярную массу в пределах 750 и 350 г/моль и гидроксильное число в пределах между 150 и 320 мг КОН/кг, и причем на стадии a) добавляют, по меньшей мере, один другой гликоль (C) с 2-4 атомами углерода за исключением диэтиленгликоля и, по меньшей мере, одну алифатическую дикарбоновую кислоту (D) с 5-12 атомами углерода, а количество компонентов (C) и (D) на стадии а) выбирают таким, чтобы количество компонентов (A), (B), (C) и (D) в смеси составляло 100 мас.%. Также описан способ получения пенополиуретановых (ПУР) или пенополиизоциануратных (ПИР) пенопластов, включающий стадии: a) взаимодействия сложного полиэфирполиола, полученного указанным выше способом, с b) полиизоцианатсодержащим компонентом, c) вспенивающим средством, d) одним или несколькими катализаторами, e) при необходимости, с антипиреном и/или другими вспомогательными веществами и добавками. Описано применение пенополиуретанов (ПУР) или пенополиизоциануратов (ПИР), полученных указанным выше способом, для получения металлсодержащих слоистых композиционных элементов. Описан металлсодержащий слоистый композиционный элемент, включающий металлический слой и слой, содержащий ПУР- или ПИР-пенопласт, получаемый указанным выше способом. Технический результат - снижение количества образующегося диоксана по отношению к количеству используемого диэтиленгликоля, при получении сложных полиэфирполиолов. 4 н. и 5 з.п. ф-лы, 5 табл., 18 пр.

Предложен способ получения полимера, включающий взаимодействие 1,6-гександиола с дикарбоновыми кислотами или диизоцианатами в присутствии по меньшей мере одного катализатора, причем в качестве 1,6-гександиола используют 1,6-гександиол, который после его получения путем гидрирования подвергают по меньшей мере однократной дистилляции, при которой молярное отношение кислорода к 1,6-гександиолу составляет менее 1:100, и который в процессе дистилляции содержит ≤5 частей на млн каталитически активных компонентов и менее 500 частей на млн альдегида. Технический результат - получение полимеров, обладающих индексом цвета менее 150 единиц АРНА-мутности. 7 з.п. ф-лы, 6 пр.

Настоящее изобретение относится к сложным полиэфирам. Описан сложный полиэфир АВ, содержащий фрагменты, произведенные из ди- или полифункциональных органических кислотных соединений А, и фрагменты, произведенные из ди- или полифункциональных органических гидроксисоединений В, где соединения А включают долю вещества a1 в количестве от a11 до a12 для по меньшей мере одного кислотного соединения А1 и долю вещества a2 в количестве от a21 до a22 для по меньшей мере одного кислотного соединения А2, и где соединения В включают долю вещества b1 в количестве от b11 до b12 для по меньшей мере одного гидроксифункционального соединения В1 и долю вещества b2 в количестве от b21 до b22 для по меньшей мере одного гидроксифункционального соединения В2, где при этом присутствует по меньшей мере один из каждого из фрагментов соединений A1, А2, В1 и В2, и при этом присутствуют по меньшей мере два соединения, соответствующие А2, или по меньшей мере, два соединения, соответствующие В2, где кислотные соединения А1 и А2 и гидроксифункциональные соединения В1 и В2 определяются следующим далее образом: группа А1 кислотных соединений включает органические дикислотные соединения, имеющие две кислотные группы на одну молекулу, и органические поликислотные соединения, имеющие три и более кислотные группы на одну молекулу, которые выбраны из группы, включающей изофталевую кислоту, тримеллитовый ангидрид, гексагидрофталевый ангидрид, циклогексан-1,4-дикарбоновую кислоту и тетрагидрофталевую кислоту, и группа А2 кислотных соединений включает органические дикислотные соединения, которые имеют две кислотные группы на одну молекулу, и органические поликислотные соединения, которые имеют три и более кислотные группы на одну молекулу, которые выбраны из группы, включающей адипиновую кислоту, димерные жирные кислоты и себациновую кислоту, где кислотные группы представляют собой карбоксильные группы -СООН, и где две соседние кислотные группы, то есть такие кислотные группы, которые связаны с атомами углерода, непосредственно связанными друг с другом, могут быть частично или полностью замещены соответствующей группой ангидрида кислоты, и группа В1 гидроксифункциональных соединений включает органические дигидроксисоединения, имеющие две гидроксильные группы на одну молекулу, и органические полигидроксисоединения, имеющие три и более гидроксильные группы на одну молекулу, которые выбраны из группы, включающей триметилолпропан, 1,2-бисгидроксиметилциклогексан и 1,2-дигидроксипропан, и группа В2 гидроксифункциональных соединений включает органические дигидроксисоединения, которые имеют две гидроксильные группы на одну молекулу, и органические полигидроксисоединения, которые имеют три и более гидроксильные группы на одну молекулу, которые выбраны из группы, включающей 1,4-бутандиол, 1,6-гександиол, 2,2′-дигидроксидиэтиловый эфир и 1,2-бис(2-гидроксипропокси)пропан. Также описан способ использования указанного выше сложного полиэфира для получения покрытий. Технический результат - получение сложного полиэфира, характеризующегося хорошей эластичностью, ударной вязкостью и адгезий, а также достаточной твердостью по отношению к истиранию и вдавливанию. 2 н. и 12 з.п. ф-лы, 2 табл., 22 пр.

Изобретение относится к способу получения полиэфира методом поликонденсации полифункциональных органических соединений природного происхождения с адипиновой или себациновой кислотой и к утилизации отходов лесохимической промышленности

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Ключевые слова: поликонденсация, полиэфир П6-БА, этиленгликоль, адипиновая кислота, 1,4-бутандиол, тетрабутоксититан.

Цель: спроектировать производство полиэфира П6-БА мощностью 1150т/год.

В расчетно-пояснительной записке приведены: технологическая схема производства, характеристика сырья, вспомогательных материалов и готового продукта, расчёт материального баланса и необходимого количества оборудования, механический расчет основного аппарата, тепловой расчёт.

ИСПОЛЬЗУЕМЫЕ УСЛОВНЫЕ СОКРАЩЕНИЯ

АДК - Адипиновая кислота

ЭГ - Этиленгликоль

ТБТ - Тетрабутоксититан

ПЭ - Полиэфир

ВВЕДЕНИЕ

Успешно развивающееся промышленное производство сложных полиэфиров всегда было значимым для страны. Всему миру был хорошо известен натуральный полиэфир - янтарь, но путь получения искусственного полиэфира был трудным, но достижимым. Технология получения полиэфиров была разработана в 1959-1962 гг. Первое на «Казанском заводе синтетического каучука» производство полиэфиров было организовано в 1966 году, а в 1979 году введено в действие производство полиэфира ПБА, марки полиэфиров ПБА I и ПБА III - в 1986 году .

Едва ли найдутся отрасли народного хозяйства, где бы ни применялись полиэфиры. При этом выделяются отрасли, в которых объем их потребления особенно велик. К ним относятся: судостроение, автомобилестроение и транспортное машиностроение, строительство, химическая промышленность, электротехническая промышленность, мебельная промышленность, товары народного потребления .

Полиэфиры служат основой для производства уретановых каучуков, монолитных и пористых изделий методом литья, для получения оптически чувствительных уретановых полимеров, а также в качестве компонента в клеевых композициях. Полиэфиры нашли широкое применение в резинотехнической промышленности, машиностроении, при изготовлении магнитных лент, а также для изготовления заливочных и лакокрасочных материалов.

Полиэтиленадипинаты устойчивы к старению, обладают низкой летучестью и хорошими миграционными свойствами, их окраска более светлая, к экстракции углеводородами они более устойчивы, чем например полиэтиленсебацинаты.

В промышленности полиэфиры применяют в качестве пластификаторов. Введение пластификаторов в каучуки облегчает их переработку, повышает пластичность резиновой смеси, способствует уменьшению разогрева при смешивании и снижает опасность под вулканизации.

Таким образом, достаточно многообразное применение полиэфиров во многих отраслях промышленности свидетельствует о их важности и значимости как в качестве целого, так и полупродукта в составе различных композиционных материалов.

1. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ МЕТОДА ПРОИЗВОДСТВА

1.1 Технико-экономическое сравнение существующих методов производства

Технология получения полиэфиров и на их основе - нового класса высокомолекулярных соединений - полиуретанов, превосходящих по износостойкости все известные полимерные материалы, разработана в 1959- 1962 гг. Опытное производство полиуретанов освоено на производственной базе ВНИИСК. Промышленное производство полиэфиров по непрерывной технологии организовано на «Казанском заводе синтетического каучука» в 1966 г., а в 1979г. введено в действие производство полиэфира ПБА.

Сложные полиэфиры адипиновой кислоты и различных гликолей (П-6, ПС, П6-БА, ПБА, ЭДА-50, П-9А) используются для получения полиуретанов методом литья, для вальцуемых полиуретановых каучуков, отличающихся высокими прочностными показателями, сочетанием высокой твердости с эластичностью, уникальной стойкостью к истиранию, растворителям, маслам, топливам, агрессивным средам, для получения компонент в клеевых композициях в обувной промышленности, машиностроении, при изготовлении магнитных лент, а также для изготовления заливочных и лакокрасочных материалов.

1.2 Выбор района и площадки для строительства

Экономически целесообразное размещение предприятий промышленности синтетического каучука связано с особенностями производств. Место строительства обуславливается следующими признаками.

1. Наличие энергоресурсов. Энергоресурсы поставляет ТЭЦ.

2. Наличие сырья. Высокая материалоемкость приводит к необходимости размещения заводов СК вблизи заводов добычи сырья.

Сырье поставляется химическими предприятиями-производителями и хранится в непроизводственном помещении в специальных емкостях. Из емкостей подается в технологическую линию.

3. Дороги положены полностью с твердым покрытием и обеспечивают доступность цеха со всех сторон.

4. Цех полностью укомплектован рабочей силой. Источником квалифицированной рабочей силы являются учебные заведения города Казани.

5. По уровню расхода воды заводы СК относятся к группе сверх водоемких производств, потребляющих свыше 1000 м3 воды на 1 тонну продукции, поэтому важное значение имеет наличие водных ресурсов.

Казанский ОАО «Завод СК им. С.М.Кирова» находится у озера Кабан.

Расположение Казанского ОАО «Завод СК им. С.М.Кирова» соответствует выше перечисленным требованиям.

2. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

2.1 Теоретические основы производства

Полиэфир П6-БА представляет собой продукт поликонденсации адипиновой кислоты, этиленгликоля, 1,4-бутандиола. В качестве катализатора используется тетрабутоксититан.

Поликонденсация протекает по реакции полиэтерификации в результате взаимодействия гидроксильных и карбоксильных групп исходных веществ и сопровождается выделением воды.

Важнейшая область применения П6-БА - производство некристаллизующихся уретановых каучуков, монолитных и пористых изделий, изготовляемых методом литья.

Способ получения сложных полиэфиров для полиуретанов поликонденсацией адипиновой кислоты и многоатомного спирта при температуре (195±5)°С, отличающийся тем, что в качестве многоатомного спирта берут этиленгликоль при молярном соотношении адипиновой кислоты и этиленгликоля 1:(1,5-1,6) соответственно и проводят поликонденсацию до кислотного числа 35-42 мг·КОН/г, после чего в реакционную смесь вводят катализатор тетрабутоксититан в количестве 0,0006-0,001% от массы адипиновой кислоты и ведут вакуумную поликонденсацию до кислотного числа не более 1мг·КОН/г.

2.1.1 Химические и физико-химические основы производства

Реакция поликонденсации адипиновой кислоты, этиленгликоля, 1,4-бутандиола осуществляется в реакторе в присутствии тетрабутоксититана, как катализатора процесса. Реакция сопровождается поглощением теплоты. Процесс характеризуется малой скоростью, сравнительно большой энергией активации.

Уравнение реакции:

C4H10O2+HOOC-(CH2)4-COOH + HOCH2CH2OH

> H- n-CH2CH2OH + H2O

Поликонденсация - процесс синтеза полимеров, в котором рост макромолекул происходит путем химического взаимодействия молекул исходных веществ друг с другом и с полимером, накопившимся в ходе реакции.

В поликонденсационной системе мономеры расходуются очень быстро после начала реакции, но увеличение молекулярной массы полимера происходит в течение всего процесса, поэтому для получения высокомолекулярного полимера необходимо достигать высокой степени конверсии исходных веществ. Отличительная особенность равновесной поликонденсации - это обратимый характер протекающих реакций, т.е. наряду с увеличением длины макромолекул возможны и деструктивные реакции. Образующийся низкомолекулярный продукт (вода) действует как деструктирующий агент. Его роль могут выполнять также низкомолекулярные соединения, имеющие одинаковую природу с одним из исходных мономеров, либо мономер, присутствующий в избытке.

В случае избытка одного из исходных веществ процесс поликонденсации может протекать лишь до тех пор, пока компонент, находящийся в недостатке не будет исчерпан. В этот момент, все образовавшиеся макромолекулы будут иметь на обоих концах цепи одинаковые функциональные группы, как у избыточного компонента и, поэтому часто уже не могут реагировать друг с другом, что приводит к остановке процесса поликонденсации.

В ряде случаев первоначально взятое соотношение функциональных групп нарушается в ходе реакции поликонденсации. Например, если один из мономеров обладает летучестью, то возможен унос его из реакционной среды вместе с низкомолекулярным продуктом реакции.

Присутствие в системе монофункциональных соединений приводит к заметному снижению молекулярной массы образующихся полимеров, т.к. даже при эквимолекулярном соотношении реагирующих бифункциональных соединений на концах полимерной образуются неактивные группы.

Скорость реакции поликонденсации зависит от температуры реакционной среды и от скорости удаления побочных продуктов реакции, в данном случае воды. Чем выше температура реакции и чем быстрее и полнее удаляется вода, тем больше скорость реакции, тем выше достигаемая степень ее завершения и значительнее молекулярная масса полимера.

При повышении температуры или создании более глубокого вакуума в системе равновесие может быть сдвинуто в сторону образования высокомолекулярного полимера за счет удаления из зоны реакции низкомолекулярного продукта. Важной причиной обрыва цепи при поликонденсации является химическая деструкция функциональных групп, превращая их в неактивные. Например, карбоксильные группы при повышенных температурах, часто применяемых в процессе поликонденсации, могут декарбоксилироваться:

~O(CH2)nOOC(CH2)mCOOH>~O(CH2)nOOC(CH2)m-1CH3+CO2^

Температура деструкции карбоксильных групп зависит от природы дикарбоновой кислоты и других компонентов, присутствующих в системе. Адипиновая кислота при температуре ниже 240°С практически не разлагается, но при нагревании ее с этиленгликолем, выделение углекислого газа наблюдается уже при 150°С.

Остановка роста цепи зависит от ряда физических и химических причин.

Физические причины - это понижение концентрации реагирующих веществ и увеличение вязкости среды, которые резко уменьшают скорость реакции и затрудняют удаление воды. Химические причины - это потеря способности концевых групп растущей молекулы к дальнейшей реакции вследствие неэквивалентного соотношения исходных веществ и химического изменения концевых групп и др.

На образование и свойства полиэфиров влияют следующие факторы:

1) Число функциональных групп в кислотах и спиртах и соотношение компонентов;

2) Величина и строение молекул кислот и спиртов;

3) Некоторые свойства кислот и спиртов (способность к полимеризации, окислению и др.).

2.1.2 Технологические основы производства

При проведении поликонденсации в расплаве можно использовать такие исходные вещества, температура плавления которых ниже температуры их разложения. Этим методом получается полимер, который длительное время может находиться в расплавленном виде без заметной термической деструкции.

Процесс получения полиэфира проводится в три стадии при температуре реакционной массы не выше 210?С и вакуумметрическом давлении до 0,96кгс/см2: Вначале смесь реагентов расплавляется и нагревается при перемешивании в токе инертного газа, при этом отгоняется основная масса низкомолекулярного продукта, затем процесс продолжается при перемешивании в вакууме с целью более полного удаления низкомолекулярного продукта из зоны реакции и повышения молекулярной массы полимера.

Процессы поликонденсации в расплаве имеют свои достоинства:

Сравнительная простота технологической схемы.

Возможность применения мономеров с пониженной реакционной способностью.

Высокий выход полимера.

Высокое качество и чистота получаемого полимера.

Отсутствие различных дополнительных операций по выделению полимера.

Однако этот наиболее широко распространенный в промышленности метод не лишен и ряда недостатков: высокая температура (200-300?С), необходимость использования термически устойчивых мономеров, необходимость проведения реакции в инертной среде и применения вакуума на заключительных этапах, сравнительно большая длительность процесса.

2.2 Характеристика исходного сырья, полуфабрикатов, энергетических средств

Таблица 2.1 - Характеристика сырья, полуфабрикатов, вспомогательных материалов, их контроль

Наименование исходного сырья и готовой продукции

Номер государственного или отраслевого стандарта, технического условия

Норма по ГОСТу, ТУ

ГОСТ 19710-83 высший или первый сорт

Внешний вид:

Бесцветная прозрачная жидкость без осадка

Массовая доля, % не менее

Плотность при 20°С, г/см3

Показатель преломления при 20°С

Температурные пределы перегонки при давлении 760 мм.рт.ст.

а) начало кипения, °С,

не менее;

б) конец кипения, °С, не менее;

в) объемная доля отгона в указанных температурных пределах, %, не менее

Адипиновая кислота

ГОСТ 10558-80

Внешний вид:

Массовая доля АДК, %, не менее

Тпл, °С не ниже

Цветность по пластиково-кобальтовой шкале, единиц не более

Белое кристалли-ческое вещество

Жидкость полиэтилсилоксановая ПЭС-5

ГОСТ 13004-76

По паспорту поставщика Ткип при 760мм.рт.ст. °С, не менее

ГОСТ 9293-74

Массовая доля водяных паров в газообразном азоте при 20°С и 101,3 кПа не более

1,4-бутандиол

Массовая доля 1,4-бутандиола, % не менее

Плотность г/см3, не менее

2.3 Характеристика готовой продукции и отходов производства

Таблица 2.2 - Характеристика готовой продукции

Наименова-ние исходного сырья и готовой продукции

Номер государствен-ного или отраслевого стандарта, технического условия

Показатели качества, обязательные для проверки

Норма по ГОСТу, ТУ

Область применения изготовляе-мой продукции

Полиэфир

ТУ 38103582-85

Внешний вид

Вязкое мазе- образное вещество отсутствие

Для получения некристалли-зующихся уретановых каучуков и в производстве монолитных и пористых изделий, изготовленных методом литья

Массовая доля гидроксильных групп, % в пределах

Вязкость при 60°С, Па·с

Кислотное число, мгКОН/г, не более

Массовая доля железа, не более

Массовая доля влаги, % не более

Массовая доля изоцианатных групп в технол. пробе через 1час, %, в пределах

Изменение массовой доли изоцианатных групп в технол.пробе после термостати-ческого воздействия в течение 24 час., %, не более

Температурные пределы перегонки:

а) начало кипения, ОС, не ниже

б) конец кипения, ОС, не ниже

в) количество отгонов в указанных температурных пределах, % не менее

Таблица 2.3- Характеристика твердых и жидких отходов производства

Наименование отхода

Куда складируется, транспорт

Периодичность образования

Условие (метод) и место захоронения, обслуживания, утилизации

Количество

Конденсат гликолей от II и III стадии синтеза полиэфиров

Масло из гидрозатворов

Мешки бумажные

Мешки полиэтиленовые

Отработанный теплоноситель

В накопительные аппараты

На складе адипиновой кислоты

На складе адипиновой кислоты

При выпуске продукции

При замене масла

При загрузке

При загрезке

Подвергаются разгонке на ректификационных колоннах

Сжигание

Сжигание или во втор. сырье

Сжигание или во втор. сырье

На регенерацию

2.4 Разработка блок схемы производства

Схема материальных потоков в реакторе Р-4 изображена на рисунке 1:

АК > >П6-БА

Рисунок 2.1- Схема материальных потоков

Общая схема производства полиэфиров П6-БА представлена на рисунке 2:

Рисунок 2.2- Общая схема производства полиэфиров П6-БА

2.5 Материальный расчет производства

Исходные данные для расчета:

Производственная мощность 1150 т/год

Процесс периодический

Продолжительность процесса 36 часов

Уравнение реакции:

10,5HOOC-(CH2)4-COOH + 8,4HOCH2CH2OH + 3,9С4H10O2 >

Молекулярная масса адипиновой кислоты - 146,15 г/моль;

Молекулярная масса этиленгликоля - 62,07 г/моль;

Молекулярная масса 1,4-бутандиола - 90 г/моль;

Молекулярная масса полиэфира - 2028,96 г/моль;

Молекулярная масса воды - 18 г/моль;

Уравняем реакцию:

Для получения полиэфира П6-БА берем соотношение адипиновой кислоты к этиленгликоль+1,4-бутандиол = 1:1,18. Значит, на 1 моль адипиновой кислоты приходится 0,8 моля этиленгликоля + 0,38 моль 1,4-бутандиола.

10,5HOOC-(CH2)4-COOH + 8,4HOCH2CH2OH + 3,9С4H10O2 >

H-n-CH2CH2OH + 21H2O,

1534,57 + 521,39 + 351 = 2028,96 + 378,2406,96=2406,96.

Рассчитаем % загружаемых компонентов:

1. Адипиновая кислота (1534,57/2406,96)·100%=65,4%,

2. Этиленгликоль (521,39/2406,96)·100%=21,2%,

3. 1,4-бутандиол (351/2406,96)·100%=13,4%.

Итак, на 1000 кг загрузки берем: 654 кг адипиновой кислоты, 212 кг этиленгликоля, 134 кг 1,4-бутандиола.

Сосчитаем чистый выход полиэфира от массы загружаемых компонентов: (2028,96/2406,96)·100%=84%.

Следовательно, выход полиэфира 840 кг на 1000 кг загружаемых компонентов.

Отгоны на трех стадиях составляют:

(378/2406,96)·100%=16%, т.е. на 1000 кг загрузки образуется 160 кг отгонов.

На первой стадии поликонденсации образуется 70% всех отгонов:

(160*70)/100%=112кг, из которых 99% воды, 1% гликолей.

(112*99)/100%=110,88кг воды, (112*1)/100%=1,12кг гликолей.

На второй и третьей стадии поликонденсации образуется 30% всех отгонов:

(160*30)/100%=48кг, из которых 40% воды, 60% гликолей.

(48*40)/100%=19,2кг воды, (48*60)/100%=28,8кг гликолей.

Требуемые компоненты и их количество для производства одной тонны продукта приведены в табл. 2.4, 2.5, 2.6.

Таблица 2.4 - Сводная таблица материального баланса производства П6-БА на 1000 кг загрузки

Таблица 2.5 - Сводная таблица материального баланса производства П6-БА на 1 тонну продукта

Таблица 2.6 - Сводная таблица материального баланса производства П6-БА на 1150 тонн продукта

Рассчитаем материальный баланс для производительности 1150 тон/год:

ТЭф.обор.=365-102-12-14=237 дней =5688 часов

где Тэф.обор. - эффективный фонд рабочего времени оборудования

365- количество дней в году

102 - количество выходных дней в году

12 - количество праздников в году

14 - дни затраченные на капитальный ремонт оборудования

Время одного цикла-48 часов

Значит: 5688/48=118 операций в год

Количество полиэфира, получаемого за 1 операцию:

1150 тон/год /118 опер/год =9,746 тон/опер = 9746 кг/опер

Материальный баланс на одну операцию приведен в таблице 2.7

Таблица 2.7 - Материальный баланс на 1 операцию

Количество отгонов за одну операцию представлено в таблице 2.8:

Таблица 2.8 - Количество отгонов, образующихся за одну операцию

2.6 Описание аппаратурно- технологической схемы производства

Процесс поликонденсации гликолей с адипиновой кислотой периодическим способом осуществляется в реакторе Р-4, оборудованном мешалкой и рубашкой для обогрева теплоносителем. Реактор соединен материальными линиями приема гликолей и адипиновой кислоты с колонной-конденсатором Т-5, конденсатором Т-7, имеющий нижний слив, предохранительный клапан, линию воздухоотвода и подвода азота через верхний штуцер, а также линию азота через редуцирующий клапан и ротаметр для барботажа реакционной массы.

Рассчитанное количество гликолей (этиленгликоль из емкости Е-1, 1,4-бутандиол из емкости Е-2) самотеком сливается в реактор Р-1, включается мешалка аппарата и посредством пневмотранспорта в Р-4 загружается рассчитанное количество адипиновой кислоты.

Катализатор тетрабутоксититан в количестве 0,0006% от массы всей загрузки предварительно растворяют в порции (200г) этиленгликоля и подают в реактор при помощи вакуума при температуре реакционной массы от 140 до 160?С.

Поликонденсация полиэфира П6-БА проводится в три стадии в реакторе Л-1.

Заданный температурный режим обеспечивается:

Системой циркуляции органического теплоносителя ПЭС-5.

Подогревом горячей водой с температурой 50-80?.

Заполнение системы теплоносителем осуществляется:

Принимают теплоноситель в емкость Т-10, Т-11;

Всасывающим насосом Н-13 через фильтр Ф-14 заполняют систему теплоносителем;

Включают электроподогреватели Т-12/1, Т12/2, начинают подъем температуры теплоносителя;

Из электроподогревателей Т-12/1, Т12/2 теплоноситель

Подается в рубашку реактора Р-4;

Обогрев реактора Р-4 осуществляется системой циркуляции теплоносителя в замкнутом цикле аппаратов: электроподогреватели Т-12/1, - рубашка реактора Р-4- электроподогреватель Т-12/2.

Первая стадия поликонденсации полиэфира осуществляется при атмосферном давлении с подключением колонны-конденсатора Т-5 и конденсатора Т-7, постепенном подъеме температуры реакционной массы подачей теплоносителя в рубашку реактора Р-4, горячей воды через рубашку колонны-конденсатора Т-5, и барботажем реакционной массы азотом.

Барботаж реакционной массы азотом способствует уносу из зоны реакции низкомолекулярного продукта реакции - воды. Вода в виде пара увлекает гликоли из зоны реакции и направляется в колонну-конденсатор Т-5, где конденсируется основная масса гликолей и возвращается в реактор Р-4, а пары воды с незначительным количеством гликолей поступают в конденсатор Т-7, охлаждаемый промышленной водой, конденсируются и собираются в емкости Е-9. Конденсат отгонов первой стадии поликонденсации при массовой доле гликолей до 1% сбрасывается канализацию.

В случае отсутствия азота в аппарате создается вакуумметрическое давление вакуумным насосом, равное 0,61 кгс/см2 (61кПа).

Первая стадия заканчивается при температуре не более 195?С и достижении массовой доли карбоксильных групп не более 3,0%.

Вторая стадия поликонденсации проводится при температуре, достигнутой на первой стадии от 195 до 200?С с постоянным повышением вакуумметрического давления от 61 кПа до 91 кПа и периодическим барботажем реакционной массы азотом для лучшего выделения из зоны реакции паров воды и избытка гликолей.

При этом температура паров, отходящих из верха колонны Т-5

в течение всей второй стадии поликонденсации должна быть не выше 90С.

Температура поддерживается подачей горячей воды с температурой от

50 до 80С в рубашку колонны-конденсатора Т-5 из теплообменника Т-8.

Отгоны второй стадии поликонденсации конденсируются в конденсаторе Т-7 и поступают в емкость Е-9, откуда поступают в канализацию.

Вторая стадия поликонденсации продолжается до получения реакционной массы с кислотным числом не более 3,5мг КОН на 1г продукта. При достижении указанной степени превращения адипиновой кислоты начинается третья стадия поликонденсации.

В системе аппаратов Р-4, К-5, Т-7 вакуумметрическое давление стравливается азотом, при этом отгоны оставшиеся в колонне-конденсаторе возвращаются в реактор Р-4. Колонна-конденсатор отключается от реактора Р-4 и последний подключается непосредственно к конденсатору Т-7.

В системе аппаратов Р-1, Т-7 создается постепенно вакуумметрическое давление, и при непрерывном перемешивании и периодическом барботаже реакционной массы в реакторе завершают поликонденсацию. Температура третьей стадии поликонденсации от 195?С до 205?С, вакуумметрическое давление не менее 96КПа.

Окончание синтеза устанавливают по анализу продукта. Готовый полиэфир через нижний слив реактора Р-4 по обогреваемому трубопроводу избыточным давлением азота не более 250кПа передается в сборник Е-6, далее в отделение упаковки продукта, где готовый полиэфир заливают в тару через фильтр, согласно действующим НТД, взвешивают и отправляют потребителю.

Останавливают систему циркуляции оборотной воды через колонну-конденсатор Т-5. Прекращают подачу оборотной воды на охлаждение конденсатора Т-7. Отключают электроподогреватель Т-9 от сети. Останавливают насос Н-13 на циркуляции теплоносителя. Продувают азотом все аппараты и материальные трубопроводы. Отглушают материальные трубопроводы. Промывают аппараты водой, после чего отглушают водо- и паропроводы. Электрооборудование обесточивают.

2.7 Технологическая документация процесса

Нормы технологического режима приведены в таблице 2.9

Таблица 2.9 - Нормы технологического режима

Наименование стадий процесса

Единица измерения

Допустимые пределы тех. параметров

Класс точности измерительных приборов

Примечание

Сборники

а) уровень при

Не менее 30

Регистрация,

приеме продукта

Не более 80

показание,

б) температура

Не менее 20

сигнализация

при хранении

Не менее 80

Давление

передавливании

Не более 25

Показание

б)при испытании на

герметичность

Не более 0,1

компонентов:

а)Этиленгликоль

Показание

в)тетрабутоксититан

0,0003-0,0006 от массы

загружаемых компонентов

Температура в

ректоре при

Регистрация,

загрузке исходных

от 25 до 135

Показание

продуктов

Давление

Массовая доля

СООН-групп

достижения

не более 3%

Вторая стадия поликонденсации

Температура

Регулирование

Давление

Регистрация

От 613 ±13 до

необходимости

барботажем азотом

течение не

по всей 2 стадии.

менее 1 часа.

Кислотное число

Не более 3,5

мгКОНна 1г

конденсатор

Температура паров

Регулирование

верха колонны

Не более 90

Регистрация

Давление

2.8 Выбор и расчет количества основного и вспомогательного оборудования

Рассчитаем количество реакторов, необходимых для производства 1150 тонн в год полиэфира П6-БА

Реактор периодического действия, имеет объем 12,5 м3;

Коэффициент заполнения 0,8;

Плотность реакционной массы р=1115 кг/м3;

Время цикла работы реактора tц=48 часов;

т цикл= 12388,5 кг

Массовую долю продукта в выгружаемой из реактора массе можно найти из имеющегося материального баланса процесса (табл. 2.6).

н=1000/1290,3=0,76; тогда выход продукта с единицы объема

щ=н*ср.см =0,76*1115=847,4 кг/м3,

где ср.см -плотность реакционной смеси

Производительность реактора периодического действия вычисляем по формуле

g=V*ц*щ/tц =12,5*0,8*847,5/48=176,6

где V- объем реактора, равной 12,5 м3, ц-коэффициент заполнения реактора, tц-время цикла работы реактора.

Далее находим число реакторов по уравнению n=Gtz/gtг.э=1150000*1.1/176*5664= 1,3 шт где Gt- количество продукции, которое надо произвести за время t, Z- коэффициент запаса модности, tг.э.-эффективное время работы оборудования за год.

Следовательно, выбираем 1 реактор рабочий и 1 резервный. Рассчитаем объем реактора:

Van = tu * Vo6/ ц = 48*0,2/0,8= 12 м3

Принимаем 2 стандартных реактора объемом 12 м3.

Для исключения возможности вывода гликолей из реакционной зоны с парами реакционной воды и обеспечение молярного соотношения гликолей в реакции поликонденсации принимаем 1 колонну - конденсатор, с поверхностью теплообмена 19,45 м. Диаметр 1000 мм, высота 6050 мм. Расчетное давление в корпусе и рубашке 6 кгс/см.

Для приема готового продукта полиэфира П6-БА принимаем 1 сборник, вместимостью 32 мЗ. Максимальное заполнение 28 мЗ. Диаметр 3200 мм, высота 7030 мм.

Принимаем 1 конденсатор с поверхностью теплообмена 23 мЗ, диаметр 400 мм. Количество трубок 100 штук, трубки 25X2X3000 мм, для конденсации паров воды с незначительным количеством гликолей.

Принимаем 1 сборник для парового конденсата вместимостью 5 мЗ, диаметром 1600 мм, высотой 1800 мм.

Для подогрева теплоносителя (ПЭС-5), который идет на заполнение рубашки реактора Р1 принимаем 2 теплообменника, для подогрева воды, которая идет на заполнение рубашки колонны - конденсатора принимаем 1 теплообменник.

Для транспортировки теплоносителя принимаем 1 насос марки 2х - 4 А-1. Производительность 5,5 л/с.

2.9 Механический расчет

Аппарат с мешалкой предназначен для проведения синтеза полиэфира П6-БА:

Основные размеры аппарата :

Объем аппарата, Vап =10 м2

Диаметр аппарата, D=2600 мм,

Высота цилиндрической части аппарата, L=2390 мм

Рабочее давление в аппарате 0,4 МПа

Рабочее давление в рубашке 0,6 МПа

Мешалка рамная

2.9.1 Расчет цилиндрической обечайки

Толщина стенки обечайки нагруженной наружным давлением:

SR= 1,1 Ч р ЧD / (2Ч[у]) + c

Где p - давление в аппарате, МПа;

D - диаметр аппарата, мм;

с - прибавка на коррозию.

SR= 1,1 Ч 0,4 Ч 2600 / (2Ч126) + 2 = 5,92 мм.

Округляем значение в большую сторону до ближайшей стандартной толщины листа S = 6 мм .

Проверка :

(S - с) / D ? 1

(6-2) / 2600 = 0,0015 - Условие выполняется.

2.9.2 Расчет днища и крышки аппарата

Толщина стенки эллиптического отбортованного днища, нагруженного наружным давлением :

SR= 1,1 Ч р ЧD / (2Ч[у]) + c = 3,92 мм

Где р -- давление в аппарате, МПа;

D - диаметр аппарата, мм;

[у] - допускаемое напряжение, МПа (зависит от марки стали и температуры);

с -- прибавка на коррозию.

S = 3,92 мм + 2 мм = 5,92 мм

Округляем значение в большую сторону до ближайшей стандартной толщины S = 6 мм .

Проверка :

6- 2/2600 = 0,0015 - Условие выполняется.

[p]=2Ч[у]Ч(s-c)/(D+(s-c)) = 2Ч126Ч4/(2600+4)= 0,41

0,4 МПа<0,41 МПа - Условие надежной эксплуатации выполняется.

2.9.3 Расчет элементов рубашки

В качестве расчетного давления принимают давление в рубашке. Для корпусов с внутренним D=2600 мм, диаметр рубашки принимают больше диаметра D на 200 мм .

Толщина стенки цилиндрической части рубашки :

SR= рЧD / 2Чц Ч [у] - p

Где ц = 1 - коэффициент прочности сварного шва;

р - рабочее давление в рубашке.

SR= 0,6Ч2600 / 2Ч1 Ч 126 - 0,6

S = 5,59 мм + 2 мм = 7,59 мм

Округляем значение в большую сторону до ближайшей стандартной толщины S = 8 мм .

Проверка :

(8 мм - 2 мм) / 2600 мм = 0,0023 - Условие выполняется.

Проверка на допускаемое наружное давление :

[p]= 2Чц Ч [у] Ч(S - с)/ (D+(s-c) = 2Ч126Ч1Ч6 / 2606=0,62 МПа

0,6 ? 0,62 МПа - Условие надежной эксплуатации выполняется.

Эллиптическое днище :

SR= pЧD / 2Чц Ч [у] - 0,5 Ч р = 0,6 Ч2600 / 2Ч1Ч126 - 0,5 Ч0,6= 5,89

S = SR +с = 5,89 + 2 = 7,89 мм

Округляем значение в большую сторону до ближайшей стандартной толщины S = 8 мм. .

Проверка :

8 мм - 2 мм / 2600 = 0,0023 - Условие выполняется.

Проверка на допускаемое наружное давление :

[р] = 0,62 МПа

0,62 МПа - Условие надежной эксплуатации выполняется.

2.9.4 Фланцевые соединения и штуцера

Выбираем фланцы плоские приварные с гладкой уплотнительной поверхностью, так как их применяют при Р= 2,5 МПа и Т = 300 С.

Размеры фланцев выбирают по внутреннему диаметру аппарата и условному давлению.

Для уплотнения во фланцах применяют прокладки различной конструкции. Прокладки из паронита выдерживают температуру до 400 С и давление до 2,5 МПа. Размеры прокладок выбирают по внутреннему диаметру аппарата и условному давлению:

Проверочный расчет болтов:

Нагрузка, действующая на фланцевое соединение от внутреннего давления.

Qd = 0,785 Ч D2cn Ч Р

Где Dcn= 0,5 Ч (Dn + dn) - средний диаметр прокладки

Dcn = 0,5 Ч (2284 + 2240) = 2262 мм

Qd = 0,785 Ч 22622 Ч 0,4 = 1606626,216 Н

Реакция прокладки:

Rn = 2р Ч Dcn Ч bо Ч m Ч Р

Где bо - эффективная ширина прокладки

Если bn > 15 мм, то bо = 0,6, где Ьп - ширина прокладки

bn = 0,5 Ч (Dn - dn) = 0,5 Ч (2284 - 2240) = 22 мм

Значит bo = 0,6 = 2,8 мм

m = 2,5 для прокладок из паронита

Rn = 2 Ч 3,14 Ч 2262 Ч 2,8 Ч 20 Ч 0,4 = 318200,064 Н

Болтовая нагрузка при сборке. Принимают наибольшее значение из трех расчетных.

РБ1 = р Ч Dcn Ч bо Ч q

РБ1 = 3,14 Ч [уб]20 Ч nб Ч fб

РБ1 = 1,2 Ч QD + Rn

Где q = 20 МПа для прокладок из паронита

[уб]20 = 130 МПа--допускаемое напряжение для материала при 20

nб - число болтов, равное числу отверстий Z во фланце

f6 - площадь поперечного сечения болта, мм2

РБ1 = 3,14 Ч 2262 Ч 2,8 Ч 20 = 397750,08 Н

РБ1 = 0,4 Ч 130 Ч 72 Ч 452,16 = 1692887,04 Н

РБ1 = 1,2 Ч 1606626,216 + 318200,064 = 2246151,5232Н

Проверка прочности болтов при монтаже.

уБ1 = РБ1max / nб Ч fб? [уб]20

уБ1 = 2246151,5232/72 Ч 452,16 = 102 МПа

102 МПа < 130 МПа - условие выполняется.

Проверка прочности болтов в период эксплуатации.

уБ2 = РБ2 / nб Ч fб? [уб]t

Где [уб]t = 120 МПа - допускаемое напряжение для материала болта при рабочей температуре

РБ2 ? 1,3 Ч РБ1max

РБ2 = 1,3 Ч 2246151,5232 = 2919996,98

уБ2 = 2919996,98/72 Ч 452,16 = 104,2 МПа

104,2 МПа < 120 МПа - условие выполняется.

2.9.5 Опоры аппарата

Выбираем лапы для аппаратов.

Задаемся количеством лап z =4

Вес металла, из которого изготовлен аппарат :

G1 ? 1,1 Ч F Ч S Ч ум

Где F - внутренняя поверхность корпуса, м2

S - исполнительная толщина стенок, м

ум = 78,5 кН/м3 - удельный вес металла

Коэффициент 1,1 учитывает вес фланцев, штуцеров и так далее

G1 = 1,1 Ч 23,5 Ч 0,006 Ч 78,5 = 12,18 кН

Вес металлоконструкций, установленных на крышке аппарата

G2 = 0,5 Ч G1 = 0,5 Ч 12,18= 6,1 кН

Вес воды, заполняющей аппарат при гидравлических испытаниях :

Где V - внутренний объем аппарата, м3

у = 10 кН/м3 - удельный вес воды

G3 = 10Ч 10= 125 кН

Qmax = л Ч (G1 + G2 + G3) / z

Где z = 4 - число опор

л= 2 - при z = 4

Qmax = 2 Ч (12,18 + 6,1 + 100)/ 4 = 59,14 кН

Выбираем опоры ПО условию Qтабл? Qрасч

63 кН? 59,14 кН

2.9.6 Расчет мешалки

Диаметр мешалки:

d M = D/ (1,4ч1,7)

d M = 2600мм/1,6=1625 мм

Принимаем стандартный диаметр мешалки d M= 1720 мм

Расстояние от нижней границы мешалки до границы аппарата:

h M =0,3Ч d M= 0,3Ч1720 мм= 516 мм

Для мешалок данного типа и диаметра соответствует :

Частота вращения мешалки:

n= 50,4 об/мин=0,84 с-1

Уровень жидкости в аппарате:

Нж= (0,75ч0,8)ЧL=0,8Ч2980=2384 мм

где L - высота аппарата

Расчет мощности, требуемой на перемешивание:

Nм = KN Ч рс Ч n3 Ч dм5

Где KN - критерий мощности, определяемый из расчета критерия Рейнольдса и симплекса геометрического подобия.

рс - плотность перемешиваемой среды, кг/м3

Критерий Рейнольдса:

Re = рс Ч n Ч dM2 / мс

Re = 1153,3 кг/м3 Ч 0,84 с1 Ч (1,72 м)2 / 0,04 Па Ч с = 71650,37

Где м - динамический коэффициент вязкости смеси (известно из технологического регламента), ПаЧс

Симплекс геометрического подобия:

Гd = D / DM = 2600 мм / 1720 мм = 1,51

Учитывая значения Re и Гd с помощью графика определяем критерий мощности для рамной мешалки КN = 0,3

NM = 0,3 Ч 1153,5 кг/м3 Ч (0,84 с-1)3 Ч (1,45 м)5 = 3675,7 Вт

Мощность, с учетом внутренних устройств (гильза термометра, устройство для замера уровня, две трубы передавливания) :

N1 = К1 Ч К2 Ч К3 Ч Nm= 1,1 Ч 1,2 Ч l,3 Ч 3675,7 Вт = 6307,5 Вт

Где К1, К2, К3 - коэффициенты, учитывающие влияние внутренних устройств.

Мощность двигателя:

Nдв = Кп Ч (NM + N1) / з = 1,25 Ч (3675,7 Вт + 6307,5 Вт) / 0,93 = 13,4 кВт

Где Кп - коэффициент запаса;

з - КПД привода.

Вычисляем вращающий момент Т на валу мотор-редуктора :

Угловая скорость вала :

W = р Ч n / 30 = 3,14 Ч 50,4 об/мин / 30 = 5,28 сек-1

Т = Р Ч 103 / W = 13,4 кВт Ч 103 / 5,28 сек-1 = 2537,9 Н Ч м

Наименьший диаметр вала:

По рассчитанному диаметру выбираем стандартный мотор-редуктор с диаметром вала 65 мм. По диаметру вала и вращательному моменту выбираем муфту. По размерам мотор-редуктора выбираем стойку и опору .

Проведем расчет вала перемешивающего устройства :

d1 = d = 65 мм.

d2 = d1 + (4...7) = 69 мм. Округляем до стандартного 75 мм.

d2 - диаметр вала под уплотнение в крышке подшипникого узла.

d3 = d2 + (2...4) мм = 77 мм.

d4 = 80 мм. Предназначен для посадки подшипника.

d5 = d4 + (6...8) мм = 86 мм.

d6 = 80 мм. Согласуется с диаметром отверстия в сальниковом уплотнении.

d7 = 60 мм. Диаметр вала в месте посадки мешалки.

полиэфир технологический теплообмен

2.10 Тепловой расчет

Цель теплового расчета - определение требуемой поверхности теплообмена проектируемого аппарата. Расчет поверхности теплообмена основан на совместном решении уравнений теплового баланса и теплопередачи .

Уравнение теплового баланса: Qnp = Qpacx - приход теплоты в аппарат должен быть равен расходу теплоты в том же аппарате.

Тепловой баланс рассчитываем по данным материального баланса, то есть на цикл работы для одного аппарата.

Исходные данные для теплового расчета:

Масса аппарата - 10000 кг

Теплоемкость конструкционного материала (сталь двухслойная 16ГС+12Х18Н10Т ГОСТ 108, рубашка ВСТ 3 сп ГОСТ 380-7) - 0,503 кДж Ч кг /град

Температурный режим:

Тн = 20 °С - начальная температура

Тк = 205 °С - конечная температура

mAK = 3629,42 кг

mБд = 2734,50 кг

mП6-БА = 5309,73 кг

mотгоны = 894,93 кг

mпотери = 159,29 кг

Средние удельные теплоемкости сырья и готового продукта:

СAK = 1,426 кДж Ч кг / град

Сбд = 3,078 кДж Ч кг / град

Сп6-ба = 2,467 кДж Ч кг / град

Для теплового расчета используем следующее уравнение:

Qисх + Qмеш + Qтепл + Qкат = Qпрод + Qнагрев + Qпотери

Qисх - тепло, вносимое потоками исходного сырья;

Qмеш - тепло, выделяющееся при перемешивании механическим устройством;

Qтепл - тепло, вносимое теплоносителем;

Qкат - тепло, вносимое катализатором;

Qпрод - тепло, уносимое продуктами реакции;

Qнагрев - теплота, затраченная на нагрев реактора;

Qпотери - тепловые потери, уносимые в окружающую среду.

Qмеш и Qкат можно пренебречь, так как частота вращения мешалки и количество загружаемого катализатора небольшие.

Qисх = QAK + QБД

Qпрод = QП6-БА + QП6-БА(потери) + Qотгоны

Q = m Ч cp Ч t

Где m - масса вещества, кг;

cp - теплоемкость вещества, кДж Ч кг / град;

t - температура вещества.

QAK = 3629,42 Ч 1,426 Ч 20 = 103511,0584 кДж

QБД = 2734,50 Ч3,078 Ч 20 = 168335,82 кДж

QП6-БА = 5309,73 Ч 2,467 Ч 205 = 2685316,30155 кДж

QП6-БА(потери) = 159,29 Ч 2,467 Ч 205 = 80558,52815 кДж

Qотгоны = (626,451 Ч 2262,6) + (268,479 Ч 649,45) = 1417408,0326 + 174363,68655 = 1591771,71915 кДж

Где 2262,6 кДж / кг Ч град - теплота парообразования воды;

649,45 кДж / кг Ч град - теплота испарения отгонов.

Qисх = QAK + QБД = 103511,0584+168335,82=271846,88 кДж

Qпрод = QП6-БА + QП6-БА(потери) + Qотгоны = 2685316,30155 + 80558,52815 + 1591771,71915 = 4357646,54875 кДж

Теплота, затраченная на нагрев реактора:

Qнагрев = Ga Ч с Ч (Тк - Тн)

Где Ga - масса аппарата, кг;

с - теплоемкость конструкционного материала, кДж Ч кг / град;

Тк и Тн - конечная и начальная температуры аппарата.

Qнагрев = 10000 Ч 0,503 Ч (205 - 20) = 930550,0 кДж

Тепловые потери, уносимые в окружающую среду:

Qпотери = б Ч F Ч t

Где F - поверхность теплообмена, м2;

t - разность температур стенки аппарата и окружающей среды;

б = бк + бл - суммарный коэффициент массоотдачи, равный сумме коэффициента теплоотдачи конвекцией бк, Вт / м2 Ч К и коэффициента теплоотдачи лучеиспусканием бл, Вт / м2 Ч К.

бк = 10,37 Вт/м2 Ч К

бл = с1 Ч ((Тn / 100)4 - (Т0 / 100)4) / tn - t0

Где c1 = 4,2 - степень темноты поверхности аппарата

бл = 4,2 Ч (500,55 К - 73,7 К) / 180 = 9,96 Вт / м2 Ч К

б = 10,37 + 9,96 = 20,33 Вт / м2 Ч К

Qпотери = 20,33 Ч 23,5 Ч 185 = 88384,675 кДж = 24,55 кВт

Тепло, подводимое теплоносителем:

Qтепл = Qпрод + Qнагрев + Qпотери - Qисх = 1210,3 + 258,49 + 24,55 - 75,51 = 1417,83 кВт

Положительный знак указывает на то, что тепло необходимо подводить с помощью теплоносителя.

Результат теплового баланса отражается в таблице 2.10

Таблица 2.10 - Тепловой баланс производства П6-БА.

Необходимая поверхность теплообмена может быть рассчитана из уравнения теплопередачи:

QT = k Ч F Ч tcp

Отсюда расчетная поверхность теплообмена равна:

Fрас = QT / k Ч tcp

Где k - коэффициент теплопередачи, Вт / м2 Ч град;

tcp - средняя температура среды,

к = 1 / (1/б1 + 1/б2 + 1 /гз1 + 1/гз2 + д/л)

Где б1 и б2 - коэффициенты теплоотдачи реакционной среды и теплоносителя, Вт / м2 Ч град;

гз1 и гз2 - тепловая проводимость загрязненных стенок, Вт / м2 Ч град:

гз1 = 2900 Вт / м2 Ч град - вода среднего качества,

гз2 - 5700 Вт / м2 Ч град - для органической жидкости;

д - толщина стенки, м;

л = 46,5 Вт / м Ч град - коэффициент теплопроводности стали

Коэффициент теплоотдачи реакционной среды б1:

Где л - теплопроводность реакционной среды, Вт / м Ч град;

D - диаметр аппарата, м

Nu - коэффициент Нуссельта

Коэффициент Нуссельта:

Nu = 0,36 Ч Re0,67 Ч Pr0,33 Ч (м / мст) 0,14

Где м и мст - вязкость реакционной среды, Па Ч с ;

Re - коэффициент Рейнольдса;

Рг - коэффициент Прандтля.

Re = n Ч dM2 Ч p / м

Где n - частота вращения мешалки, с-1;

dM - диаметр мешалки, м;

р - плотность реакционной среды, г/см

Re = 0,84 Ч 1,6252 Ч 1153,5/0,04 = 63965,18

Рг = ср Ч м / л

Где ср - 1180 кДж / кг Ч град - теплоемкость реакционной среды;

л = 0,06 Вт / м Ч град - теплопроводность реакционной смеси ;

Рг = 1180 Ч 0,04 / 0,06 = 786,6

Nu = 0,36 Ч 63965,180,67 Ч 786,60,33 Ч (0,04 / 0,035)0,14 = 5495,44

б1 = 5495,44Ч 0,06 / 2,2 = 149,87 Вт / м2 Ч град

Коэффициент теплоотдачи теплоносителя б2:

б2 = Nu Ч л / d

Где л = 0,645 Вт / м Ч град - теплопроводность теплоносителя, Вт / м Ч град ;

Nu - коэффициент Нуссельта;

d - диаметр канала (трубы), м ;

Nu = 0,66 Ч Re0,5 Ч Pr0,33 Ч (Рг / Рг ст)

Где Pr и Рг ст - коэффициенты Прандтля для теплоносителя в центре и у стенки аппарата;

Re - коэффициент Рейнольдса

Где w = 0,8 м/с - скорость подачи теплоносителя;

d - диаметр трубы (канала), м;

р = 1075 г/см3 для 200 - плотность теплоносителя;

м = 0,038 Па Ч с для 200 - вязкость теплоносителя ,

Re = 0,8 Ч 0,5 Ч 1075/0,038 = 1131

Рг = ср Ч м / л

Где ср - теплоемкость теплоносителя (ср = 4190 кДж / кг Ч град в центре аппарата при 200; ср = 4450 кДж / кг Ч град у стенки аппарата при 230);

л - теплопроводность реакционной среды (л = 0,845 Вт / м Ч град в центре аппарата при 200; л = 0,873 Вт/м Ч град у стенки аппарата при 230);

м - вязкость теплоносителя (м = 0,007 Па Ч с в центре аппарата при 200; м = 0,0064 Па Ч с у стенки аппарата при 230) ;

Рг = 4190 Ч 0,007 / 0,845 = 34,71

Ргст = 4450 Ч 0,0064 / 0,873 = 32,62

Nu = 0,66 Ч 11310,5 Ч 34,710,33 Ч (34,71 /32,62) = 72,51

б2 = 72,51 Ч 0,645 / 0,05 = 935,38 Вт / м2 Ч град

Обогрев осуществляется теплоносителем ПЭС-5 с начальной температурой:

t1н = 523 К, t1к = 503 К

t2н = 293 K, t2к = 473 К

А = (t1н - t2н) / (t1к - t2к) = (523 - 473) / (503 - 293) = 1,67

Средняя температура среды:

tср = (t2к - t2н) / 2,3 lg ((t1н - t2н) / (t1к - t2к)) Ч (A - 1) / 2,3 lg A

tср = (473 - 293) / 2,3 lg((523 - 293) / (523 - 473)) Ч (1,67 - 1) / 2,3 lgl,67 = 92,12

Коэффициент теплопередачи:

k = 1 / (1/122,74 + 1/2900 + 0,006/46,5 + 1/5700 + 1/935,38) =

109,59 Вт/ м2 Ч град

Тогда расчетная поверхность теплопередачи:

Fрас = 1417,83 / (109,59 Ч 92,12) = 14,0 м2

Реальная поверхность теплопередачи:

Fреал = р Ч D Ч Нж = 3,14 Ч 2,6 Ч 2,784 = 22,7 м2

Fрас = 14,0 м2 < Fpeaл = 22,7 м2. Следовательно, эффективный теплоперенос обеспечен.

Запас площади поверхности:

(22,7/ 14,0 Ч100) - 100 = 38,3%

3. СТАНДАРТИЗАЦИЯ

При выполнении курсового проекта использованы следующие нормативные документы:

ГОСТ 10558-80 Адипиновая кислота

ГОСТ 10136-77 Этиленгликоль. Технические условия

ГОСТ 9293-74 Азот

ГОСТ 6824-76 1,4-Бутандиол. Технические условия

ГОСТ 13004-77 Жидкости полиэтиленсилоксановые. Технические условия.

ГОСТ 6613-86 Сетки проволочные тканые с квадратными ячейками

ТУ 6-09-2738-89 Тетрабутоксититан технический (тетрабутиловый эфир титановой кислоты орто; тетрабутилортотитанат)

ТУ 38.103582-85 Полиэфир П6-БА

ЗАКЛЮЧЕНИЕ ПО ПРОЕКТУ

Спроектировано производство сложного полиэфира П6-БА. Проектная мощность - 1150 т/год. Проведены необходимые материальные, технологические расчеты, а также тепловой и механический расчет реактора.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Казанский завод синтетического каучука [Электронный ресурс].- Режим доступа: http/Avww.kzsk.ru, свободный. - Проверено 24.12.08.

2. Соболев В.М., Промышленные синтетические каучуки /А.М.Соболев, И.В.Бородина. -М.: Химия, 1977.- 392с.

3. Коршак В.В., Равновесная поликонденсация / В.В.Коршак, С.В.Виноградов. - М.: Наука, 1986. -414с.

4. Аверко-Антонович, Л.А. Химия и технология синтетического каучука / Л.А.Аверко-Антонович, Ю.О. Аверко-Антонович, П.А.Кирпичников [и др.]. - М.: Химия 2008. - 357 с.

5. Лащинский, А.А. Основы конструирования и расчета химической аппаратуры: справочник / А.А.Лащинский, А.Р.Толщинский. - 2-е изд., перераб. и доп. - Л.: Машиностроение, 1970. - 752с.

6. Павлов, К.Ф. Примеры задачи по курсу процессов и аппаратов химической технологии: учеб.пособие для ВУЗов / "К.Ф.Павлов, П.Г.Романков, В.А.Носков. - 9-е изд., перераб. и доп. - Л.: Химия, 1981. - 560с.

7. Заикин А.Е. Основы проектирования производств полимеров/А.Е. Заикин. Казан. гос. технол. ун-т, 2000.-32 с.

Размещено на Allbest.ru

Подобные документы

    Выбор и обоснование способа производства изделия из полиэтилена низкого давления, характеристика основного и вспомогательного оборудования. Технологическая схема производства. Расчет количества сырья и материалов. Составление материального баланса.

    дипломная работа , добавлен 26.03.2012

    Характеристика сырья и готового продукта; методы их технохимического контроля. Расчет материального баланса производства мороженого. Описание технологической линии производства мороженого. Принцип действия основного и вспомогательного оборудования.

    курсовая работа , добавлен 15.08.2014

    Проектирование типа и необходимого количества установок для производства силикатных блоков силосным способом. Свойства сырья и вспомогательных материалов. Расчет материального баланса и количества аппаратов. Обзор возможности автоматизации производства.

    курсовая работа , добавлен 28.10.2013

    Аппаратурно-технологическая схема, общая компоновка оборудования. Краткий расчет продуктов, варочного котла, темперирующей машины, расчет защитного заземления. Эксплуатация конкретной единицы оборудования. Технологический процесс восстановления детали.

    дипломная работа , добавлен 29.09.2010

    Характеристика сырья, химикатов, готовой продукции. Схема и контроль технологического процесса отбелки хвойной целлюлозы. Расчет материального и теплового баланса производства, количества устанавливаемого основного и вспомогательного оборудования.

    дипломная работа , добавлен 08.02.2013

    Характеристика сырья и материалов. Рецепт протекторной резиновой смеси. Технологический процесс и режим вулканизации покрышки. Схема индивидуального вулканизатора. Контроль качества производства. Расчет ассортимента продукции, материалов, оборудования.

    курсовая работа , добавлен 22.03.2017

    Процесс концентрирования серной кислоты, описание технологической схемы и оборудования. Расчет материального и теплового баланса основного проектируемого аппарата, расчет вспомогательного аппарата. Расчет потребности сырья и численности рабочих.

    дипломная работа , добавлен 20.10.2011

    Составление производственной программы предприятия. Выбор технологической схемы линии производства водки и наливок. Органолептические показатели продукции. Расчет продуктов, оборудования, тары и вспомогательных материалов. Учет и контроль производства.

    курсовая работа , добавлен 25.11.2014

    Технологическая схема участка цеха производства мороженого: оборудование, линии фасования, закаливание, хранение. Описание и расчет технологических параметров проецируемого аппарата. Расчет вентиляции, воздухообмена и освещения машин и оборудования.

    курсовая работа , добавлен 27.01.2010

    Роль кисломолочных продуктов в организации питания. Анализ производства простокваши Мечниковской в России. Характеристика сырья, вспомогательных материалов, требования стандарта к качеству готового продукта. Сырьевой расчет пищевой ценности простокваши.

В реакцию поликонденсации вступают соединения с двумя и более функциональными группами. Функциональные группы могут быть гидроксильные (–OH), карбоксильные (–COOH), аминогруппы (–NH 2) и т. д. Если мономер содержит две функциональные группы - образуется линейный полимер, если три и более - трехмерный полимер.

Для наглядности рассмотрим механизм образования связи и самого полимера на примере реакции полиэтерификации:

Полиэтерифакация - реакция получения полиэфира, которая заключается в поликондексации многоатомного спирта и многоосновной кислоты.

В общем случае реакцию полиэтерификации можно представить как огромную последовательность реакций этерификации.Реакция полиэтерифакации может происходить с использованием и без использования катализатора. В случае, если катализатор не используется - происходит автокатализ.

Образование связи (этерификация)

Реакция этерификации (реакция Фишера-Шпайера, 1895 г.) - реакция спирта с карбоновой кислотой, которая приводит к образованию сложного эфира. В качестве катализаторов реакции исользуют сильные кислоты.

Механизм реакции этерификации:


Нуклеофильное присоединение молекулы спирта было доказано с помощью изотопа О 18 .

Образование полимера

На первом этапе происходит образование димера в результате последовательных реакций этерификаций. Сначала образуется сложный эфир:

Затем этот эфир может взаимодействовать с таким же сложным эфиром или с исходными мономерами:

В результате происходит образование димера:

Таким образом, в процессе поликонденсации возможно взаимодействие мономеров друг с другом, мономеров с n-мерами и n-меров с n-мерами. Процесс образования полимера протекает ступенями, растущая цепь после каждой ступени остается устойчивым соединением, молекулярная масса нарастает постепенно.

Примеры реакций

Полиэтерификация (получение полиэфиров)

Полиэфиры (или полиэстры) - полимеры, получаемые реакцией поликонденсации многоосновных кислот и многооатомных спиртов. Пример реакции получения полиэтилентерефталата (ПЭТФ):

Полиэфиры также называют полиэстрами (от англ. ester - "эфир").

Поликонденсация фенола

Реакция поликонденсации фенола с формальдегидом происходит с образованием фенолформальдегидных смол:

Получение поликарбоната

Общая формула поликарбонатов:

Реакция получения поликарбонатов

Получение полиамидов


Получение диметилсилоксана (силиконы)

Общая формула полисилоксана:

Образование полидиметилсилоксана:

Поликонденсационные равновесия

Рассмотрим влияние константы равновесия на предельно достижимый выход и молекулярную массу полимера на примере реакции полиэтерификации:

Запишем ее в упрощенном виде:

Рассмотрим влияние константы равновесия на глубину протекания реакции:

Глубина протекания реакции характеризуется степенью завершенности реакции Х:

Где , [M] - исходная и текущая концентрации мономеров соответственно.

Выразим Х:

В отсутствие реакции ограничения роста цепи:

Полученное уравнение называется уравнением Карозерса:

Оно иллюстрирует зависимость средней степени полимеризации от степени завершенности реакции (X ).

Подставим в уравнение Карозерса выведенное уравнение X:

Полученные уравнения позволяют оценить предельно достижимый выход и молекулярную массу при поликонденсации исходя из константы равновесия реакции. Из расчетов установлено, что равновесная поликонденсация может считаться необратимой и использоваться для синтеза полимеров при К > 10 3 –10 4 .

Однако на практике ни одна из наиболее часто используемых реакций не обладает такой константой равновесия. Поэтому для смещения равновесия необходимо организовывать отвод продуктов. Чаще всего из зоны реакции удаляют низкомолекулярный продукт, реже полимер. Вода и подобные ей низкомолекулярные продукты удаляются отгонкой при атмосферном давлении, менее летучие продукты - отгонкой под вакуумом. Таким образом реакция протекает в неравновесном режиме.

Влияние избытка одного из мономеров

При избытке одного из исходных мономеров на концах макромолекулы образуются одинаковые функциональные группы и рост цепи прекращается. Поэтому соотношение исходных компонентов должно быть 1:1.

Поликонденсация в большинстве случаев состоит во взаимодействии двух различных функциональных групп. Если в систему внести монофункциональное соединение, способное вступать во взаимодействие с одной из функциональных групп, участвующих в поликонденсации, то оно блокирует эти группы и прекращает процесс поликонденсации. Величина степени поликонденсации определяется молекулярным соотношением бифункционального и монофункционального соединения (это правило называют правилом Коршака):

где n - число молей бифункционального соединения, m - монофункционального.

Трехмерная поликонденсация

При совместной поликонденсации мономеров с тремя и более функциональными группами образуются сшитые трехмерные полимеры. Особенностью таких реакция является то, что на глубоких стадиях реакции при поликондесации теряется текучесть реакционной массы.

На первой стадии реакции, когда образуются линейные и разветвленные олигомеры, реакционная система сохраняет текучесть. На глубоких стадиях, когда образуется сшитый полимер - текучесть реакционной массы теряется. Эта важная технологическая особенность трехмерной поликонденсации приводит к необходимости совмещать заключительную стадию реакции с формированием товарного изделия (литьем в формы). Получаемые таким образом сшитые полимеры называют термореактивными или терореактопластами .

Степень завершенности реакции, при которой происходит образование нетекучего геля вследствие образования трехмерной сетки называется точкой гелеобразования Хг. Из изложенного выше ясно, как важно знать Х г конкретной системы. Метод расчета точки гелеобразования впервые разработал Карозерс. Этот метод сводится к нахождению степени завершенности реакции, при которой степень полимеризации стремится к бесконечности. Карозерс ввел понятие средней функциональности мономеров:ты

где N i – число молекул мономера с функциональность f i , ∑N i – общее число молекул мономеров, ∑N i f i – общее число функциональных групп, участвующих в поликонденсации. Оказалось, что Х г связана с f ср простой зависимостью:

Рассмотрим пример поликонденсации глицерина и терефталевой кислоты.

В глицерине 3 гидроксильных групп (f 1 =3), в терефталевой кислоте - 2 (f 2 =2). Следовательно, чтобы отношение функциональных групп было 1:1 необходимо взять 2 моль глицерина и 3 моль терефталевой кислоты. Тогда на 5 молекул реагентов приходится 12 функциональных групп. Средняя функциональность мономеров будет равна:

Тогда точка гелеобразования будет равна:

Способы проведения поликонденсации

Поликонденсация в расплаве

Достоинтва : можно получить высокомолекулярный полимер с высокой скоростью в отсутствие растворителя.

Недостатки : необходимость получения расплава полимера, что затруднительно и невозможно для высокоплавких полимеров (начинается разложение).

Получают : Полиамиды, полиэфиры

Проведение поликонденсации в расплаве является наиболее разработанным и распространенным промышленным способом синтеза поликонденсационных полимеров. Реакцию проводят при температуре на 10-20°С выше температуры плавления синтезируемого полимера (обычно при 200-300°С). Сначала в атмосфере инертного газа и на конечных стадиях в вакууме для более полного удаления побочных продуктов из сферы реакции. Процесс может быть периодическим или непрерывным. К достоинствам способа поликонденсации в расплаве относится простота технологической схемы и высокое качество получаемого полимера. Однако необходимость работы при высокой температуре и создания вакуума усложняет аппаратурное оформление технологического процесса.

Поликонденсация в растворе

Меньшие скорости, трудность удаления низкомолекулярных продуктов.

Способ проведения поликонденсации в растворе также широко распространен в промышленности, особенно при получении высокоплавких полимеров. Поликонденсацию осуществляют в одном растворителе или в смеси растворителей. Низкомолекулярный побочный продукт удаляется либо путем химического взаимодействия с растворителем, либо отгонкой с парами растворителя.

Поликонденсация в растворе имеет некоторые технологические преимущества перед другими способами поликонденсации. Она проводится в более мягких температурных условиях, позволяет исключить местные перегревы за счет более интенсивного теплообмена, не требует применения вакуума и инертного газа, а следовательно, сложной аппаратуры. Однако синтез полимеров этим способом связан с необходимостью проведения таких операций, как приготовление растворов мономеров, регенерация растворителя, промывка полимера, его фильтрация, сушка и т. п.

Поликонденсацию в расплаве и в растворе можно ускорить введением катализаторов. Например, при синтезе фенолоформальдегидных олигомеров в качестве катализаторов используют органические и минеральные кислоты или основания.

Поликонденсация в эмульсии

Поликонденсация в эмульсии пока не нашла широкого применения. Ее осуществляют главным образом в тех случаях, когда оба мономера нерастворимы в воде. Реакция поликонденсации идет в стабилизированных каплях мономерной смеси, из которых в водную фазу уходит, растворяясь в ней, низкомолекулярный побочный продукт.

Поликонденсация на границе раздела фаз

Отпадает необходимость соблюдения стехиометрического соотношения, т.к. подача компонентов в зону реакции регулируется скоростью их диффузии.

Можно получать высокоплавкие полимеры. Таким способом получают полиэфиры, полиамиды, полиуретаны и полимочевины.

Поликонденсация на границе раздела фаз (межфазная поликонденсация) состоит в том, что реакция протекает на границе раздела двух несмешивающихся жидкостей, одной из которых обычно является вода, причем каждая жидкость растворяет один из мономеров. Полимер образуется в виде пленки на поверхности раздела, откуда его непрерывно извлекают. Побочный низкомолекулярный продукт растворяется в одной из жидкостей (чаще в воде) и выводится из сферы реакции. Поэтому межфазная поликонденсация является необратимым процессом, и образующиеся полимеры имеют высокую молекулярную массу. Межфазной поликонденсацией в промышленности получают некоторые виды полиамидов, поликарбонатов и др.

Пример лабораторного синтеза полиамида-6-10 (нейлон, nylon):


В твердой фазе

Поликонденсация в твердой фазе изучена пока недостаточно, но она представляет большой теоретический и практический интерес. Обычно используются процессы, в которых первая стадия протекает в растворе или расплаве, а последняя стадия - в твердой фазе. Примером такого процесса является трехмерная поликонденсация, широко применяемая в настоящее время в промышленности для получения ряда смол (фенолоальдегидных, эпоксидных и др).

Получение фенолформальдегидных смол:

Источники

  • Семчиков Ю. Д. Высокомолекулярные соединения, с. 257–266.
  • Кузнецов Е. В., Прохорова И. П. Альбом технологических схем производства полимеров и пластических масс на их основе, с. 74.
  • Травень В. Ф. Органическая химия: учебник для вузов, т. 2, с. 221–222.