Болезни Военный билет Призыв

Применение рядов фурье в электротехнике. В электротехнике используются именно ряды Фурье и гармонические составляющие (частотный спектр). Теоретически функцию можно разложить и на другие составляющие, используя другие ряды. Подробнее о преобразовании Фурь

Которые уже порядком поднадоели. И я чувствую, что настал момент, когда из стратегических запасов теории пора извлечь новые консервы. Нельзя ли разложить функцию в ряд как-нибудь по-другому? Например, выразить отрезок прямой линии через синусы и косинусы? Кажется невероятным, но такие, казалось бы, далекие друг от друга функции поддаются
«воссоединению». Помимо примелькавшихся степеней в теории и практике существуют и другие подходы к разложению функции в ряд.

На данном уроке мы познакомимся с тригонометрическим рядом Фурье, коснёмся вопроса его сходимости и суммы и, конечно же, разберём многочисленные примеры на разложение функций в ряд Фурье. Искренне хотелось назвать статью «Ряды Фурье для чайников», но это было бы лукавством, поскольку для решения задач потребуются знания других разделов математического анализа и некоторый практический опыт. Поэтому преамбула будет напоминать подготовку космонавтов =)

Во-первых, к изучению материалов страницы следует подойти в отличной форме. Выспавшимися, отдохнувшими и трезвыми. Без сильных эмоций по поводу сломанной лапы хомячка и навязчивых мыслей о тяготах жизни аквариумных рыбок. Ряд Фурье не сложен с точки зрения понимания, однако практические задания требуют просто повышенной концентрации внимания – в идеале следует полностью отрешиться от внешних раздражителей. Ситуация усугубляется тем, что не существует лёгкого способа проверки решения и ответа. Таким образом, если ваше самочувствие ниже среднего, то лучше заняться чем-нибудь попроще. Правда.

Во-вторых, перед полётом в космос необходимо изучить приборную панель космического корабля. Начнём со значений функций, которые должны щёлкаться на автомате:

При любом натуральном значении :

1) . И в самом деле, синусоида «прошивает» ось абсцисс через каждое «пи»:
. В случае отрицательных значений аргумента результат, само собой, будет таким же: .

2) . А вот это знали не все. Косинус «пи эн» представляет собой эквивалент «мигалки»:

Отрицательный аргумент дела не меняет: .

Пожалуй, достаточно.

И, в-третьих, уважаемый отряд космонавтов, необходимо уметь… интегрировать .
В частности, уверенно подводить функцию под знак дифференциала , интегрировать по частям и быть в ладах с формулой Ньютона-Лейбница . Начнём важные предполётные упражнения. Категорически не рекомендую пропускать, чтобы потом не плющило в невесомости:

Пример 1

Вычислить определённые интегралы

где принимает натуральные значения.

Решение : интегрирование проводится по переменной «икс» и на данном этапе дискретная переменная «эн» считается константой. Во всех интегралах подводим функцию под знак дифференциала :

Короткая версия решения, к которой хорошо бы пристреляться, выглядит так:

Привыкаем:

Четыре оставшихся пункта самостоятельно. Постарайтесь добросовестно отнестись к заданию и оформить интегралы коротким способом. Образцы решений в конце урока.

После КАЧЕСТВЕННОГО выполнения упражнений надеваем скафандры
и готовимся к старту!

Разложение функции в ряд Фурье на промежутке

Рассмотрим некоторую функцию , которая определена по крайне мере на промежутке (а, возможно, и на бОльшем промежутке). Если данная функция интегрируема на отрезке , то её можно разложить в тригонометрический ряд Фурье :
, где – так называемые коэффициенты Фурье .

При этом число называют периодом разложения , а число – полупериодом разложения .

Очевидно, что в общем случае ряд Фурье состоит из синусов и косинусов:

Действительно, распишем его подробно:

Нулевой член ряда принято записывать в виде .

Коэффициенты Фурье рассчитываются по следующим формулам:

Прекрасно понимаю, что начинающим изучать тему пока малопонятны новые термины: период разложения , полупериод , коэффициенты Фурье и др. Без паники, это не сравнимо с волнением перед выходом в открытый космос. Во всём разберёмся в ближайшем примере, перед выполнением которого логично задаться насущными практическими вопросами:

Что нужно сделать в нижеследующих заданиях?

Разложить функцию в ряд Фурье. Дополнительно нередко требуется изобразить график функции , график суммы ряда , частичной суммы и в случае изощрённых профессорский фантазий – сделать что-нибудь ещё.

Как разложить функцию в ряд Фурье?

По существу, нужно найти коэффициенты Фурье , то есть, составить и вычислить три определённых интеграла .

Пожалуйста, перепишите общий вид ряда Фурье и три рабочие формулы к себе в тетрадь. Я очень рад, что у некоторых посетителей сайта прямо на моих глазах осуществляется детская мечта стать космонавтом =)

Пример 2

Разложить функцию в ряд Фурье на промежутке . Построить график , график суммы ряда и частичной суммы .

Решение : первая часть задания состоит в разложении функции в ряд Фурье.

Начало стандартное, обязательно записываем, что:

В данной задаче период разложения , полупериод .

Разложим функцию в ряд Фурье на промежутке :

Используя соответствующие формулы, найдём коэффициенты Фурье . Теперь нужно составить и вычислить три определённых интеграла . Для удобства я буду нумеровать пункты:

1) Первый интеграл самый простой, однако и он уже требует глаз да глаз:

2) Используем вторую формулу:

Данный интеграл хорошо знаком и берётся он по частям :

При нахождении использован метод подведения функции под знак дифференциала .

В рассматриваемом задании сподручнее сразу использовать формулу интегрирования по частям в определённом интеграле :

Пара технических замечаний. Во-первых, после применения формулы всё выражение нужно заключить в большие скобки , так как перед исходным интегралом находится константа . Не теряем её ! Скобки можно раскрыть на любом дальнейшем шаге, я это сделал в самую последнюю очередь. В первом «куске» проявляем крайнюю аккуратность в подстановке, как видите, константа не при делах, и пределы интегрирования подставляются в произведение . Данное действие выделено квадратными скобками. Ну а интеграл второго «куска» формулы вам хорошо знаком из тренировочного задания;-)

И самое главное – предельная концентрация внимания!

3) Ищем третий коэффициент Фурье:

Получен родственник предыдущего интеграла, который тоже интегрируется по частям :

Этот экземпляр чуть сложнее, закомментирую дальнейшие действия пошагово:

(1) Выражение полностью заключаем в большие скобки . Не хотел показаться занудой, слишком уж часто теряют константу .

(2) В данном случае я немедленно раскрыл эти большие скобки. Особое внимание уделяем первому «куску»: константа курит в сторонке и не участвует в подстановке пределов интегрирования ( и ) в произведение . Ввиду загромождённости записи это действие снова целесообразно выделить квадратными скобками. Со вторым «куском» всё проще: здесь дробь появилась после раскрытия больших скобок, а константа – в результате интегрирования знакомого интеграла;-)

(3) В квадратных скобках проводим преобразования , а в правом интеграле – подстановку пределов интегрирования.

(4) Выносим «мигалку» из квадратных скобок: , после чего раскрываем внутренние скобки: .

(5) Сокращаем 1 и –1 в скобках, проводим окончательные упрощения.

Наконец-то найдены все три коэффициента Фурье:

Подставим их в формулу :

При этом не забываем разделить пополам. На последнем шаге константа («минус два»), не зависящая от «эн», вынесена за пределы суммы.

Таким образом, мы получили разложение функции в ряд Фурье на промежутке :

Изучим вопрос сходимости ряда Фурье. Я объясню теорию, в частности теорему Дирихле , буквально «на пальцах», поэтому если вам необходимы строгие формулировки, пожалуйста, обратитесь к учебнику по математическому анализу (например, 2-й том Бохана; или 3-й том Фихтенгольца, но в нём труднее) .

Во второй части задачи требуется изобразить график , график суммы ряда и график частичной суммы .

График функции представляет собой обычную прямую на плоскости , которая проведена чёрным пунктиром:

Разбираемся с суммой ряда . Как вы знаете, функциональные ряды сходятся к функциям. В нашем случае построенный ряд Фурье при любом значении «икс» сойдётся к функции , которая изображена красным цветом. Данная функция терпит разрывы 1-го рода в точках , но определена и в них (красные точки на чертеже)

Таким образом: . Легко видеть, что заметно отличается от исходной функции , именно поэтому в записи ставится значок «тильда», а не знак равенства.

Изучим алгоритм, по которому удобно строить сумму ряда.

На центральном интервале ряд Фурье сходится к самой функции (центральный красный отрезок совпадает с чёрным пунктиром линейной функции).

Теперь немного порассуждаем о природе рассматриваемого тригонометрического разложения. В ряд Фурье входят только периодические функции (константа, синусы и косинусы), поэтому сумма ряда тоже представляет собой периодическую функцию .

Что это значит в нашем конкретном примере? А это обозначает то, что сумма ряда непременно периодична и красный отрезок интервала обязан бесконечно повторяться слева и справа.

Думаю, сейчас окончательно прояснился смысл фразы «период разложения ». Упрощённо говоря, через каждые ситуация вновь и вновь повторяется.

На практике обычно достаточно изобразить три периода разложения, как это сделано на чертеже. Ну и ещё «обрубки» соседних периодов – чтобы было понятно, что график продолжается.

Особый интерес представляют точки разрыва 1-го рода . В таких точках ряд Фурье сходится к изолированным значениям, которые расположены ровнёхонько посередине «скачка» разрыва (красные точки на чертеже). Как узнать ординату этих точек? Сначала найдём ординату «верхнего этажа»: для этого вычислим значение функции в крайней правой точке центрального периода разложения: . Чтобы вычислить ординату «нижнего этажа» проще всего взять крайнее левое значение этого же периода: . Ордината среднего значения – это среднее арифметическое суммы «верха и низа»: . Приятным является тот факт, что при построении чертежа вы сразу увидите, правильно или неправильно вычислена середина.

Построим частичную сумму ряда и заодно повторим смысл термина «сходимость». Мотив известен ещё из урока о сумме числового ряда . Распишем наше богатство подробно:

Чтобы составить частичную сумму необходимо записать нулевой + ещё два члена ряда. То есть,

На чертеже график функции изображен зелёным цветом, и, как видите, он достаточно плотно «обвивает» полную сумму . Если рассмотреть частичную сумму из пяти членов ряда , то график этой функции будет ещё точнее приближать красные линии, если сто членов – то «зелёный змий» фактически полностью сольётся с красными отрезками и т.д. Таким образом, ряд Фурье сходится к своей сумме .

Интересно отметить, что любая частичная сумма – это непрерывная функция , однако полная сумма ряда всё же разрывна.

На практике не так уж редко требуется построить и график частичной суммы. Как это сделать? В нашем случае необходимо рассмотреть функцию на отрезке , вычислить её значения на концах отрезка и в промежуточных точках (чем больше точек рассмотрите – тем точнее будет график). Затем следует отметить данные точки на чертеже и аккуратно изобразить график на периоде , после чего «растиражировать» его на соседние промежутки. А как иначе? Ведь приближение – это тоже периодическая функция… …чем-то мне её график напоминает ровный ритм сердца на дисплее медицинского прибора.

Выполнять построение, конечно, не сильно удобно, так как и приходится проявлять сверхаккуратность, выдерживая точность не меньше, чем до половины миллиметра. Впрочем, читателей, которые не в ладах с черчением, обрадую – в «реальной» задаче выполнять чертёж нужно далеко не всегда, где-то в 50% случаев требуется разложить функцию в ряд Фурье и всё.

После выполнения чертежа завершаем задание:

Ответ :

Во многих задачах функция терпит разрыв 1-го рода прямо на периоде разложения:

Пример 3

Разложить в ряд Фурье функцию , заданную на отрезке . Начертить график функции и полной суммы ряда.

Предложенная функция задана кусочным образом (причём, заметьте, только на отрезке ) и терпит разрыв 1-го рода в точке . Можно ли вычислить коэффициенты Фурье? Без проблем. И левая и правая части функции интегрируемы на своих промежутках, поэтому интегралы в каждой из трёх формул следует представить в виде суммы двух интегралов. Посмотрим, например, как это делается у нулевого коэффициента:

Второй интеграл оказался равным нулю, что убавило работы, но так бывает далеко не всегда.

Аналогично расписываются два других коэффициента Фурье.

Как изобразить сумму ряда? На левом интервале чертим отрезок прямой , а на интервале – отрезок прямой (жирно-жирно выделяем участок оси ). То есть, на промежутке разложения сумма ряда совпадает с функцией везде, кроме трёх «нехороших» точек. В точке разрыва функции ряд Фурье сойдётся к изолированному значению, которое располагается ровно посередине «скачка» разрыва. Его нетрудно увидеть и устно: левосторонний предел: , правосторонний предел: и, очевидно, что ордината средней точки равна 0,5.

В силу периодичности суммы , картинку необходимо «размножить» на соседние периоды, в частности изобразить то же самое на интервалах и . При этом, в точках ряд Фурье сойдётся к срединным значениям.

По сути-то ничего нового здесь нет.

Постарайтесь самостоятельно справиться с данной задачей. Примерный образец чистового оформления и чертёж в конце урока.

Разложение функции в ряд Фурье на произвольном периоде

Для произвольного периода разложения , где «эль» – любое положительное число, формулы ряда Фурье и коэффициентов Фурье отличаются немного усложнённым аргументом синуса и косинуса:

Если , то получаются формулы промежутка , с которых мы начинали.

Алгоритм и принципы решения задачи полностью сохраняются, но возрастает техническая сложность вычислений:

Пример 4

Разложить функцию в ряд Фурье и построить график суммы.

Решение : фактически аналог Примера №3 с разрывом 1-го рода в точке . В данной задаче период разложения , полупериод . Функция определена только на полуинтервале , но это не меняет дела – важно, что оба куска функции интегрируемы.

Разложим функцию в ряд Фурье:

Поскольку функция разрывна в начале координат, то каждый коэффициент Фурье очевидным образом следует записать в виде суммы двух интегралов:

1) Первый интеграл распишу максимально подробно:

2) Тщательным образом вглядываемся в поверхность Луны:

Второй интеграл берём по частям :

На что следует обратить пристальное внимание, после того, как мы звёздочкой открываем продолжение решения?

Во-первых, не теряем первый интеграл , где сразу же выполняем подведение под знак дифференциала . Во-вторых, не забываем злополучную константу перед большими скобками и не путаемся в знаках при использовании формулы . Большие скобки, всё-таки удобнее раскрывать сразу же на следующем шаге.

Остальное дело техники, затруднения может вызвать только недостаточный опыт решенияинтегралов.

Да, не зря именитые коллеги французского математика Фурье возмущались – как это тот посмел раскладывать функции в тригонометрические ряды?! =) К слову, наверное, всем интересен практический смысл рассматриваемого задания. Сам Фурье работал над математической моделью теплопроводности, а впоследствии ряд, названный его именем стал применяться для исследования многих периодических процессов, коих в окружающем мире видимо-невидимо. Сейчас, кстати, поймал себя на мысли, что не случайно сравнил график второго примера с периодическим ритмом сердца. Желающие могут ознакомиться с практическим применением преобразования Фурье в сторонних источниках. …Хотя лучше не надо – будет вспоминаться, как Первая Любовь =)

3) Учитывая неоднократно упоминавшиеся слабые звенья, разбираемся с третьим коэффициентом:

Интегрируем по частям:

Подставим найдённые коэффициенты Фурье в формулу , не забывая поделить нулевой коэффициент пополам:

Построим график суммы ряда. Кратко повторим порядок действий: на интервале строим прямую , а на интервале – прямую . При нулевом значении «икс» ставим точку посередине «скачка» разрыва и «тиражируем» график на соседние периоды:


На «стыках» периодов сумма также будет равна серединам «скачка» разрыва .

Готово. Напоминаю, что сама функция по условию определена только на полуинтервале и, очевидно, совпадает с суммой ряда на интервалах

Ответ :

Иногда кусочно-заданная функция бывает и непрерывна на периоде разложения. Простейший образец: . Решение (см. 2-й том Бохана) такое же, как и двух предыдущих примерах: несмотря на непрерывность функции в точке , каждый коэффициент Фурье выражается суммой двух интегралов.

На промежутке разложения точек разрыва 1-го рода и/или точек «стыка» графика может быть и больше (две, три и вообще любое конечное количество). Если функция интегрируема на каждой части, то она также разложима в ряд Фурье. Но из практического опыта такую жесть что-то не припоминаю. Тем не менее, встречаются более трудные задания, чем только что рассмотренное, и в конце статьи для всех желающих есть ссылки на ряды Фурье повышенной сложности.

А пока расслабимся, откинувшись в креслах и созерцая бескрайние звёздные просторы:

Пример 5

Разложить функцию в ряд Фурье на промежутке и построить график суммы ряда.

В данной задаче функция непрерывна на полуинтервале разложения, что упрощает решение. Всё очень похоже на Пример №2. С космического корабля никуда не деться – придётся решать =) Примерный образец оформления в конце урока, график прилагается.

Разложение в ряд Фурье чётных и нечётных функций

С чётными и нечётными функциями процесс решения задачи заметно упрощается. И вот почему. Вернёмся к разложению функции в ряд Фурье на периоде «два пи» и произвольном периоде «два эль» .

Предположим, что наша функция чётна. Общий же член ряда, как вы видите, содержит чётные косинусы и нечётные синусы. А если мы раскладываем ЧЁТНУЮ функцию, то зачем нам нечётные синусы?! Давайте обнулим ненужный коэффициент: .

Таким образом, чётная функция раскладывается в ряд Фурье только по косинусам :

Поскольку интегралы от чётных функций по симметричному относительно нуля отрезку интегрирования можно удваивать, то упрощаются и остальные коэффициенты Фурье.

Для промежутка :

Для произвольного промежутка:

К хрестоматийным примерам, которые есть практически в любом учебнике по матанализу, относятся разложения чётных функций . Кроме того, они неоднократно встречались и в моей личной практике:

Пример 6

Дана функция . Требуется:

1) разложить функцию в ряд Фурье с периодом , где – произвольное положительное число;

2) записать разложение на промежутке , построить функцию и график полной суммы ряда .

Решение : в первом пункте предлагается решить задачу в общем виде, и это очень удобно! Появится надобность – просто подставьте своё значение.

1) В данной задаче период разложения , полупериод . В ходе дальнейших действий, в частности при интегрировании, «эль» считается константой

Функция является чётной, а значит, раскладывается в ряд Фурье только по косинусам: .

Коэффициенты Фурье ищем по формулам . Обратите внимание на их безусловные преимущества. Во-первых, интегрирование проводится по положительному отрезку разложения, а значит, мы благополучно избавляемся от модуля , рассматривая из двух кусков только «икс». И, во-вторых, заметно упрощается интегрирование.

Два:

Интегрируем по частям:

Таким образом:
, при этом константу , которая не зависит от «эн», выносим за пределы суммы.

Ответ :

2) Запишем разложение на промежутке , для этого в общую формулу подставляем нужное значение полупериода :

Во многих случаях задача получения (вычисления) спектра сигнала выглядит следующим образом. Имеется АЦП, который с частотой дискретизации Fd преобразует непрерывный сигнал, поступающий на его вход в течение времени Т, в цифровые отсчеты - N штук. Далее массив отсчетов подается в некую программку, которая выдает N/2 каких-то числовых значений (программист, который утянул из инета написал программку, уверяет, что она делает преобразование Фурье).

Чтобы проверить, правильно ли работает программа, сформируем массив отсчетов как сумму двух синусоид sin(10*2*pi*x)+0,5*sin(5*2*pi*x) и подсунем программке. Программа нарисовала следующее:

рис.1 График временной функции сигнала

рис.2 График спектра сигнала

На графике спектра имеется две палки (гармоники) 5 Гц с амплитудой 0.5 В и 10 Гц - с амплитудой 1 В, все как в формуле исходного сигнала. Все отлично, программист молодец! Программа работает правильно.

Это значит, что если мы подадим на вход АЦП реальный сигнал из смеси двух синусоид, то мы получим аналогичный спектр, состоящий из двух гармоник.

Итого, наш реальный измеренный сигнал, длительностью 5 сек , оцифрованный АЦП, то есть представленный дискретными отсчетами, имеет дискретный непериодический спектр.

С математической точки зрения - сколько ошибок в этой фразе?Теперь начальство решило мы решили, что 5 секунд - это слишком долго, давай измерять сигнал за 0.5 сек.
рис.3 График функции sin(10*2*pi*x)+0,5*sin(5*2*pi*x) на периоде измерения 0.5 сек

рис.4 Спектр функции

Что-то как бы не то! Гармоника 10 Гц рисуется нормально, а вместо палки на 5 Гц появилось несколько каких-то непонятных гармоник. Смотрим в интернетах, что да как…

Во, говорят, что в конец выборки надо добавить нули и спектр будет рисоваться нормальный.

рис.5 Добили нулей до 5 сек

рис.6 Получили спектр

Все равно не то, что было на 5 секундах. Придется разбираться с теорией. Идем в Википедию - источник знаний.

2. Непрерывная функция и представление её рядом Фурье

Математически наш сигнал длительностью T секунд является некоторой функцией f(x), заданной на отрезке {0, T} (X в данном случае - время). Такую функцию всегда можно представить в виде суммы гармонических функций (синусоид или косинусоид) вида:

(1), где:

k - номер тригонометрической функции (номер гармонической составляющей, номер гармоники) T - отрезок, где функция определена (длительность сигнала) Ak - амплитуда k-ой гармонической составляющей, θk- начальная фаза k-ой гармонической составляющей

Что значит «представить функцию в виде суммы ряда»? Это значит, что, сложив в каждой точке значения гармонических составляющих ряда Фурье, мы получим значение нашей функции в этой точке.

(Более строго, среднеквадратичное отклонение ряда от функции f(x) будет стремиться к нулю, но несмотря на среднеквадратичную сходимость, ряд Фурье функции, вообще говоря, не обязан сходиться к ней поточечно. См. https://ru.wikipedia.org/wiki/Ряд_Фурье.)

Этот ряд может быть также записан в виде:

(2), где , k-я комплексная амплитуда.

Связь между коэффициентами (1) и (3) выражается следующими формулами:

Отметим, что все эти три представления ряда Фурье совершенно равнозначны. Иногда при работе с рядами Фурье бывает удобнее использовать вместо синусов и косинусов экспоненты мнимого аргумента, то есть использовать преобразование Фурье в комплексной форме. Но нам удобно использовать формулу (1), где ряд Фурье представлен в виде суммы косинусоид с соответствующими амплитудами и фазами. В любом случае неправильно говорить, что результатом преобразования Фурье действительного сигнала будут комплексные амплитуды гармоник. Как правильно говорится в Вики «Преобразование Фурье (ℱ) - операция, сопоставляющая одной функции вещественной переменной другую функцию, также вещественной переменной.»

Итого: Математической основой спектрального анализа сигналов является преобразование Фурье.

Преобразование Фурье позволяет представить непрерывную функцию f(x) (сигнал), определенную на отрезке {0, T} в виде суммы бесконечного числа (бесконечного ряда) тригонометрических функций (синусоид и\или косинусоид) с определёнными амплитудами и фазами, также рассматриваемых на отрезке {0, T}. Такой ряд называется рядом Фурье.

Отметим еще некоторые моменты, понимание которых требуется для правильного применения преобразования Фурье к анализу сигналов. Если рассмотреть ряд Фурье (сумму синусоид) на всей оси Х, то можно увидеть, что вне отрезка {0, T} функция представленная рядом Фурье будет будет периодически повторять нашу функцию.

Например, на графике рис.7 исходная функция определена на отрезке {-T\2, +T\2}, а ряд Фурье представляет периодическую функцию, определенную на всей оси х.

Это происходит потому, что синусоиды сами являются периодическими функциями, соответственно и их сумма будет периодической функцией.

рис.7 Представление непериодической исходной функции рядом Фурье

Таким образом:

Наша исходная функция - непрерывная, непериодическая, определена на некотором отрезке длиной T. Спектр этой функции - дискретный, то есть представлен в виде бесконечного ряда гармонических составляющих - ряда Фурье. По факту, рядом Фурье определяется некоторая периодическая функция, совпадающая с нашей на отрезке {0, T}, но для нас эта периодичность не существенна.

Периоды гармонических составляющих кратны величине отрезка {0, T}, на котором определена исходная функция f(x). Другими словами, периоды гармоник кратны длительности измерения сигнала. Например, период первой гармоники ряда Фурье равен интервалу Т, на котором определена функция f(x). Период второй гармоники ряда Фурье равен интервалу Т/2. И так далее (см. рис. 8).

рис.8 Периоды (частоты) гармонических составляющих ряда Фурье (здесь Т=2π)

Соответственно, частоты гармонических составляющих кратны величине 1/Т. То есть частоты гармонических составляющих Fk равны Fk= к\Т, где к пробегает значения от 0 до ∞, например к=0 F0=0; к=1 F1=1\T; к=2 F2=2\T; к=3 F3=3\T;… Fk= к\Т (при нулевой частоте - постоянная составляющая).

Пусть наша исходная функция, представляет собой сигнал, записанный в течение Т=1 сек. Тогда период первой гармоники будет равен длительности нашего сигнала Т1=Т=1 сек и частота гармоники равна 1 Гц. Период второй гармоники будет равен длительности сигнала, деленной на 2 (Т2=Т/2=0,5 сек) и частота равна 2 Гц. Для третьей гармоники Т3=Т/3 сек и частота равна 3 Гц. И так далее.

Шаг между гармониками в этом случае равен 1 Гц.

Таким образом сигнал длительностью 1 сек можно разложить на гармонические составляющие (получить спектр) с разрешением по частоте 1 Гц. Чтобы увеличить разрешение в 2 раза до 0,5 Гц - надо увеличить длительность измерения в 2 раза - до 2 сек. Сигнал длительностью 10 сек можно разложить на гармонические составляющие (получить спектр) с разрешением по частоте 0,1 Гц. Других способов увеличить разрешение по частоте нет.

Существует способ искусственного увеличения длительности сигнала путем добавления нулей к массиву отсчетов. Но реальную разрешающую способность по частоте он не увеличивает.

3. Дискретные сигналы и дискретное преобразование Фурье

С развитием цифровой техники изменились и способы хранения данных измерений (сигналов). Если раньше сигнал мог записываться на магнитофон и храниться на ленте в аналоговом виде, то сейчас сигналы оцифровываются и хранятся в файлах в памяти компьютера в виде набора чисел (отсчетов).

Обычная схема измерения и оцифровки сигнала выглядит следующим образом.

рис.9 Схема измерительного канала

Сигнал с измерительного преобразователя поступает на АЦП в течение периода времени Т. Полученные за время Т отсчеты сигнала (выборка) передаются в компьютер и сохраняются в памяти.

рис.10 Оцифрованный сигнал - N отсчетов полученных за время Т

Какие требования выдвигаются к параметрам оцифровки сигнала? Устройство, преобразующее входной аналоговый сигнал в дискретный код (цифровой сигнал) называется аналого-цифровой преобразователь (АЦП, англ. Analog-to-digital converter, ADC) (Wiki).

Одним из основных параметров АЦП является максимальная частота дискретизации (или частота семплирования, англ. sample rate) - частота взятия отсчетов непрерывного во времени сигнала при его дискретизации. Измеряется в герцах. ((Wiki))

Согласно теореме Котельникова, если непрерывный сигнал имеет спектр, ограниченный частотой Fмакс, то он может быть полностью и однозначно восстановлен по его дискретным отсчетам, взятым через интервалы времени , т.е. с частотой Fd ≥ 2*Fмакс, где Fd - частота дискретизации; Fмакс - максимальная частота спектра сигнала. Другими слова частота оцифровки сигнала (частота дискретизации АЦП) должна как минимум в 2 раза превышать максимальную частоту сигнала, который мы хотим измерить.

А что будет, если мы будем брать отсчеты с меньшей частотой, чем требуется по теореме Котельникова?

В этом случае возникает эффект «алиасинга» (он же стробоскопический эффект, муаровый эффект), при котором сигнал высокой частоты после оцифровки превращается в сигнал низкой частоты, которого на самом деле не существует. На рис. 11 красная синусоида высокой частоты - это реальный сигнал. Синяя синусоида более низкой частоты - фиктивный сигнал, возникающий вследствие того, за время взятия отсчета успевает пройти больше, чем пол-периода высокочастотного сигнала.

Рис. 11. Появление ложного сигнала низкой частоты при недостаточно высокой частоте дискретизации

Чтобы избежать эффекта алиасинга перед АЦП ставят специальный антиалиасинговый фильтр - ФНЧ (фильтр нижних частот), который пропускает частоты ниже половины частоты дискретизации АЦП, а более высокие частоты зарезает.

Для того, чтобы вычислить спектр сигнала по его дискретным отсчетам используется дискретное преобразование Фурье (ДПФ). Отметим еще раз, что спектр дискретного сигнала «по определению» ограничен частотой Fмакс, меньшей половине частоты дискретизации Fd. Поэтому спектр дискретного сигнала может быть представлен суммой конечного числа гармоник, в отличие от бесконечной суммы для ряда Фурье непрерывного сигнала, спектр которого может быть неограничен. Согласно теореме Котельникова максимальная частота гармоники должна быть такой, чтобы на нее приходилось как минимум два отсчета, поэтому число гармоник равно половине числа отсчетов дискретного сигнала. То есть если в выборке имется N отсчетов, то число гармоник в спектре будет равно N/2.

Рассмотрим теперь дискретное преобразование Фурье (ДПФ).

Сравнивая с рядом Фурье

видим, что они совпадают, за исключением того, что время в ДПФ имеет дискретный характер и число гармоник ограничено величиной N/2 - половиной числа отсчетов.

Формулы ДПФ записываются в безразмерных целых переменных k, s, где k – номера отсчетов сигнала, s – номера спектральных составляющих. Величина s показывает количество полных колебаний гармоники на периоде Т (длительности измерения сигнала). Дискретное преобразование Фурье используется для нахождения амплитуд и фаз гармоник численным методом, т.е. «на компьютере»

Возвращаясь к результатам, полученным в начале. Как уже было сказано выше, при разложении в ряд Фурье непериодической функции (нашего сигнала), полученный ряд Фурье фактически соответствует периодической функции с периодом Т. (рис.12).

рис.12 Периодическая функция f(x) с периодом Т0, с периодом измерения Т>T0

Как видно на рис.12 функция f(x) периодическая с периодом Т0. Однако из-за того, что длительность измерительной выборки Т не совпадает с периодом функции Т0, функция, получаемая как ряд Фурье, имеет разрыв в точке Т. В результате спектр данной функции будет содержать большое количество высокочастотных гармоник. Если бы длительность измерительной выборки Т совпадала с периодом функции Т0, то в полученном после преобразования Фурье спектре присутствовала бы только первая гармоника (синусоида с периодом равным длительности выборки), поскольку функция f(x) представляет собой синусоиду.

Другими словами, программа ДПФ «не знает», что наш сигнал представляет собой «кусок синусоиды», а пытается представить в виде ряда периодическую функцию, которая имеет разрыв из-за нестыковки отдельных кусков синусоиды.

В результате в спектре появляются гармоники, которые должны в сумме изобразить форму функции, включая этот разрыв.

Таким образом, чтобы получить «правильный» спектр сигнала, являющегося суммой нескольких синусоид с разными периодами, необходимо чтобы на периоде измерения сигнала укладывалось целое число периодов каждой синусоиды. На практике это условие можно выполнить при достаточно большой длительности измерения сигнала.

Рис.13 Пример функции и спектра сигнала кинематической погрешности редуктора

При меньшей длительности картина будет выглядеть «хуже»:

Рис.14 Пример функции и спектра сигнала вибрации ротора

На практике бывает сложно понять, где «реальные составляющие», а где «артефакты», вызванные некратностью периодов составляющих и длительности выборки сигнала или «скачками и разрывами» формы сигнала. Конечно слова «реальные составляющие» и «артефакты» не зря взяты в кавычки. Наличие на графике спектра множества гармоник не означает, что наш сигнал в реальности из них «состоит». Это все равно что считать, будто число 7 «состоит» из чисел 3 и 4. Число 7 можно представить в виде суммы чисел 3 и 4 - это правильно.

Так и наш сигнал… а вернее даже не «наш сигнал», а периодическую функцию, составленную путем повторения нашего сигнала (выборки) можно представить в виде суммы гармоник (синусоид) с определенными амплитудами и фазами. Но во многих важных для практики случаях (см. рисунки выше) действительно можно связать полученные в спектре гармоники и с реальными процессами, имеющими циклический характер и вносящими значительный вклад в форму сигнала.

Некоторые итоги

1. Реальный измеренный сигнал, длительностью T сек, оцифрованный АЦП, то есть представленный набором дискретных отсчетов (N штук), имеет дискретный непериодический спектр, представленный набором гармоник (N/2 штук).

2. Сигнал представлен набором действительных значений и его спектр представлен набором действительных значений. Частоты гармоник положительны. То, что математикам бывает удобнее представить спектр в комплексной форме с использованием отрицательных частот не значит, что «так правильно» и «так всегда надо делать».

3. Сигнал, измеренный на отрезке времени Т определен только на отрезке времени Т. Что было до того, как мы начали измерять сигнал, и что будет после того - науке это неизвестно. И в нашем случае - неинтересно. ДПФ ограниченного во времени сигнала дает его «настоящий» спектр, в том смысле, что при определенных условиях позволяет вычислить амплитуду и частоту его составляющих.

Использованные материалы и другие полезные материалы.

FourierScope - программа для построения радио сигналов и их спектрального анализа. Graph - программа с открытым кодом, предназначенная для построения математических графиков. ДИСКРЕТНОЕ ПРЕОБРАЗОВАНИЕ ФУРЬЕ – КАК ЭТО ДЕЛАЕТСЯ Дискретное преобразование Фурье (ДПФ)

Этот ряд может быть также записан в виде:

(2),
где , k-я комплексная амплитуда.

Связь между коэффициентами (1) и (3) выражается следующими формулами:

Отметим, что все эти три представления ряда Фурье совершенно равнозначны. Иногда при работе с рядами Фурье бывает удобнее использовать вместо синусов и косинусов экспоненты мнимого аргумента, то есть использовать преобразование Фурье в комплексной форме. Но нам удобно использовать формулу (1), где ряд Фурье представлен в виде суммы косинусоид с соответствующими амплитудами и фазами. В любом случае неправильно говорить, что результатом преобразования Фурье действительного сигнала будут комплексные амплитуды гармоник. Как правильно говорится в Вики «Преобразование Фурье (?) - операция, сопоставляющая одной функции вещественной переменной другую функцию, также вещественной переменной.»

Итого:
Математической основой спектрального анализа сигналов является преобразование Фурье.

Преобразование Фурье позволяет представить непрерывную функцию f(x) (сигнал), определенную на отрезке {0, T} в виде суммы бесконечного числа (бесконечного ряда) тригонометрических функций (синусоид и\или косинусоид) с определёнными амплитудами и фазами, также рассматриваемых на отрезке {0, T}. Такой ряд называется рядом Фурье.

Отметим еще некоторые моменты, понимание которых требуется для правильного применения преобразования Фурье к анализу сигналов. Если рассмотреть ряд Фурье (сумму синусоид) на всей оси Х, то можно увидеть, что вне отрезка {0, T} функция представленная рядом Фурье будет будет периодически повторять нашу функцию.

Например, на графике рис.7 исходная функция определена на отрезке {-T\2, +T\2}, а ряд Фурье представляет периодическую функцию, определенную на всей оси х.

Это происходит потому, что синусоиды сами являются периодическими функциями, соответственно и их сумма будет периодической функцией.


рис.7 Представление непериодической исходной функции рядом Фурье

Таким образом:

Наша исходная функция - непрерывная, непериодическая, определена на некотором отрезке длиной T.
Спектр этой функции - дискретный, то есть представлен в виде бесконечного ряда гармонических составляющих - ряда Фурье.
По факту, рядом Фурье определяется некоторая периодическая функция, совпадающая с нашей на отрезке {0, T}, но для нас эта периодичность не существенна.

Периоды гармонических составляющих кратны величине отрезка {0, T}, на котором определена исходная функция f(x). Другими словами, периоды гармоник кратны длительности измерения сигнала. Например, период первой гармоники ряда Фурье равен интервалу Т, на котором определена функция f(x). Период второй гармоники ряда Фурье равен интервалу Т/2. И так далее (см. рис. 8).


рис.8 Периоды (частоты) гармонических составляющих ряда Фурье (здесь Т=2?)

Соответственно, частоты гармонических составляющих кратны величине 1/Т. То есть частоты гармонических составляющих Fk равны Fk= к\Т, где к пробегает значения от 0 до?, например к=0 F0=0; к=1 F1=1\T; к=2 F2=2\T; к=3 F3=3\T;… Fk= к\Т (при нулевой частоте - постоянная составляющая).

Пусть наша исходная функция, представляет собой сигнал, записанный в течение Т=1 сек. Тогда период первой гармоники будет равен длительности нашего сигнала Т1=Т=1 сек и частота гармоники равна 1 Гц. Период второй гармоники будет равен длительности сигнала, деленной на 2 (Т2=Т/2=0,5 сек) и частота равна 2 Гц. Для третьей гармоники Т3=Т/3 сек и частота равна 3 Гц. И так далее.

Шаг между гармониками в этом случае равен 1 Гц.

Таким образом сигнал длительностью 1 сек можно разложить на гармонические составляющие (получить спектр) с разрешением по частоте 1 Гц.
Чтобы увеличить разрешение в 2 раза до 0,5 Гц - надо увеличить длительность измерения в 2 раза - до 2 сек. Сигнал длительностью 10 сек можно разложить на гармонические составляющие (получить спектр) с разрешением по частоте 0,1 Гц. Других способов увеличить разрешение по частоте нет.

Существует способ искусственного увеличения длительности сигнала путем добавления нулей к массиву отсчетов. Но реальную разрешающую способность по частоте он не увеличивает.

3. Дискретные сигналы и дискретное преобразование Фурье

С развитием цифровой техники изменились и способы хранения данных измерений (сигналов). Если раньше сигнал мог записываться на магнитофон и храниться на ленте в аналоговом виде, то сейчас сигналы оцифровываются и хранятся в файлах в памяти компьютера в виде набора чисел (отсчетов).

Обычная схема измерения и оцифровки сигнала выглядит следующим образом.


рис.9 Схема измерительного канала

Сигнал с измерительного преобразователя поступает на АЦП в течение периода времени Т. Полученные за время Т отсчеты сигнала (выборка) передаются в компьютер и сохраняются в памяти.


рис.10 Оцифрованный сигнал - N отсчетов полученных за время Т

Какие требования выдвигаются к параметрам оцифровки сигнала? Устройство, преобразующее входной аналоговый сигнал в дискретный код (цифровой сигнал) называется аналого-цифровой преобразователь (АЦП, англ. Analog-to-digital converter, ADC) (Wiki).

Одним из основных параметров АЦП является максимальная частота дискретизации (или частота семплирования, англ. sample rate) - частота взятия отсчетов непрерывного во времени сигнала при его дискретизации. Измеряется в герцах. ((Wiki))

Согласно теореме Котельникова, если непрерывный сигнал имеет спектр, ограниченный частотой Fмакс, то он может быть полностью и однозначно восстановлен по его дискретным отсчетам, взятым через интервалы времени , т.е. с частотой Fd ? 2*Fмакс, где Fd - частота дискретизации; Fмакс - максимальная частота спектра сигнала. Другими слова частота оцифровки сигнала (частота дискретизации АЦП) должна как минимум в 2 раза превышать максимальную частоту сигнала, который мы хотим измерить.

А что будет, если мы будем брать отсчеты с меньшей частотой, чем требуется по теореме Котельникова?

В этом случае возникает эффект «алиасинга» (он же стробоскопический эффект, муаровый эффект), при котором сигнал высокой частоты после оцифровки превращается в сигнал низкой частоты, которого на самом деле не существует. На рис. 5 красная синусоида высокой частоты - это реальный сигнал. Синяя синусоида более низкой частоты - фиктивный сигнал, возникающий вследствие того, за время взятия отсчета успевает пройти больше, чем пол-периода высокочастотного сигнала.


Рис. 11. Появление ложного сигнала низкой частоты при недостаточно высокой частоте дискретизации

Чтобы избежать эффекта алиасинга перед АЦП ставят специальный антиалиасинговый фильтр - ФНЧ (фильтр нижних частот), который пропускает частоты ниже половины частоты дискретизации АЦП, а более высокие частоты зарезает.

Для того, чтобы вычислить спектр сигнала по его дискретным отсчетам используется дискретное преобразование Фурье (ДПФ). Отметим еще раз, что спектр дискретного сигнала «по определению» ограничен частотой Fмакс, меньшей половине частоты дискретизации Fd. Поэтому спектр дискретного сигнала может быть представлен суммой конечного числа гармоник, в отличие от бесконечной суммы для ряда Фурье непрерывного сигнала, спектр которого может быть неограничен. Согласно теореме Котельникова максимальная частота гармоники должна быть такой, чтобы на нее приходилось как минимум два отсчета, поэтому число гармоник равно половине числа отсчетов дискретного сигнала. То есть если в выборке имется N отсчетов, то число гармоник в спектре будет равно N/2.

Рассмотрим теперь дискретное преобразование Фурье (ДПФ).

Сравнивая с рядом Фурье

Видим, что они совпадают, за исключением того, что время в ДПФ имеет дискретный характер и число гармоник ограничено величиной N/2 - половиной числа отсчетов.

Формулы ДПФ записываются в безразмерных целых переменных k, s, где k – номера отсчетов сигнала, s – номера спектральных составляющих.
Величина s показывает количество полных колебаний гармоники на периоде Т (длительности измерения сигнала). Дискретное преобразование Фурье используется для нахождения амплитуд и фаз гармоник численным методом, т.е. «на компьютере»

Возвращаясь к результатам, полученным в начале. Как уже было сказано выше, при разложении в ряд Фурье непериодической функции (нашего сигнала), полученный ряд Фурье фактически соответствует периодической функции с периодом Т. (рис.12).


рис.12 Периодическая функция f(x) с периодом Т0, с периодом измерения Т>T0

Как видно на рис.12 функция f(x) периодическая с периодом Т0. Однако из-за того, что длительность измерительной выборки Т не совпадает с периодом функции Т0, функция, получаемая как ряд Фурье, имеет разрыв в точке Т. В результате спектр данной функции будет содержать большое количество высокочастотных гармоник. Если бы длительность измерительной выборки Т совпадала с периодом функции Т0, то в полученном после преобразования Фурье спектре присутствовала бы только первая гармоника (синусоида с периодом равным длительности выборки), поскольку функция f(x) представляет собой синусоиду.

Другими словами, программа ДПФ «не знает», что наш сигнал представляет собой «кусок синусоиды», а пытается представить в виде ряда периодическую функцию, которая имеет разрыв из-за нестыковки отдельных кусков синусоиды.

В результате в спектре появляются гармоники, которые должны в сумме изобразить форму функции, включая этот разрыв.

Таким образом, чтобы получить «правильный» спектр сигнала, являющегося суммой нескольких синусоид с разными периодами, необходимо чтобы на периоде измерения сигнала укладывалось целое число периодов каждой синусоиды. На практике это условие можно выполнить при достаточно большой длительности измерения сигнала.


Рис.13 Пример функции и спектра сигнала кинематической погрешности редуктора

При меньшей длительности картина будет выглядеть «хуже»:


Рис.14 Пример функции и спектра сигнала вибрации ротора

На практике бывает сложно понять, где «реальные составляющие», а где «артефакты», вызванные некратностью периодов составляющих и длительности выборки сигнала или «скачками и разрывами» формы сигнала. Конечно слова «реальные составляющие» и «артефакты» не зря взяты в кавычки. Наличие на графике спектра множества гармоник не означает, что наш сигнал в реальности из них «состоит». Это все равно что считать, будто число 7 «состоит» из чисел 3 и 4. Число 7 можно представить в виде суммы чисел 3 и 4 - это правильно.

Так и наш сигнал… а вернее даже не «наш сигнал», а периодическую функцию, составленную путем повторения нашего сигнала (выборки) можно представить в виде суммы гармоник (синусоид) с определенными амплитудами и фазами. Но во многих важных для практики случаях (см. рисунки выше) действительно можно связать полученные в спектре гармоники и с реальными процессами, имеющими циклический характер и вносящими значительный вклад в форму сигнала.

Некоторые итоги

1. Реальный измеренный сигнал, длительностью T сек, оцифрованный АЦП, то есть представленный набором дискретных отсчетов (N штук), имеет дискретный непериодический спектр, представленный набором гармоник (N/2 штук).

2. Сигнал представлен набором действительных значений и его спектр представлен набором действительных значений. Частоты гармоник положительны. То, что математикам бывает удобнее представить спектр в комплексной форме с использованием отрицательных частот не значит, что «так правильно» и «так всегда надо делать».

3. Сигнал, измеренный на отрезке времени Т определен только на отрезке времени Т. Что было до того, как мы начали измерять сигнал, и что будет после того - науке это неизвестно. И в нашем случае - неинтересно. ДПФ ограниченного во времени сигнала дает его «настоящий» спектр, в том смысле, что при определенных условиях позволяет вычислить амплитуду и частоту его составляющих.

Использованные материалы и другие полезные материалы.

Ряд Фурье записывается в виде:

, где k – номер гармоники.

Коэффициенты Фурье для этого ряда находятся по формулам:

Периодические сигналы представляются рядом Фурье в виде:

, где - основная частота;

Здесь коэффициенты рассчитываются по формулам:

Часто используется другая форма записи ряда Фурье:

, где:

– амплитуда k -ой гармоники; - начальная фаза

Для удобства расчетов ряд Фурье записывается в комплексной форме:

Графическое временное и частотное изображения

Спектра периодического сигнала

временное изображение

(f )
частотное изображение АЧС

Аналогично ФЧС, только учитывая, что фазы могут быть и отрицательными.

Такой спектр называется дискретным или линейчатым, он характерен для периодического сигнала.

Спектр последовательности прямоугольных импульсов

Рассмотрим симметричное расположение импульсов


, где - скважность.


Найдем нулевые точки синуса:

Первая нулевая точка – самая важная для спектра последовательности прямоугольных импульсов.

АЧС последовательности прямоугольных импульсов:


ω 1 ω 2 2π/t u 4π/t u

Основную долю энергии несут гармоники, расположенные от 0 до первой нулевой точки (около 90% энергии). Эту область частот, где сосредоточено 90% энергии сигнала, называют шириной спектра (частотного) сигнала.

Для прямоугольного импульса ширина спектра - .

Любая цифровая передача сигнала требует большего спектра, чем простая аналоговая.

ФЧС последовательности прямоугольных импульсов:

если sun(x)>0, то Ψ k =0

если sin(x)<0, то Ψ k = π

Влияние длительности импульса и периода на вид спектра

Если длительность уменьшается, то основная частота не изменится, нулевые точки переместятся вправо. До первой нулевой точки, где сосредоточена основная энергия, попадает больше составляющих. Технически отмечают, что спектр расширяется.

Если же длительность импульса возрастает, то происходит сужение спектра.

Если период повторения увеличивается, то уменьшается основная частота. Если период повторения уменьшается, то основная частота увеличивается.

Изменение положения импульса или начала отсчета

Это не влияет на АЧС, при этом изменяется только фазовый спектр. Это можно отразить на основе теоремы запаздывания:


Фазовый спектр смещенного сигнала при N=4 :

Понятие о расчете цепей при периодических сигналах

Методика расчета:

1. Определяется комплексный спектр периодического сигнала;

2. Оценивается спектр, оставляют наиболее значащие гармоники (первый критерий: отсекаются все, который составляют менее 0,1 от максимальной по величине амплитуды гармоники);

Рассчитываются токи и напряжения от каждой составляющей в отдельности. Можно использовать комплексный метод расчета.

I 0 =0

Оценить негармоническую функцию можно по действующему значению, т.е. среднеквадратичному за период:


Понятие о спектре непериодического сигнала

Непериодические сигналы являются самыми важными, так как именно они несут информацию. Периодические сигналы являются служебными для передачи информации, а новой информации не несут. Поэтому возникает вопрос спектров непериодических сигналов. Их можно попробовать получить предельным переходом из периодических сигналов, устремив период к бесконечности (). Остается одиночный сигнал. Найдем комплексную амплитуду спектра одиночного сигнала: при .

,

Непериодический сигнал можно разбить на бесконечную сумму гармонических составляющих с бесконечно малыми амплитудами и отличающихся по частоте на бесконечно малые величины – Это называется сплошным спектром не периодического сигнала, а не дискретным. Для расчетов используют понятие не комплексных амплитуд, и комплексной спектральной плотности амплитуд - величины амплитуды, приходящейся на единицу частоты.

Это прямое преобразование Фурье (двухстороннее).

функций. Данное преобразование имеет большое значение, поскольку с помощью него можно решать много практических задач. Рядами Фурье пользуются не только математики, но и специалисты других наук.

Разложение функций в ряд Фурье – это математический прием, который можно наблюдать и в природе, если использовать прибор, чувствующий синусоидальные функции.

Данный процесс происходит, когда человек слышит какой-либо звук. Ухо человека устроено таким образом, что может чувствовать отдельные синусоидальные колебания давления воздуха разной частоты, что, в свою очередь, позволяет человеку распознавать речь, слушать музыку.

Ухо человека воспринимает звук не целиком, а через составляющие его ряда Фурье. Струны музыкального инструмента производит звуки, представляющие собой синусоидальные колебания различных частот. Действительность разложения света в ряд Фурье представляет радуга. Зрение человека воспринимает свет через некоторые его составляющие разных частот электромагнитных колебаний.

Преобразованием Фурье является функция, которая описывает фазу и амплитуду синусоид, определенной частоты. Это преобразование используют для решения уравнений, описывающих динамические процессы, которые возникают под действием энергии. Ряды Фурье решают задачу выделения постоянных составляющих в сложных колебательных сигналах, что позволило правильно трактовать полученные данные экспериментов, наблюдений в медицине, химии и астрономии .

Открытие данного преобразования принадлежит французскому математику Жан Батисту Жозефу Фурье. В честь, которого впоследствии было и названо рядом Фурье. Первоначально ученый нашел применение своего метода при изучении и объяснении механизмов теплопроводности. Было предположено, что изначальное нерегулярное распределение тепла можно представить в виде простейших синусоид. Для каждой, из которых будет определен температурный минимум, максимум и фаза. Функция, описывающая верхние и нижние пики кривой, фазу каждой гармоники называется преобразованием Фурье от выражения распределения температуры. Автор преобразования предложил способ разложения сложной функции в виде суммы периодических функций косинуса, синуса .

Целью курсовой работы является изучение ряда Фурье и актуальности практического применения данного преобразования.

Для достижения поставленной цели были сформулированы следующие задачи:

1) дать понятие тригонометрического ряда Фурье;

2) определить условия разложимости функции в ряд Фурье;

3) рассмотреть разложение в ряд Фурье четных и нечетных функций;

4) рассмотреть разложение в ряд Фурье непериодической функции;

5) раскрыть практическое применение ряда Фурье.

Объект исследования: разложение функций в ряд Фурье.

Предмет исследования: ряды Фурье.

Методы исследования: анализ, синтез, сравнение, аксиоматический метод.

1.5. Ряд Фурье для четных и нечетных функций

Рассмотрим симметричный интеграл

где непрерывная или кусочно-непрерывная на. Сделаем замену в первом интеграле. Полагаем. Тогда

Следовательно, если четная функция, то (т.е. график четной функции симметричен относительно оси и

Если - нечетная функция, то (т.е. график нечетной функции симметричен относительно начала координат) и

Т.е. симметричный интеграл от четной функции равен удвоенному интегралу по половинному промежутку интегрирования, а симметричный интеграл от нечетной функции равен нулю.

Отметим следующие два свойства четных и нечетных функций:

1) произведение четной функции на нечетную есть функция нечетная;

2) произведение двух четных (нечетных) функций есть функция четная.

Пусть - четная функция, заданная на и разлагающаяся на этом отрезке в тригонометрический ряд Фурье. Используя полученные выше результаты, получим, что коэффициенты этого ряда будут иметь вид:

Если - нечетная функция, заданная на отрезке и разлагающаяся на этом отрезке в тригонометрический ряд Фурье, то коэффициенты этого ряда будут иметь вид:

Следовательно, тригонометрический ряд Фурье на отрезке будет иметь вид

    для четной функции:

    (16)

    для нечетной функции:

Ряд (16) не содержит синусов кратных углов, то есть в ряд Фурье четной функции входят только четные функции и свободный член. Ряд (17) не содержит косинусов кратных углов, то есть в ряд Фурье нечетной функции входят только нечетные функции .

Определение. Ряды
являются частями полного ряда Фурье и называются неполными
тригонометрическими рядами Фурье.

Если функция разлагается в неполный тригонометрический ряд (16) (или (17)), то говорят, что она разлагается в тригонометрический ряд Фурье по косинусам (или по синусам).

1.6. Разложение в ряд Фурье непериодической функции

1.6.1. Разложение в ряд Фурье функций на

Пусть функция задана на отрезке и удовлетворяет на этом отрезке условиям теоремы Дирихле. Выполним замену переменной. Пусть, где подберем так, чтобы получившаяся функция аргумента была определена на. Следовательно, считаем, что

Получившуюся в результате замены функцию можно разложить на в ряд Фурье:

где

Сделаем обратную замену Получим

где

(19)

Ряд (18) – ряд Фурье по основной тригонометрической системе функций

Таким образом, получили, что если функция задана на отрезке и удовлетворяет на этом отрезке условиям теоремы Дирихле, то она может быть разложена в тригонометрический ряд Фурье (18) по тригонометрической системе функций (20) .

Тригонометрический ряд Фурье для четной функции, заданной на, будет иметь вид

где

для нечетной функции

где

Замечание! В некоторых задачах требуется разложить функцию в тригонометрический ряд Фурье по системе функций (20) не на отрезке, а на отрезке. В этом случае необходимо просто изменить пределы интегрирования в формулах (19) ((15), если, то есть в этом случае

(23)

или, если

(24)

Сумма тригонометрического ряда Фурье периодическая функция с периодом, являющаяся периодическим продолжением заданной функции. А для периодической функции справедливо равенство (4).

1.6.2. Разложение в ряд Фурье функций на

Пусть функция задана на и удовлетворяет на этом отрезке условиям теоремы Дирихле. Такую функцию также можно разложить в ряд Фурье. Для этого функцию нужно доопределить на промежуток и полученную функцию разложить в ряд Фурье на отрезке. При этом полученный ряд следует рассматривать только на отрезке, на котором функция задана. Для удобства вычислений доопределим функцию четным и нечетным образом.

1) Продолжим функцию на промежуток четным образом, то есть построим новую четную функцию, совпадающую на отрезке с функцией. Следовательно, график этой функции симметричен относительно оси и на отрезке совпадает с графиком. По формулам (21) найдем коэффициенты ряда Фурье для функции и запишем сам ряд Фурье. Сумма ряда Фурье для – периодическая функция, с периодом. Она будет совпадать с функцией на во всех точках непрерывности.

2) Доопределим функцию на промежуток нечетным образом, то есть построим новую нечетную функцию, совпадающую на с функцией. График такой функции симметричен относительно начала координат и на отрезке совпадает с графиком. По формулам (22) найдем коэффициенты ряда Фурье для функции и запишем сам ряд Фурье. Сумма ряда Фурье для – периодическая функция с периодом. Она будет совпадать с функцией на во всех точках непрерывности.

Замечания!

1) Аналогично можно разложить в ряд Фурье функцию, заданную на отрезке

2) Так как разложение функции на отрезке предполагает ее продолжение на отрезок произвольным образом, то и ряд Фурье для функции не будет единственным .

1.6.3. Разложение в ряд Фурье функций на

Пусть функция задана на произвольном отрезке длины и удовлетворяет на нем условиям теоремы Дирихле.

Тогда эта функция может быть разложена в ряд Фурье. Для этого функцию нужно периодически (с периодом) продолжить на всю числовую прямую и полученную функцию разложить в ряд Фурье, который следует рассматривать только на отрезке. В силу свойства (3) периодических функций имеем

Поэтому коэффициенты Фурье для полученного продолжения функции можно найти по формулам

(25)

2. Практическое применение рядов Фурье

2.1. Задачи на разложение функций в ряд Фурье и их решение

В тригонометрический ряд Фурье требуется разложить функцию, являющуюся периодическим продолжением заданной на отрезке функции. Для этого необходимо пользоваться алгоритмом разложения периодической функции в ряд Фурье.

Алгоритм разложения периодической функции в ряд Фурье:

1) Построить график заданной функции и ее периодического продолжения;

2) Установить период заданной функции;

3) Определить функция четная, нечетная или общего вида;

4) Проверить выполнимость условий теоремы Дирихле;

5) Составить формальную запись ряда Фурье, порожденного данной функцией;

6) Вычислить коэффициенты Фурье;

7) Записать ряд Фурье для заданной функции, используя коэффициенты ряда Фурье (п.4).

Пример 1. Функцию разложить в ряд Фурье на промежутке.

Решение:

1) Построим график заданной функции и его периодическое продолжение.

2) Период разложения функции.

3) Функция - нечетная.

4) Функция - непрерывная и монотонна на, т.е. функция удовлетворяет условиям Дирихле.

5) Вычислим коэффициенты ряда Фурье.

6) Запишем ряд Фурье, подставив коэффициенты Фурье в формулу

Ответ:

Пример 2. Разложим функцию с произвольным периодом в ряд Фурье .

Решение: функция определена на полуинтервале (-3;3]. Период разложения функции, полупериод. Разложим функцию в ряд Фурье

В начале координат функция разрывная, поэтому каждый коэффициент Фурье будем представлять в виде суммы двух интегралов.

Запишем ряд Фурье, подставив найденные коэффициенты ряда Фурье в формулу.

Пример 3. Разложить функцию на промежутке в ряд Фурье по косинусам. Построить график суммы ряда.

Решение: продолжим функцию на промежуток четным образом, то есть построим новую четную функцию, совпадающую на отрезке с функцией. Найдем коэффициенты ряда Фурье для функции и запишем ряд Фурье. Сумма ряда Фурье для - периодическая функция, с периодом. Она будет совпадать с функцией на во всех точках непрерывности.

Тригонометрический ряд Фурье для функции будет иметь вид

Найдем коэффициенты ряда Фурье

Таким образом, когда найдены коэффициенты, можно записать ряд Фурье

Построим график суммы ряда

Пример 4. Дана функция, определенная на отрезке . Выяснить, можно ли разложить функцию в ряд Фурье. Записать разложение функции в ряд Фурье .

Решение:

1) построим график функции на .

2) функция непрерывна и монотонна на , то есть по теореме Дирихле разлагается в тригонометрический ряд Фурье.

3) вычислим коэффициенты Фурье по формулам (1.19).

4) запишем ряд Фурье, используя найденные коэффициенты.

2.2. Примеры применения рядов Фурье в различных областях деятельности человека

Математика – одна из наук, которая имеет широкое применение на практике. Любой производственно-технологический процесс основан на математических закономерностях. Применение различных инструментов математического аппарата позволяет конструировать устройства и автоматизированные агрегаты, способные выполнять операции, сложные расчеты и вычисления при проектировании зданий, сооружений.

Ряды Фурье применяются математиками в геометрии при решении задач в сферической геометрии; в м атематической физике при решении задач о малых колебаниях упругих сред. Но кроме математики ряды Фурье нашли свое применение и в других областях наук.

Ежедневно люди пользуются различными устройствами. И зачастую эти устройства работают неисправно. Например, звук плохо различим из-за больших шумов или изображение, полученное по факсу, нечеткое. Причину неисправности человек может определить по звуку. Компьютер также может провести диагностику повреждения устройства. Лишние шумы можно убрать с помощью компьютерной обработки сигналов. Сигнал представляют в виде последовательности цифровых значений, которые затем вводят в компьютер. Выполнив определенные вычисления, получают коэффициенты ряда Фурье.

Изменение спектра сигнала позволяет очищать запись от шумов, компенсировать искажения сигнала различными устройствами звукозаписи, менять тембры инструментов, акцентировать внимание слушателей на отдельных партиях.

В цифровой обработке изображений применение рядов Фурье позволяет проводить следующие эффекты: размытие, подчеркивание границ, восстановление изображений, художественные эффекты (тиснение)

Разложение в ряд Фурье применяется в архитектуре при исследовании колебательных процессов. Например, при создании проекта различного вида конструкций рассчитывают прочность, жесткость и устойчивость элементов конструкций.

В медицине для проведения медицинского обследования с помощью кардиограмм, аппарата УЗИ пользуются математическим аппаратом, в основе которого лежит теория рядов Фурье.

Объемные вычислительные задачи оценки статистических характеристик сигналов, фильтрации шумов возникают при регистрации и обработке данных морского непрерывного дна. При постановке измерений, их регистрации перспективны голографические методы, использующие ряды Фурье. То есть ряды Фурье применяются и в такой науке как океанология.

Элементы математики встречаются на производстве практически на каждом шагу, поэтому специалистам важно знать и блестяще ориентироваться в области применения тех или иных инструментов анализа и расчета .

Заключение

Тема курсовой работы посвящена изучению ряда Фурье. Произвольную функцию можно разложить на более простые, то есть можно разложить в ряд Фурье. Объем курсовой работы не позволяет подробно раскрыть все аспекты разложения функции в ряд. Однако, из поставленных задач, представилось возможным раскрыть основную теорию о рядах Фурье.

В курсовой работе раскрыто понятие тригонометрического ряда Фурье. Определены условия разложимости функции в ряд Фурье. Рассмотрены разложения в ряд Фурье четных и нечетных функций; непериодических функций.

Во второй главе приведены лишь некоторые примеры разложения функций, заданных на различных промежутках, в ряд Фурье. Описаны те области наук, где используется данное преобразование.

Существует также комплексная форма представления ряда Фурье, которую не удалось рассмотреть, так как не позволяет объем курсовой работы. Комплексная форма ряда алгебраически проста. Поэтому часто используется в физике и прикладных расчетах.

Важность темы курсовой работы обусловлена тем, что находит широкое применение не только в математике, но в других науках: физике, механике, медицине, химии и многих других.

Список литературы

1. Бари, Н.К. Тригонометрические ряды. [текст]/ Н.К. Бари. - Москва, 1961 . - 936 с .

2. Бермант, А.Ф. Краткий курс математического анализа: учебник для вузов [текст] / А.Ф. Бермант, И.Г. Араманович. – 11-е изд., стер. – СПб.: Издательство «Лань», 2005. – 736 с.

3. Бугров, Я. С. Высшая математика: Учебник для вузов: В 3 т. [текст] / Я. С. Бугров, С. М. Никольский; Под ред. В. А. Садовничего. - 6-е изд., стереотип. - М.: Дрофа, 2004. -512 с.

4. Виноградова, И. А. Задачи и упражнения по математическому анализу: пособие для университетов, пед. вузов: В 2 ч. [текст] / И. А. Виноградова, С. Н. Олехник, В.А. Садовничий; под ред. В.А. Садовничего. – 3-е изд., испр. – М.: Дрофа, 2001. – 712 с.

5. Гусак, А.А. Высшая математика. В 2-х т. Т. 2. Учебник для студентов вузов. [текст] / А. А. Гусак. – 5-е изд. – Минск: ТетраСистемс, 2004.

6. Данко, П.Е. Высшая математика в упражнениях и задачах: учебное пособие для вузов: 2 ч. [текст] / П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова. Москва: ОНИКС: Мир и образование, 2003. – 306 с.

7. Лукин, А. Введение в цифровую обработку сигналов(математические основы) [текст]/ А. Лукин. - М., 2007. - 54 с.

8. Пискунов, Н. С. Дифференциальное и интегральное исчисления для втузов, т.2: Учебное пособие для втузов. [текст] / Н. С. Пискунов. - 13-е изд.- М.: Наука, 1985. - 432 с.

9. Рудин, У. Основы математического анализа. [текст] / У. Рудин. - 2-е изд., Пер. с англ. .- М.: Мир, 1976 .- 206 с.

10. Фихтенгольц, Г. М. Основы математического анализа. Часть 2. [текст] / Г. М. Фихтенгольц. - 6-е изд., стер. - СПб.: Издательство «Лань», 2005. – 464 с.

Оренбург, 2015 г.