Болезни Военный билет Призыв

Почему ртуть жидкая. Смертельный металл: чем опасна ртуть и как избежать отравления. Самые крупные месторождения – в Европе

Вряд ли нужно доказывать, что ртуть – металл своеобразный. Это очевидно хотя бы потому, что ртуть – единственный металл, находящийся в жидком состоянии в условиях, которые мы называем нормальными. Почему ртуть жидкая – вопрос особый. Но именно это свойство, вернее сочетание свойств металла и жидкости (самой тяжелой жидкости!), определило особое положение элемента №80 в нашей жизни. О ртути можно рассказывать много: жидкому металлу посвящены десятки книг. Этот же рассказ – в основном о многообразии применения ртути и ее соединений.

Причастность ртути к славному клану металлов долгое время была под сомнением. Даже Ломоносов колебался, можно ли считать ртуть металлом, несмотря на то, что и в жидком состоянии она обладает почти полным комплексом металлических свойств: тепло- и электропроводностью, металлическим блеском и так далее. При охлаждении ртути до –39°C становится совсем очевидным, что она – одно из «светлых тел, которые ковать можно».

Жидкий металл

Ртуть оказала науке огромные услуги. Как знать, насколько задержался бы прогресс техники и естественных наук без измерительных приборов – термометров, манометров, барометров и других, действие которых основано на необыкновенных свойствах ртути. Какие это свойства?

Во-первых, ртуть – жидкость.

Во-вторых, тяжелая жидкость – в 13,6 раза тяжелее воды.

В-третьих, у ртути довольно большой коэффициент температурного расширения – всего в полтора раза меньше, чем у воды, и на порядок, а то и два больше, чем у обычных металлов.

Есть и «в-четвертых», «в-пятых», «в-двадцатых», но вряд ли нужно перечислять все.

Еще любопытная деталь: «миллиметр ртутного столба» – не единственная физическая единица, связанная с элементом №80. Одно из определений ома, единицы электрического сопротивления, – это сопротивление столбика ртути длиной 106,3 см и сечением 1 мм 2 .

Все это имеет отношение не только к чистой науке. Термометры, манометры и другие приборы, «начиненные» ртутью, давно стали принадлежностью не только лабораторий, но и заводов. А ртутные лампы, ртутные выпрямители! Все то же уникальное сочетание свойств открыло ртути доступ в самые разные отрасли техники, в том числе в радиоэлектронику, в автоматику.

Ртутные выпрямители, например, долгое время были наиболее важным и мощным, наиболее широко применяемым в промышленности типом выпрямителей электрического тока. До сих пор их используют во многих электрохимических производствах и на транспорте с электрической тягой, хотя в последние годы их постепенно вытесняют более экономичные и безвредные полупроводниковые выпрямители.

Современная боевая техника тоже использует замечательные свойства жидкого металла.

К примеру, одна из главных деталей взрывателя для зенитного снаряда – это пористое кольцо из железа или никеля. Поры заполнены ртутью. Выстрел – снаряд двинулся, он приобретает все большую скорость, все быстрее вращается вокруг своей оси, и тяжелая ртуть выступает из пор. Она замыкает электрическую цепь – взрыв.

Нередко с ртутью можно встретиться и там, где меньше всего ожидаешь. Ртутью иногда легируют другие металлы. Небольшие добавки элемента №80 увеличивают твердость сплава свинца со щелочноземельными металлами. Даже при паянии бывает подчас нужна ртуть: припой из 93% свинца, 3% олова и 4% ртути – лучший материал для пайки оцинкованных труб.

Амальгамы

Еще одно замечательное свойство ртути: способность растворять другие металлы, образуя твердые или жидкие растворы – амальгамы. Некоторые из них, например амальгамы серебра и кадмия, химически инертны и тверды при температуре человеческого тела, но легко размягчаются при нагревании. Из них делают зубные пломбы.

Амальгаму таллия, затвердевающую только при –60°C, применяют в специальных конструкциях низкотемпературных термометров.

Старинные зеркала были покрыты не тонким слоем серебра, как это делается сейчас, а амальгамой, в состав которой входило 70% олова и 30% ртути, В прошлом амальгамация была важнейшим технологическим процессом при извлечении золота из руд. В XX столетии она не выдержала конкуренции и уступила более совершенному процессу – цианированию. Однако старый процесс находит применение и сейчас, главным образом при извлечении золота, тонко вкрапленного в руду.

Некоторые металлы, в частности железо, кобальт, никель, практически не поддаются амальгамации. Это позволяет транспортировать жидкий металл в емкостях из простой стали. (Особо чистую ртуть перевозят в таре из стекла, керамики или пластмассы.) Кроме железа и его аналогов, не амальгамируются тантал, кремний, рений, вольфрам, ванадий, бериллий, титан, марганец и молибден, то есть почти все металлы, применяемые для легирования стали. Это значит, что и легированной стали ртуть нестрашна.

Зато натрий, например, амальгамируется очень легко. Амальгама натрия легко разлагается водой. Эти два обстоятельства сыграли и продолжают играть очень важную роль в хлорной промышленности.

При выработке хлора и едкого натра методом электролиза поваренной соли используют катоды из металлической ртути. Для получения тонны едкого натра нужно от 125 до 400 г элемента №80. Сегодня хлорная промышленность – один из самых массовых потребителей металлической ртути.

Ртутный пар

Ртуть закипает при 357°C, т.е. тогда, когда большинство металлов еще далеки от точки плавления. Об этом знали еще в древности, и на этом свойстве издавна основывались методы извлечения металлической ртути из руд. Самым первым способом был обжиг киновари с конденсацией паров ртути на холодных предметах и, в частности, на свежесрубленных зеленых деревьях. Позднее стали использовать реторты из керамики и чугуна. Начиная с 1842 г., ртуть из руд извлекается в отражательных печах, а с 1857 г. – в каскадных. В XX в. к ним присоединились механические многоподовые, а также вращающиеся трубчатые печи.

В киновари 86,2% ртути, но в рудах, считающихся богатыми, на ее долю в среднем приходится 8%. В бедных рудах ртути не больше 0,12%. Такие руды приходится обязательно обогащать тем или иным путем, «отсеивая» бесполезные компоненты.

И сейчас из руд и концентратов ртуть извлекают главным образом пирометаллургическими методами. Обжиг происходит в шахтных, отражательных или трубчатых печах при 700...750°C. Такая высокая температура нужна для того, чтобы киноварь окислялась, а не возгонялась, и чтобы процесс окисления HgS + O 2 → Hg + SO 2 шел до конца. В результате обжига получается парообразная ртуть, которую превращают в жидкий металл в специальных аппаратах – конденсаторах.

Хотя газы, образующиеся при обжиге, проходят несколько стадий очистки, конденсируется не столько металлическая ртуть, сколько так называемая ступпа – тонкодисперсная смесь, состоящая из мельчайших капелек ртути и мелкой пыли сложного химического состава. В ступпе есть соединения как самой ртути, так и других элементов. Ее подвергают отбивке, стремясь разрушить пылевые пленки, мешающие слиянию микроскопически малых капелек жидкого металла. Ту же цель преследует и повторная дистилляция. Но извлечь из ступпы всю ртуть так и не удается, и это одна из нерешенных и сегодня проблем металлургии ртути. А ведь это один из самых старых разделов металлургии.

Способность ртути испаряться при сравнительно низкой температуре была использована для нанесения золотых покрытий на неблагородные металлы. Именно таким способом позолочен купол Исаакиевского собора в Ленинграде. Сейчас этот способ вышел из употребления из-за ядовитости ртутных паров. Электрохимические способы золочения более совершенны и безопасны.

Но видеть в ртутных парах только яд – неверно. Они могут принести и приносят много пользы.

В 1936 г. появилось сообщение о том, что одна из зарубежных нефтяных фирм приобрела ртутный рудник. Оказалось, что ртуть нужна этой фирме для организации парортутной установки, предназначенной для очистки нефти. В наше время ртутные пары все шире используются в нефтеперерабатывающей промышленности: они помогают очень точно регулировать температуру процессов, что крайне важно для нефтепереработки.

Еще раньше, в начале XX в., внимание теплотехников привлекало сообщение о работах доктора Эммета из США. Эммет первым попытался использовать в паровых котлах не воду, а ртуть. Его опытная установка мощностью 2000 л.с. работала и потребляла на 45% меньше топлива, чем обычный паровой котел с генератором. Конечно, не обошлось без дискуссий: ртуть не вода, из реки ее не зачерпнешь! Возражений против использования ртути в паровых котлах было больше чем достаточно. Исследования, однако, продолжались.

Весьма успешной была работа советских научно-исследовательских институтов по проблеме использования ртутного котла и турбины. Были доказаны экономичность ртутно-паровых турбин и возможность создания так называемого ртутно-водяного бинарного цикла, в котором тепло конденсирующегося ртутного пара используется в специальном конденсаторе-испарителе для получения водяного пара. А до этого ртутный пар успевает покрутить вал генератора. Полученный водяной пар приводит в движение второй электротурбогенератор... В подобной системе, работающей только на водяном паре, удается в лучшем случае достигнуть КПД 30%. Теоретический же КПД ртутно-парового цикла (45%) намного выше, чем у газовой турбины (18...20%) и дизеля (35...39%). В 50-х годах в мире существовало уже несколько таких энергетических установок мощностью до 20 тыс. киловатт. Дальше дело, к сожалению, не пошло, главным образом из-за нехватки ртути.

Вакуумные установки в наше время очень важны для науки и промышленности. И здесь ртуть встречается не только как заполнитель трубок вакуумметра. Еще в 1916 г. Ирвинг Ленгмюр создал вакуум-насос, в котором испарялась и конденсировалась ртуть. При этом в системе, связанной с насосом, создавалось остаточное давление в сотни миллионов раз меньше атмосферного.

Современные ртутные диффузионные насосы дают еще большее разрежение: стомиллионные доли миллиметра ртутного столба.

Изучение ультрафиолетовых лучей продвигалось медленно до тех пор, пока не был создан искусственный источник этих лучей. Им оказались пары ртути в вакууме. Когда через ртутные пары проходит электрический ток, они испускают видимое голубое свечение и много ультрафиолетовых лучей. Чем выше температура паров ртути, тем интенсивнее излучение ультрафиолетовых лучей в ртутно-кварцевой лампе.

Видимое свечение паров ртути использовано в конструкциях мощных ламп освещения. Лампы дневного света – это разрядные трубки, в которых находятся инертные газы и пары ртути. А что такое «холодный свет», пояснять, вероятно, излишне. Из каждого рубля, который мы платим «за свет», на долю действительно светового излучения приходятся лишь четыре копейки. Остальные 96 – за ненужное тепло, излучаемое обычными электролампами. Лампы дневного света намного экономичнее.

Соединения ртути

Первым из них, несомненно, следует назвать киноварь HgS. Благодаря ей человек познакомился с ртутью много веков назад. Способствовали этому и ее ярко-красный цвет, и простота получения ртути из киновари. Кристаллы киновари иногда бывают покрыты тонкой свинцово-серой пленкой. Это – метациннабарит, о нем ниже. Достаточно, однако, провести по пленке ножом, и появится ярко-красная черта.

В природе сернистая ртуть встречается в трех модификациях, отличающихся кристаллической структурой. Помимо общеизвестной киновари с плотностью 8,18, существуют еще и черный метациннабарит с плотностью 7,7 и так называемая бета-киноварь (ее плотность 7,2). Русские мастера, приготовляя в старину из киноварной руды красную краску, особое внимание обращали на удаление из руды «искр» и «звездочек». Они не знали, что это аллотропические изменения той же самой сернистой ртути; при нагревании без доступа воздуха до 386°C эти модификации превращаются в «настоящую» киноварь.

Некоторые соединения ртути меняют окраску при изменении температуры. Таковы красная окись ртути HgO и медно-ртутный иодид HgI 2 · 2CuI.

Все соли ртути ядовиты, и это требует большой осторожности при работе с ними. Сталкиваться же с соединениями ртути приходится людям разных профессий. Ртутная соль хромовой кислоты, например, – замечательная зеленая краска по керамике. Сильный яд сулема HgCl 2 , но она крайне нужна в гальванопластике, в производстве оловянных и цинковых сплавов тонкой структуры, в процессах гравирования и литографии, даже в фотографии. Некоторые соли ртути, в том числе и сулема, применяются в сухих электрических батареях.

Промышленный катализ тоже не обходится без соединений ртути. Один из способов получения уксусной кислоты и этилового спирта основан на реакции, открытой русским ученым М.Г. Кучеровым. Сырьем служит ацетилен. В присутствии катализаторов – солей двухвалентной ртути – он реагирует с водяным паром и превращается в уксусный альдегид. Окисляя это вещество, получают уксусную кислоту, восстанавливая – спирт. Те же соли помогают получать из нафталина фталевую кислоту – важный продукт основного органического синтеза.

Резко возрастает потребление ртути в годы войны. Жидкий металл необходим для производства «гремучей ртути» Hg(ONC) 2 первого известного технике инициирующего взрывчатого вещества. Хотя сейчас на вооружении имеются и другие подобные ВВ (азид свинца, например), «гремучая ртуть» продолжает оставаться одним из важнейших материалов для заполнения капсюлей детонаторов.

Ядовитость соединений ртути ограничивает их применение, но иногда это свойство может оказаться полезным. Ртутными красками покрывают днища кораблей, чтобы они не обрастали ракушками. Иначе корабль снижает скорость, перерасходуется топливо. Самая известная из красок такого типа делается на основе кислой ртутной соли мышьяковистой кислоты HgHAsO 4 . Правда, в последнее время для этой цели применяют и синтетические красители, в составе которых ртути нет.

Хотя все ртутные соли ядовиты, многие из них используются медициной, и, пожалуй, это одно из самых древних их применений. Сулема – яд, но и одно из первых антисептических средств. Цианид ртути использовали в производстве антисептического мыла. Желтую окись ртути до сих пор применяют при лечении глазных и кожных заболеваний. Каломель Hg 2 Cl 2 , в молекуле которой по сравнению с молекулой сулемы есть один «лишний» атом ртути, – общеизвестное слабительное средство. Медицина использует также фосфорнокислые соли ртути, ее сульфат, иодид и другие. В наше время большинство неорганических соединений ртути постепенно вытесняются из медицины ртутными же органическими соединениями, неспособными к легкой ионизации и поэтому не столь токсичными и меньше раздражающими ткани. Органические антисептики на основе соединений ртути пригодны даже для обработки слизистых оболочек. Они дают не меньший лечебный эффект, чем неорганические соединения.

Медицина применяет не только соединения, но и самую ртуть и ее пары. Начиная обследование, врач в первую очередь использует «градусник» – ртутный термометр. Ртутные манометры работают в аппаратах для измерения кровяного давления. В каждой больнице, в физиотерапевтических кабинетах поликлиник ультрафиолетовые лучи, полученные от ртутно-кварцевых ламп, глубоко прогревают ткани, помогают лечить катары, воспаления, даже туберкулез – ведь ультрафиолет губителен для многих микроорганизмов.

Ртуть – древнейший, удивительный и, можно сказать, «нестареющий» металл. Известный с незапамятных времен, он и в современной технике, в медицине, в быту находит все новые применения.

У древних народов

История не сохранила имени древнего металлурга, первым получившего ртуть, – это было слишком давно, за много веков до нашей эры. Известно только, что в Древнем Египте металлическую ртуть и ее главный минерал, киноварь, использовали еще в III тысячелетии до н.э. Индусы узнали ртуть во II...I вв. до н.э. У древних китайцев киноварь пользовалась особой славой, и не только как краска, но и как лекарственное средство. Ртуть и киноварь упоминаются в «Естественной истории» Плиния Старшего: значит, о них знали и римляне. Плиний свидетельствует также, что римляне умели превращать киноварь в ртуть.

Все металлы – из ртути... В этом были убеждены алхимики древности и средневековья. Разницу в свойствах металлов они объясняли присутствием в металле одного из четырех элементов Аристотеля. (Напомним, что этими элементами были: огонь, воздух, вода и земля.) Характерно, что подобных взглядов придерживались и многие видные ученые далекого прошлого. Так, великий таджикский врач и химик Авиценна (980...1037 гг. н.э.) тоже считал, что все металлы произошли от ртути и серы.

Рассказывает Лавуазье

«В эту реторту я ввел 4 унции очень чистой ртути, затем путем всасывания посредством сифона, который я ввел под колокол, я поднял ртуть до определенного уровня и тщательно отмерил этот уровень полоской приклеенной бумаги, точно наблюдая при этом показания барометра и термометра.

Закончив таким образом все приготовления, я зажег огонь в печке и поддерживал его почти без перерыва 12 дней, причем ртуть нагревалась до температуры, необходимой для ее кипения. В течение всего первого дня не произошло ничего примечательного: ртуть, хотя и кипевшая, находилась в состоянии непрерывного испарения и покрывала внутренние стенки реторты капельками, сначала очень мелкими, но постепенно увеличивающимися при достижении известного объема падавшими от собственной тяжести на дно реторты и соединявшимися с остальной ртутью.

На второй день я начал замечать плавающие на поверхности ртути небольшие красные частички, которые в течение четырех или пяти дней увеличивались в количестве и объеме, после чего перестали увеличиваться и остались в абсолютно неизменном виде. По прошествии 12 дней, видя, что окаливание ртути нисколько больше не прогрессирует, я потушил огонь и дал остыть прибору. Объем воздуха, содержащегося как в реторте, так и в ее шейке и в свободной части колокола... был до опыта равен приблизительно 50 куб. дюймам. По окончании операции тот же объем при том же давлении и той же температуре оказался равным всего лишь 42...43 дюймам; следовательно, произошло уменьшение приблизительно на одну шестую. С другой стороны, тщательно собрав образовавшиеся на поверхности красные частицы и отделив их, насколько было возможно, от жидкой ртути, в которой они плавали, я нашел их вес равным 45 гранам...

Воздух, оставшийся после этой операции и уменьшавшийся вследствие прокаливания в нем ртути до пяти шестых своего объема, не был годен больше ни для дыхания, ни для горения; животные, вводимые в него, умирали в короткое время, горящие же предметы потухали в одно мгновение, как если бы их погружали в воду. С другой стороны, я взял 45 гранов образовавшегося во время опыта красного вещества и поместил его в маленькую стеклянную реторту, к которой был присоединен прибор, приспособленный для приема могущих выделиться жидких и воздухообразных продуктов; зажегши огонь в печке, я заметил, что по мере того как красное вещество нагревалось, его цвет становился все более интенсивным. Когда затем реторта начала накаляться, красное вещество начало мало-помалу уменьшаться в объеме и через несколько минут оно совершенно исчезло; в то же время в небольшом приемнике собралось 41 1 / 2 грана жидкой ртути, а под колокол прошло 7...8 куб. дюймов упругой жидкости , гораздо более способной поддерживать горение и дыхание животных, чем атмосферный воздух...

Я дал ему сначала название в высшей степени легко вдыхаемого или весьма удобовдыхаемого воздуха: впоследствии это название было заменено названием «жизненный» или «живительный воздух».

Антуан Лоран Лавуазье.
«Анализ атмосферного воздуха». «Записки Французской академии наук», 1775.

Ртуть и открытия Джозефа Пристли

Но не Лавуазье был первым ученым, получившим кислород из красной окиси ртути. Карл Шееле еще в 1771 г. разложил это вещество на ртуть я «огненный воздух», а выдающийся английский химик Джозеф Пристли первым в мире исследовал кислород. 1 августа 1774 г., разложив окисел нагреванием, Пристли внес в полученный «воздух» горящую свечу и увидел, что пламя приобрело необычную яркость.

В этом воздухе свеча сгорала быстрее. Ярко вспыхнув, сгорали в нем и раскаленные кусочки каменного угля, и железные проволочки... За этим опытом последовали другие, и в итоге Пристли определил важнейшие качества «дефлогистонированного воздуха».

Джозеф Пристли сделал еще много важных открытий, и почти во всех его работах использовалась ртуть. Это она помогла Пристли открыть газообразный хлористый водород. Взаимодействие поваренной соли с серной кислотой и до Пристли наблюдали многие химики. Но все они пытались собрать образующийся газ над водой, и получалась соляная кислота. Пристли заменил воду ртутью... Таким же образом он получил чистый газообразный аммиак из нашатырного спирта. Затем оказалось, что два открытых им газа – NH 3 и HCl – способны вступать в реакцию между собой и превращаться в белые мелкие кристаллы. Так впервые в лабораторных условиях был получен хлористый аммоний. Сернистый газ тоже был открыт Пристли и тоже был собран над ртутью.

Выручил ртутный катод

В 1807 г., разлагая щелочи электрическим током, выдающийся английский ученый Дэви впервые получил элементарные натрий и калий. Его опыты повторил крупнейший шведский химик Берцелиус, но источник тока – вольтов столб, которым он располагал, был слишком слаб, и воспроизвести результаты Дэви Берцелиусу поначалу не удалось. Тогда он решил в качестве катода использовать ртуть и... получил щелочные металлы с меньшими затратами энергии. А тем временем Дэви пытался выделить с помощью электричества и щелочноземельные металлы. При этом он пережег свою огромную батарею и об этой неудаче написал Берцелиусу. Тот посоветовал ему воспользоваться ртутным катодом, и в 1808 г. Дэви получил амальгаму кальция, из которой выделить металл уже не составляло труда. В том же году (и тем же способом) Дэви выделил в элементарном виде барий, стронций и магний.

Первый сверхпроводник

Спустя почти полтора столетия после опытов Пристли и Лавуазье ртуть оказалась сопричастна еще к одному выдающемуся открытию, на этот раз в области физики. В 1911 г. голландский ученый Гейке Камерлинг-Оннес исследовал электропроводность ртути при низкой температуре. С каждым опытом он уменьшал температуру, и когда она достигла 4,12°K, сопротивление ртути, до этого последовательно уменьшавшееся, вдруг исчезло совсем: электрический ток проходил по ртутному кольцу, не затухая. Так было открыто явление сверхпроводимости, и ртуть стала первым сверхпроводником. Сейчас известны десятки сплавов и чистых металлов, приобретающих это свойство при температуре, близкой к абсолютному нулю.

Как очистить ртуть

В химических лабораториях часто возникает необходимость очистить жидкий металл. Метод, описанный в этой заметке, пожалуй, самый простой из надежных и самый надежный из простых. На штативе крепят стеклянную трубку диаметром 1...2 см; нижний конец трубки оттянут и загнут. В трубку заливают разбавленную азотную кислоту примерно с 5% нитрата закисной ртути Hg 2 (NO 3) 2 . Сверху в трубку вставляют воронку с бумажным фильтром, в дне которого иголкой проделано небольшое отверстие. Воронку заполняют загрязненной ртутью. На фильтре она очищается от механических примесей, а в трубке – от большей части растворенных в ней металлов. Как это происходит? Ртуть – благородный металл, и примеси, например медь, вытесняют ее из Hg 2 (NO 3) 2 ; часть примесей просто растворяется кислотой. Очищенная ртуть собирается в нижней части трубки и под действием собственной тяжести передавливается в приемный сосуд. Повторив эту операцию несколько раз, можно достаточно полно очистить ртуть от примеси всех металлов, стоящих в ряду напряжений левее ртути.

Очистить ртуть от благородных металлов, например золота и серебра, намного сложнее. Чтобы разделить их, применяют перегонку в вакууме.

Не только жидкое состояние «роднит» ртуть с водой. Теплоемкость ртути, как и воды, с ростом температуры (от точки плавления до +80°C) последовательно уменьшается и лишь после определенного температурного «порога» (после 80°C) начинает медленно расти. Если охлаждать ртуть очень медленно, ее, как и воду, можно переохладить. В переохлажденном состоянии жидкая ртуть существует при температуре ниже –50°C, обычно же она замерзает при –38,9°C. Кстати, впервые ртуть была заморожена в 1759 г. петербургским академиком И.А. Брауном.

Одновалентной ртути нет!

Это утверждение многим покажется неверным. Ведь еще в школе учат, что, подобно меди, ртуть может проявлять валентности 2+ и 1+. Широко известны такие соединения, как черная закись Hg 2 O или каломель Hg 2 Cl 2 . Но ртуть здесь лишь формально одновалентна. Как показали исследования, во всех подобных соединениях содержится группировка из двух атомов ртути: –Hg 2 – или –Hg–Hg–. Оба атома двухвалентны, но одна валентность каждого из них затрачена на образование цепочки, подобной углеродным цепям многих органических соединений. Ион Hg 2+ 2 нестоек, нестойки и соединения, в которые он входит, особенно гидроокись и карбонат закисной ртути. Последние быстро разлагаются на Hg и HgO и соответственно H 2 O или CO 2 .

Яд и противоядие

Пары ртути и ее соединения действительно весьма ядовиты. Жидкая ртуть опасна прежде всего своей летучестью: если хранить ее открытой в лабораторном помещении, то в воздухе создастся парциальное давление ртути 0,001 мм. Это много, тем более что предельно допустимая концентрация ртути в промышленных помещениях 0,01 мг на кубический метр воздуха.

Степень токсического действия металлической ртути определяется прежде всего тем, какое количество ее успело прореагировать в организме, прежде чем ее вывели оттуда, т.е. опасна не сама ртуть, а ее соединения.

Острое отравление солями ртути проявляется в расстройстве кишечника, рвоте, набухании десен. Характерен упадок сердечной деятельности, пульс становится редким и слабым, возможны обмороки. Первое, что необходимо сделать в такой ситуации, это вызвать у больного рвоту. Затем дать ему молока и яичных белков. Ртуть выводится из организма в основном почками.

При хроническом отравлении ртутью и ее соединениями появляются металлический привкус во рту, рыхлость десен, сильное слюнотечение, легкая возбудимость, ослабление памяти. Опасность такого отравления есть во всех помещениях, где ртуть находится в контакте с воздухом. Особенно опасны мельчайшие капли разлитой ртути, забившиеся под плинтусы, линолеум, мебель, в щели пола. Общая поверхность маленьких ртутных шариков велика, и испарение идет интенсивнее. Поэтому случайно разлитую ртуть необходимо тщательно собрать. Все места, в которых могли задержаться малейшие капельки жидкого металла, необходимо обработать раствором FeCl 3 , чтобы связать ртуть химически.

Ртуть в космосе

Космические аппараты нашего времени требуют значительных количеств электроэнергии. Регулировка работы двигателей, связь, научные исследования, работа системы жизнеобеспечения – все это требует электричества... Пока основными источниками тока служат аккумуляторы и солнечные батареи. Энергетические потребности космических аппаратов растут и будут расти. Космическим кораблям недалекого будущего понадобятся электростанции на борту. В основе одного из вариантов таких станций – ядерный турбинный генератор. Во многом он подобен обычной тепловой электростанции, но рабочим телом в нем служит не водяной пар, а ртутный. Разогревает его радиоизотопное горючее. Цикл работы такой установки замкнутый: ртутный пар, пройдя турбину, конденсируется и возвращается в бойлер, где опять нагревается и вновь отправляется вращать турбину.

Изотопы ртути

Природная ртуть состоит из смеси семи стабильных изотопов с массовыми числами 196, 198, 199, 200, 201, 202 и 204. Наиболее распространен самый тяжелый изотоп: его доля – почти 30%, точнее, 29,8. Второй по распространенности – изотоп ртуть-200 (23,13%). А меньше всего в природной смеси ртути-196 – всего 0,146%.

Из радиоактивных изотопов элемента №80, а их известно 11, практическое значение приобрели только ртуть-203 (период полураспада 46,9 суток) и ртуть-205 (5,5 минуты). Их применяют при аналитических определениях ртути и изучении ее поведения в технологических процессах.

Самые крупные месторождения – в Европе

Ртуть – один из немногих металлов, крупнейшие месторождения которых находятся на европейском материке. Наиболее крупными месторождениями ртути считаются Альмаден (Испания), Монте-Амьята (Италия) и Идрия (Югославия).

__________________________________________
При очень тонком измельчении красная окись ртути HgO приобретает желтый цвет. Эта модификация получается и при выпадении окиси ртути в осадок. 2 Так во времена Лавуазье называли газы.

Вчера участвовал в заседаниях в течении 4 часов... Но это никому не интересно. Интересно, что во втором заседании справа по борту от меня висела таблица химических элементов Д.И.Менделеева. И я от тоски и безысходности тупо её изучал снова...
И чего-то меня потянуло в 6 период в побочную или b-подгруппу.
Золото от ртути отличается всего лишь на один протон и два нейтрона в ядре, что на фоне восьмидесяти протонов и 120 нейтронов практически ничто - составляет менее 1% отличия по массе; и на один электрон во внешней оболочке - у золота 79 электронов, а у ртути 80. Небольшие различия. Но как сильно различаются их свойства. Ртуть - это жидкость при комнатной температуре. Что для металлов - нонсенс! А про золото вы и так многое знаете, что это за "фрукт".
Почему такие радикальные отличия ртути от других металлов и, особенно, от ближайшего соседа золота? Я как-то об этом серьёзно не задумывался - ну отличаются и отличаются: такова химия и физика. Ответ удовлетворяющий всех школьников и студентов. А сейчас задумался. И не понял!
У атома золота на внешней орбитали находится один s-электрон, а у атома ртути два s-электрона. С химической точки зрения разница большая и определяющая различие химических свойств элементов первой и второй групп. Это хорошо известно. Но почему же серебро и кадмий или медь и цинк не отличаются по своим металлическим свойствам также как и золото от ртути? Разница количества протонов, нейтронов и электронов у них точно такая же как и у золота и ртути!
По логике проще всего получить золото из ртути - достаточно убрать из атома ртути один протон и два нейтрона. Алхимики это "чувствовали" и пытались это проделать. Но против науки не попрёшь. Большие энергии нужны для этого - ядерные энергии. Это к слову...
Почему же ртуть жидкая при нормальных условиях? Я не понимаю.
Буду думать...
Объяснить можно практически всё! А понять?
Вот моё объяснение. Газообразное, жидкое и твёрдое состояния обуславливаются разницей между кинетической энергией атомов и молекул вещества в данном состоянии (температура) и энергией их взаимодействия (потенциальная энергия): у газа кинетическая энергия движения атомов и молекул много больше их потенциальной энергии притяжения и атомно-молекулярные частицы могут независимо двигаться в любую сторону; у жидкостей эти величины сопоставимы при небольшом преобладании энергии связи - возникают устойчивые ассоциаты атомов и молекул; у твёрдых тел энергия связи молекул и атомов намного превышает их кинетическую энергию движения и они большее время проводят рядом друг с другом, возникают агломераты.
Раз ртуть жидкая, то это свидетельствует об ослаблении металлической связи между атомами по сравнению с другими металлами. Почему? Потому что почему-то атомы ртути в меньшей мере склонны к образованию делокализованной металлической связи посредством обобществления внешних электронов.
Строение атома ртути можно представить следующей схемой Hg)2)8)18)32)18)2. Числа показывают количество электронов, находящихся на электронных оболочках(энергетических уровнях) вокруг ядра атома ртути. Все электронные оболочки предельно заполнены и химически активными электронами у атома ртути являются только 2 внешних, так называемых, s-электрона (буковка s означает, что электроны сферически симметрично распределены вокруг атома, а раз их два на одной орбитали, то их магнитные моменты (спины) противоположно ориентированы, что обеспечивает их взаимосвязь магнитными полями как у двух магнитиков).
Строение атома золота выглядит следующим образом: Au)2)8)18)32)18)1. Как видно разница состоит только в отсутствии одного s-электрона на внешней орбитали. И эта разница приводит к таким большим последствиям в разнице физических свойств золота и ртути.
Теплопроводность и электропроводность металлов уменьшается в ряду:
Ag, Cu, Au, Zn, Ni, Fe, Pt, Hg. Ртуть, как видно, обладает наименьшей теплопроводностью и электропроводностью в этой последовательности металлов. Электропроводность и теплопроводность ртути в 40 раз меньше, чем у золота и в 60 раз меньше, чем у серебра.
Только у висмута и германия электропроводность меньше, чем у ртути.
Теплопроводность и электропроводность металлов обуславливаются одной причиной: наличием мобильных, свободных электронов (не локализованных только на орбиталях отдельных атомов) в веществе по причине возникновения так называемой "металлической" связи: делокализованные электроны по всему объёму металла. Это обстоятельство отражается законом Бидемана-Франца: отношение теплопроводности к электропроводности есть величина постоянная, мало изменяющаяся с изменением природы металла.
Чем больше электронов делегируется в зону проводимости - зону свободного перемещения электронов по всей массе вещества, зону делокализации электронов (это такое энергетическое состояние электронов, когда они перестают принадлежать отдельным атомам и начинают участвовать в проводимости и теплопроводности всего вещества - то есть перемещаться под действием электрического или градиента термического поля) - тем больше теплопроводность и электропроводность этого вещества.
У ртути, судя по всем её тепло-электрическим характеристикам, явная проблема с долей электронов, переходящих в зону проводимости и, соответственно, прочностью металлической связи. Такая слабость металлической связи и приводит к очень низкой для металлов температуре плавления ртути (-39 С), температуре её кипения (358 С), теплоте плавления (12 кДж/кг), низкой электропроводности и теплопроводности. У ближайшего соседа ртути золота, температура плавления 1063 С, температура кипения 2850 С, а теплопроводность и электропроводность в 40 раз больше чем у ртути.
Все эти факты наводят на представление о том, что химические связи между атомами ртути определяются не только металлической связью - делокализованными электронами, - но и ковалентными: перекрыванием атомных электронных орбиталей атомов ртути.
Это приводит к тому, что у атомов ртути относительно меньшая доля металлической связи по сравнению с другими металлами. А ковалентная связь - это всегда локализованная между атомами, направленная, и насыщенная связь посредством пары электронов - по одному от каждого атома. Поэтому атомы ртути склонны к димеризации и полимеризации за счёт ковалентных связей. Такая особенность связи между атомами ртути приводит, также, к тому, что у ртути самое высокое значение энергии ионизации атомов (потенциал ионизации - энергия отрыва электрона от атома): 10,44 эВ! У золота, к примеру, 9,23 эВ, а у серебра - 7,58 эВ. Эти цифры свидетельствуют о более сильном удержании электрона атомами ртути по сравнению с другими металлами.
Действительно, для ртути характерно образование химических соединений состава 2:2, которые считаются соединениями одновалентной ртути. Но в таких соединениях атомы ртути имеют две связи: они связаны не только с другими элементами, но и между собой ковалентной связью: X-Hg-Hg-X. Такое строение "одновалентной" ртути доказано рентгенографически и кондуктометрически. Электропроводность, например, нитрата ртути(I) обуславливается переносом ионов Hg-Hg(+2), а не Hg(+1).
Все эти факты свидетельствуют об особом энергетическом состоянии двух 6-s электронов в атоме ртути. У этих электронов повышенная связанность между собой на орбитали за счёт магнитных свойств. Поэтому участие этих электронов в образовании металлической связи затруднено по сравнению с другими аналогичными металлами: кадмием и цинком. И именно это приводит к тому, что ртуть жидкость при комнатной температуре - доля металлической связи в межатомных взаимодействиях понижена и недостаточна для обеспечения твёрдого, кристаллического состояния. Склонность атомов ртути к димеризации и полимеризации и определяет её низкую теплопроводность и электронную проводимость. Мала концентрация свободных электронов.
Ртуть относится к, так называемым, "полублагородным" металлам ("благородные" - это рутений, родий, палладий, осмий, иридий, платина и золото).
Стандартный электрохимический потенциал ртути имеет положительное значение (она не растворяется соляной, разбавленной серной кислотами, не вытесняет водород из кислот), но его величина меньше чем у золота и платины (поэтому ртуть менее химически устойчива и более электрохимически активна чем золото и платина). Ртуть реагирует, хотя довольно не активно с типичными электроноакцепторными химическими соединениями (окислителями), то есть, она гораздо менее инертна чем золото и элементы платиновой группы.
Уникальность ртути состоит ещё и в том, что она легко растворяет другие металлы сохраняя фазовое состояние - образуются так называемые амальгамы. Это отдельная интересная тема про ртуть. Ещё любопытный факт о ртути: именно на этом металле был открыт эффект сверхпроводимости при низких температурах. Её удобно было размещать в стеклянных капиллярах.
Так почему же именно ртуть, а не её аналоги по таблице Менделеева - кадмий и цинк, - жидкая при комнатной температуре?
Причины, приводящие к этому, можно описать следующим образом: ослабление возможности внешних электронов атомов ртути участвовать в образовании металлической связи между атомами из-за относительно значительного магнитного взаимодействия между собой внешних s-электронов. Это обуславливается размером внешней 6s орбитали атома ртути, величиной энергии связи внешних s-электронов этой орбитали с ядром, величиной электронной плотности на этой орбитали. Все эти факторы приводят к возрастанию вклада и значения ковалентных связей в межатомных связях атомов ртути. Что ослабляет интегральную, коллективную металлическую связь атомов ртути.
Исходя их этого, логично предположить, что следующий аналог ртути - 112 элемент будет также легкоплавким. Хотя у этого элемента довольно большая масса ядер атомов и это может увеличить склонность данного вещества к твёрдому, кристаллическому состоянию при атмосферном давлении. Но температура плавления и кипения этого вещества явно должны быть сравнительно небольшими. Это можно проверить только опытным путём.
Критерий истины - практика!

Рецензии

Ежедневная аудитория портала Проза.ру - порядка 100 тысяч посетителей, которые в общей сумме просматривают более полумиллиона страниц по данным счетчика посещаемости, который расположен справа от этого текста. В каждой графе указано по две цифры: количество просмотров и количество посетителей.

Ртуть всегда вызывала интерес не только учёных. Этому веществу раньше приписывали магические свойства. Считалось, что из ртути можно даже добывать золото. Скорее всего, этот и другие мифы возникли из-за того, что ртуть является необычным веществом. Она представляет собой единственный металл, который в нормальных условиях находится в жидком состоянии . Кроме того, из всех жидкостей ртуть – самая тяжёлая.

Из чего состоит ртуть и откуда она берётся?

Долгое время учёные сомневались в том, что это вещество относится к металлам. Хотя все его свойства свидетельствуют в пользу этого. Всё же учёные никак не могли поверить в то, что металл может быть жидким в нормальных условиях.

По своей структуре ртуть напоминает воду. Она тоже состоит из водорода и кислорода. Если описать строение этого вещества более наглядно, то можно сказать, что структура ртути представляет собой кислородную сетку с включениями водорода. Благодаря такой структуре ртуть относится к жидким металлам. В нормальных условиях этот металл медленно испаряется.

Появляется это необычное вещество в недрах земли под высоким давлением. Затем ртуть перемещается в верхние слои земной коры и оседает в микротрещинах пород. Хотя процесс образования ртути пока до конца неизвестен.

С ртутью будьте осторожны!

Необходимо знать, что при вдыхании паров этого жидкого металла происходит отравление (интоксикация) организма. Если в организм попало очень много частиц ртути, то могут наблюдаться следующие признаки отравления: тошнота, рвота, понос, кровоточивость и даже омертвление дёсен с выпадением зубов, воспаление лёгких. Кроме того, возможны острые боли в животе и головные боли. Если паров, которые попали в организм, оказалось очень много, то может даже наступить смерть. Так что с этим металлом шутки плохи.

Для чего нужна ртуть?

Ртуть используется очень широко. Она нашла своё применение в термометрах, лампах дневного света, кварцевых лампах, в стоматологии. Наверное, чаще всего жидкий металл используется в измерительных приборах, например, в аппаратуре для определения атмосферного давления (барометре).

Как работает ртутный термометр?

Если жидкость в трубочке холодная, то ее молекулы расположены в непосредственной близости друг от друга. При этом жидкость не занимает много места и практически вся находится в крохотной колбочке на конце термометра. Но если оставить термометр под прямыми солнечными лучами, вставить под мышку или сжать в ладошках, жидкость внутри термометра будет нагреваться, и ее молекулы начнут активно перемещаться и отталкиваться друг от друга. Им уже не хватает места внутри колбочки, и они начинают подниматься по трубке. Чем теплее окружающая среда, тем выше поднимается жидкость. Несмотря на точность ртутных термометров, они постепенно вытесняются электронными.

Оказала науке огромные услуги. Как знать, насколько задержался бы прогресс техники и естественных наук без измерительных приборов - термометров, манометров, барометров и других, действие которых основано на необыкновенных свойствах ртути. Какие это свойства?Во-первых, - жидкость. Во-вторых, тяжелая жидкость - в 13,6 раза тяжелее воды. В третьих, у ртути довольно большой коэффициент температурного расширения - всего в полтора раза меньше, чем у воды, и на порядок, а и два больше, чем у обычных металлов. Еще любопытная деталь: «миллиметр ртутного столба» - не единственная физическая единица, связанная с элементом № 80.

Одно из определений ома, единицы элек трического сопротивления,- Это сопротивление столбика ртути длиной 106,3 см и сечением 1 мм 2 . Все это имеет отношение не только к чистой науке. Тер мометры, манометры и другие приборы, «начиненные» ртутью, давно стали принадлежностью не только лабораторий, но и заводов. А ртутные лампы, ртутные выпрямители! Все же уникальное сочетание свойств открыло ртути доступ в самые разные отрасли техники, в том числе в радиоэлектронику, в автоматику.

Ртутные выпрямители, например, долгое время были наиболее важным и мощным, наиболее широко применяемым в промышленности типом выпрямителей электрического тока. До сих пор их используют во многих электрохимических производствах и на транспорте с электрической тягой, хотя в последние годы их постепенно вытесняют более экономичные и безвредные полупроводниковые выпрямители. Современная боевая техника тоже использует замечательные свойства жидкого металла. К примеру, одна из главных деталей взрывателя для зенитного снаряда - это пористое кольцо из железа или никеля.

Поры заполнены ртутью. Выстрел - снаряд двинулся, он приобретает все большую скорость, все быстрее вращается вокруг своей оси, и тяжелая выступает из пор. Она замыкает электрическую цепь - взрыв. Нередко с ртутью можно встретиться и там, где меньше всего ожидаешь. Ртутью иногда легируют другие . Небольшие добавки элемента № 80 увеличивают твердость сплава свинца со щелочноземельными металлами. Даже при паянии бывает подчас нужна ртуть: припой из 93% свинца, 3% олова и 4% ртути - лучший материал для пайки оцинкованных труб.

Вряд ли нужно доказывать, что ртуть - металл своеобразный. Это очевидно хотя бы потому, что ртуть - единственный металл, находящийся в жидком состоянии в условиях, которые мы называем нормальными. Почему ртуть жидкая - вопрос особый. Но именно это свойство, вернее сочетание свойств металла и жидкости (самой тяжелой жидкости!), определило особое положение элемента № 80 в нашей жизни. О ртути можно рассказывать много: жидкому металлу посвящены десятки книг.

Этот же рассказ - в основном о многообразии применения ртути и ее соединений. Причастность ртути к славному клану металлов долгое время была под сомнением. Даже колебался, можно ли считать ртуть металлом, несмотря на , что и в жидком состоянии она обладает почти полным комплексом металлических свойств: тепло- и электропроводностью, металлическим блеском и так далее. При охлаждении ртути до - 39° С становится совсем очевидным, что она - одно из «светлых тел, которые ковать можно».

Статья на тему Ртуть жидкий металл

Периодических элементов, подгруппа цинка, атомный номер – 80. В комнатных условиях, вещество представляется тяжёлой бело-серебристой жидкостью. Пары ртути ядовиты. Температура ртути определяет её агрегатное состояние, не один металл кроме неё, не имеет жидкую структуру в условиях комнатной температуры.

Плавление ртути начинается при температуре 234º К, кипение при 629º К. Сплавляется со многими металлами, образуя сплавы, называемые амальгамами. Ртуть в воде и кислотных растворах не растворяется, сделать это может только азотная кислота или .

С трудом это можно сделать с помощью серной кислоты. При достижении температуры 300º С, происходит реакция с кислородом, результатом которой является оксид ртути , имеющий красный цвет (не путать с вымышленной “красной ртутью”!).

«Красная ртуть» – данный термин обозначает вещество, вымышленное в коммерческих целях. Свойству приписываются запредельные свойства, на деле науке пока не известен подобный металл, ни природного, ни искусственного происхождения. Соединение серы и ртути при высокой температуре образует сульфид ртути.

Добыча и происхождение ртути

Данный металл считается довольно редким, концентрируется, в основном, в специфичных ртутных рудах, количество ртути в которых довольно высокое. По большому счёту весь объём природной ртути рассеян в природе, и лишь малая его часть заключена в рудах. Наиболее высокий процент содержания наблюдается в породах образовавшихся после извержения и осадочных сланцах.

Сульфидные минералы по большей части также содержат ртуть. Это блёклые руды, сфалериаты, реальгары и антимониты. В природе часто обнаруживаются связки сопутствующих друг другу элементов, например такое соседство как селен, сера и ртуть .

Доподлинно известно не менее двадцати видов ртутных минералов. Основным добываемым минералом является киноварь, реже – метациннабарит или самородная ртуть. На месторождении в Мексике (Гуитцуко) добывается ливингстонит.

Наиболее крупные месторождения находятся в Дагестане, Таджикистане, Армении, Киргизии, Украине, Испании и Словении (месторождение в г. Идрия, считается крупнейшим, ещё со средневековья). В России находится также не менее двадцати трёх месторождений.

Применение ртути

Раньше определённое соединение ртути , например её хлорид или меркузал, запросто мог найти применение в медицинской области. Это были различные медикаменты слабительного, мочегонного и антисептического действия. Но сейчас ртутные соединения почти полностью вытеснены из этой области, в виду своей токсичности. Частично этот элемент применяется при производстве термометров, хотя и для них уже нашёлся более безопасный заменитель.

Более приемлемым считается её присутствие в технических устройствах. Это высокоточные термометры технического назначения. Лампы люминесцентного света, где используются её пары. Выпрямительные устройства, электроприводы, и даже некоторые модели сварочных аппаратов. Это датчики положения и герметичные выключатели.

Также её используют при изготовлении некоторых видов источников тока, с ртутно-цинковой начинкой. Одним из компонентов гидродинамических подшипников также является ртуть. Также в технической промышленности нашли своё применение такие соединения как фульминат, иодид и бромид ртути. Положительные свойства показали её с цезием, используемые при производстве ионных двигателей.

В металлургии ртуть применяется при выплавке множества различных сплавов, и при вторичном процессе переработки алюминия. Нашла свою нишу она и в ювелирном производстве, а также при изготовлении зеркал. Немалое распространение ртуть получила при получении золота, ей предварительно обрабатываются золотосодержащие породы, для его извлечения из них. В сельской промышленности некоторые ртутные соединения применяются для обработки посевного материала и в как пестицид. Хотя это крайне не желательно.

Вред ртути для организма человека

Пары ртути чрезвычайно опасны. Попасть в организма она может через испарения или непосредственно через ротовую полость. Последнее обычно происходит с маленькими детьми, в случае если разбилась ртуть из термометра. При этом необходимо как можно скорее вызвать у него рвоту, и вызвать неотложную помощь.

А вот надышаться её парами может каждый, если ртуть из градусника раскатилась по всем щелям комнаты, и оттуда испаряется. Отравление ртутью происходит постепенно, на начальных стадиях особых симптомов не наблюдается. В дальнейшем проявляются чрезмерная раздражительность, постоянная тошнота, происходит потеря веса. В первую очередь удар приходится на центральную нервную систему и почки.

Каких мер предосторожности требует ртуть? Разбили градусник? Что делать и как собрать ртуть с пола, укажет следующая инструкция. Немедленно проветрить помещение, не менее нескольких часов. Но не допускать прямого сквозняка, пока ртуть не собрано полностью. Ограничить доступ к месту происшествия, чтобы не разнести ртуть по всему дому.

Перед тем как начать собирать ртуть, необходимо на руки надеть перчатки из непроницаемого материала, на ноги – любые пакеты, на лицо – повязку, пропитанную водой или раствором. Тщательно собрать всю раскатившуюся ртуть, и остатки разбившегося градусника в ёмкость с водой, это не даст ртути испаряться. Необходимо собрать ртуть как можно тщательней, например, с помощью шприца.

Если ртуть попала под плинтус или пол, не ленясь его вскрыть и вычистить её оттуда, сколько времени бы это не заняло. Если процедура занимает достаточно времени, следует делать перерывы каждые десять минут. Ёмкость необходимо плотно закупорить, и держать её вдали от тепла. Выкидывать ёмкость категорически запрещено. Это загрязнит окружающую среду, её могут найти дети. Поэтому собранная ртуть сдаётся в соответствующие службы.

Место происшествия обрабатывается марганцовым раствором или разведённой хлорной известью. Нельзя собирать ртуть веником или пылесосом, это только усугубит ситуацию, распылив ртуть на большую площадь. К тому же после этого пылесос будет непригоден к использованию, в виду токсического загрязнения.

Цена ртути

Общие объёмы от торговли этим редкоземельным металлом и его различными соединениями, составляет порядком 150 млн. долларов, при мировых запасах около 300 тыс. тонн. В виду ликвидации некоторых основных месторождений поставки ртути на мировой рынок резко сократились, что привело к ценовому подъёму на эту продукцию. Для сравнения в 2001 году, стандартная мерная ёмкость объёмом 34,5 кг, стоила 170 $, к 2005 году цена достигла отметки 775 $. После чего снова пошла на убыль, последние расценки составляли порядком 550 $.

Решением в этом случае стала вторичная ртуть, производимая на ключевых предприятиях. Новейшие технологии обеспечили рынок большим объёмом более дешёвой продукции, что позволило несколько понизить непомерно возросшие цены на ртуть природного происхождения. Хотя цены до сих пор остаются на довольно высоком уровне.