Болезни Военный билет Призыв

Пример вычисления спектральной плотности. Частотная передаточная функция. Спектральная плотность мощности

Периодическое продолжение импульса. Понятие спектральной плотности сигнала.Обратное преобразование Фурье. Условие существования спектральной плотности сигнала.Связь между длительностью импульса и шириной его спектра.Обобщенная формула Рэлея.Взаимная спектральная плотность сигналов. Энергетический спектр.Корреляционный анализ сигналов.Сравнение сигналов, сдвинутых во времени.

Цель лекции:

Получить спектральные характе­ристики непериодических (импульсных) сигналов методом обобщения рядов Фурье. Определить требования к ширине полосы пропускания радиотехнического устройства. Представить сигналы посредством их спектральных плотностей. Использовать энергетический спектр для получения различных инженерных оценок. Понять, как возникает потребность в сигналах со специально выбранными свойствами.

Пусть s (t) - одиночный импульсный сигнал конечной длительности. Дополнив его мысленно такими же сигналами, периодически следую­щими через некоторый интервал времени T, получим изученную ранее периодическую последовательность S пер (t), которая может быть представлена в виде комплексного ряда Фурье

(12.1) с коэффициентами . (12.2)

Для того, чтобы вернуться к одиночному импульсному сигналу, устремим к бесконечности период повторения Т. При этом очевидно:

а) частоты соседних гармоник nω 1 и (n+ l)ω 1 окажутся сколь угодно близкими, так что в формулах (12.1) и (12.2) дискретную переменную nω 1 можно заменить непрерывной переменной ω - текущей частотой;

б) амплитудные коэффициенты С n станут неограниченными малыми из-за наличия величины Т в знаменателе формулы (12.2).

Наша задача состоит теперь в нахождении предельного вида формулы (12.1) при T→∞.

Рассмотрим малый интервал частот Δω, образующий окрестность некоторого выбранного значения частоты ω 0 . В пределах этого интервала будет содержаться N=Δω/ω 1 = ΔωT/(2π) отдельных пар спектральных составляющих, частоты которых отличаются сколь угодно мало. Поэтому составляющие можно складывать так, как будто все они имеют одну и ту же частоту и характеризуются одинаковыми комплексными амплитудами

В результате находим комплексную амплитуду эквивалентного гармонического сигнала, отображающего вклад всех спектральных составляющих, содержащихся внутри интервала Δω

. (12.3)

Функция (12.4)

носит название спектральной плотности сигнала s (t). Формула (12.4) осуществляет преобразование Фурье данного сигнала.

Решим обратную задачу спектральной теории сигналов: найдем сигнал по его спектральной плотности, которую будем считать заданной.

Поскольку в пределе частотные интервалы между соседними гармониками неограниченно сокращаются, последнюю сумму следует заменить интегралом

. (12.5)

Эта важная формула называется обратным преобразованием Фурье для сигнала s(t).

Сформулируем окончательно фундаментальный результат: сигнал s (t) и его спектральная плотность S(ω) взаимно однозначно связаны прямым и обратным преобразованиями Фурье

, (12.6)

.

Спектральное представление сигналов открывает прямой путь к анализу прохождения сигналов через широкий класс радиотехнических цепей, устройств и систем.

Сигналу s(t) можно сопоставить его спектральную плотность s(ω) в том случае, если этот сигнал абсолютно интегрируем, т. е. существует интеграл

Подобное условие значительно сужает класс допустимых сигналов. Так, в указанном классическом смысле невозможно говорить о спектральной плотности гармонического сигнала и (t) =U m cosω 0 t , существующего на всей бесконечной оси времени.

Важный вывод: чем меньше длительность импульса, тем шире его спектр.

Под шириной спектра понимают частотный интервал, в пределах которого модуль спектральной плотности не меньше некоторого наперед задан­ного уровня, например, изменяется в пределах от |S| max , до 0.1|S| max .

Произведение ширины спектра импульса на его длительность есть постоянное число, зависящее только от формы импульса и, как правило, имеющее порядок единицы: Чем короче длительность импульса, тем шире должна быть полоса пропускания соответствующего усилителя. Короткие импульсные помехи имеют широкий спектр и поэтому могут ухудшать условия радиоприема в значительной полосе частот.

Математические модели многих сигналов, широко применяемых в радиотехнике, не удовлетворяют условию абсолютной интегрируемости, поэтому метод преобразований Фурье в обычном виде к ним неприменим. Однако можно говорить о спектральных плотностях таких сигналов, если допустить, что эти плотности описываются обобщенными функциями.

Пусть два сигнала и(t) и v (t), в общем случае комплексно-значные, определены своими обратными преобразованиями Фурье.

Найдем скалярное произведение этих сигналов, выразив один из них, например v (t), через его спектральную плотность

Полученное соотношение представляет собой обобщенную формулу Рэлея. Легко запоминающаяся трактовка этой формулы такова: скалярное произведение двух сигналов с точностью до коэффициента пропорционально скалярному произведению их спектральных плотностей. Если сигналы тождественно совпадают, то скалярное произведение становится равным энергии

. (12.7)

Назовем взаимным энергетическим спектром вещественных сигналов u (t) и v (t) функцию

, (12.8)

такую, что

. (4.9)

Нетрудно заметить, что Re W uv (ω)-четная, а Im W uv (ω)-нечетная функция частоты. Вклад в интеграл (12.9) дает только вещественная часть, поэтому

. (12.10)

Последняя формула дает возможность проанализировать «тонкую структуру» взаимосвязи сигналов.

Более того, обобщенная формула Рэлея, представленная в виде (12.10), указывает на принципиальный путь, позволяющий уменьшить степень связи между двумя сигналами, добившись в пределе их ортогональности. Для этого один из сигналов необходимо подвергнуть обработке в особой физической системе, называемой частотным фильтром. К этому фильтру предъявляется требование: не пропускать на выход спектральные составляющие, находящиеся в пределах частотного интервала, где вещественная часть взаимного энергетического спектра велика. Частотная зависимость коэффициента передачи такого ортогонализирующего фильтра будет обладать резко выраженным минимумом в пределах указанной области частот.

Спектральное представление энергии сигнала легко получить из обобщенной формулы Рэлея, если в ней сигналы и(t) и v (t) считать одинаковыми. Формула (12.8), выражающая спектральную плотность энергии, приобретает вид

Величина W u (ω) носит название спектральной плотности энергии сигнала и(t), или, короче, его энергетического спектра. Формула (3.2) при этом запишется так

. (12.12)

Соотношение (4.12) известно как формула Рэлея (в узком смысле), которая констатирует следующее: энергия любого сигнала есть результат суммирования вкладов от различных интервалов частотной оси.

Изучая сигнал с помощью его энергетического спектра, мы неизбежно теряем информацию, которая заключена в фазовом спектре сигнала, поскольку в соответствии с формулой (4.11) энергетический спектр есть квадрат модуля спектральной плотности и не зависит от ее фазы.

Обратимся к упрощенной идее работы импульсного радиолокатора, предназначенного для измерения дальности до цели. Здесь информация об объекте измерения заложена в величине τ - задержке по времени между зондирующим и принятым сигналами. Формы зондирующего и (t) и принятого и (t-τ) сигналов одинаковы при любых задержках. Структурная схема устройства обработки радиолокационных сигналов, предназначенного для измерения дальности, может выглядеть так, как это изображено на рисунке 12.1.

Рисунок 12.1 - Устройство для измерения времени задержки сигналов

Величина, характеризующая распределение энергии по спектру сигнала и называемая энергетической спектральной плотностью, существует лишь для сигналов, У которых энергия за бесконечный интервал времени конечна и, следовательно, к ним применимо преобразование Фурье.

Для незатухающих во времени сигналов энергия бесконечно велика и интеграл (1.54) расходится. Задание спектра амплитуд невозможно. Однако средняя мощность Рср, определяемая соотношением

оказывается конечной. Поэтому применяется более широкое понятие "спектральная плотность мощности". Определим ее как производную средней мощности сигнала по частоте и обозначим Сk(щ):

Индексом k подчеркивается, что здесь мы рассматриваем спектральную плотность мощности как характеристику детерминированной функции u(t), описывающей реализацию сигнала.

Эта характеристика сигнала менее содержательна, чем спектральная плотность амплитуд, так как лишена фазовой информации [см. (1.38)]. Поэтому однозначно восстановить по ней исходную реализацию сигнала невозможно. Однако отсутствие фазовой информации позволяет применить это понятие к сигналам, у которых фаза не определена.

Для установления связи между спектральной плотностью Сk(щ) и спектром амплитуд воспользуемся сигналом u(t), существующим на ограниченном интервале времени (-T<. t

где - спектральная плотность мощности сигнала, ограниченного во времени.

В дальнейшем будет показано (см. § 1.11), что, усредняя эту характеристику по множеству реализаций, можно получить спектральную плотность мощности для большого класса случайных процессов.

Функция автокорреляции детерминированного сигнала

Теперь в частотной области имеется две характеристики: спектральная характеристика и спектральная плотность мощности. Спектральной характеристике, содержащей полную информацию о сигнале u(t), соответствует преобразование Фурье в виде временной функции. Выясним, чему соответствует во временной области спектральная плотность мощности, лишенная фазовой информации.

Следует предположить, что одной и той же спектральной плотности мощности соответствует множество временных функций, различающихся фазами. Советским ученым Л.Я. Хинчиным и американским ученым Н. Винером практически одновременно было найдено обратное преобразование Фурье от спектральной плотности мощности:


Обобщенную временную функцию r(), не содержащую фазовой информации, назовем временной автокорреляционной функцией. Она показывает степень связи значений функции u(t), разделенных интервалом времени, и может быть получена из статистической теории путем развития понятия коэффициента корреляции. Отметим, что во временной функции корреляции усреднение проводится по времени в пределах одной реализации достаточно большой продолжительности.

В статистической радиотехнике и физике при изучении детерминированных сигналов и случайных процессов широко используется их спектральное представление в виде спектральной плотности, которая базируется на преобразовании Фурье .

Если процесс x(t) имеет конечную энергию и квадратично интегрируем (а это нестационарный процесс), то для одной реализации процесса можно определить преобразование Фурье как случайную комплексную функцию частоты:

Функция S_x(f)=|X(f)|^2 характеризует, таким образом, распределение энергии реализации по оси частот и называется спектральной плотностью реализации. Усреднив эту функцию по всем реализациям можно получить спектральную плотность процесса.

Перейдем теперь к стационарному в широком смысле центрированному случайному процессу x(t), реализации которого с вероятностью 1 имеют бесконечную энергию и, следовательно, не имеют преобразования Фурье. Спектральная плотность мощности такого процесса может быть найдена на основании теоремы Винера-Хинчина как преобразование Фурье от корреляционной функции:

Если полагать в формулах (3) и (4) соответственно f=0 и \tau=0, имеем

5
6

Формула (6) с учетом (2) показывает, что дисперсия определяет полную энергию стационарного случайного процесса, которая равна площади под кривой спектральной плотности. Размерную величину S_x(f)df можно трактовать как долю энергии, сосредоточенную в малом интервале частот от f-df/2 до f+df/2. Если понимать под x(t) случайный (флуктуационный) ток или напряжение, то величина S_x(f) будет иметь размерность энергии [В 2 /Гц] = [В 2 с]. Поэтому S_x(f) иногда называют энергетическим спектром . В литературе часто можно встретить другую интерпретацию: \sigma_x^2 – рассматривается как средняя мощность, выделяемая током или напряжением на сопротивлении 1 Ом. При этом величину S_x(f) называют спектром мощности случайного процесса.

Свойства спектральной плотности

  • Энергетический спектр стационарного процесса (вещественного или комплексного) – неотрицательная величина:
  • Корреляционная функция k_x(\tau) и энергетический спектр S_x(f) стационарного в широком смысле случайного процесса обладают всеми свойствами, характерными для пары взаимных преобразований Фурье . В частности, чем «шире» спектр S_x(f) тем «уже» корреляционная функция k_x(\tau), и наоборот. Этот результат количественно выражается в виде принципа или соотношения неопределенности.

См. также

Напишите отзыв о статье "Спектральная плотность"

Литература

  1. Зюко, А. Г. Теория передачи сигналов / А. Г. Зюко [и др.]. - М .: Связь, 1980. - 288 с.
  2. Тихонов, В. И. Статистический анализ и синтез радиотехнических устройств и систем / В. И. Тихонов, В. Н. Харисов. - М .: Радио и связь, 2004. - 608 с. - ISBN 5-256-01701-2 .
  3. Тихонов, В. И. Статистическая теория радиотехнических устройств / В. И. Тихонов, Ю. Н. Бакаев. - М .: Академия им. проф. Н. Е. Жуковского, 1978. - 420 с.

Отрывок, характеризующий Спектральная плотность

«Ну и пускай такой то обокрал государство и царя, а государство и царь воздают ему почести; а она вчера улыбнулась мне и просила приехать, и я люблю ее, и никто никогда не узнает этого», – думал он.
Пьер все так же ездил в общество, так же много пил и вел ту же праздную и рассеянную жизнь, потому что, кроме тех часов, которые он проводил у Ростовых, надо было проводить и остальное время, и привычки и знакомства, сделанные им в Москве, непреодолимо влекли его к той жизни, которая захватила его. Но в последнее время, когда с театра войны приходили все более и более тревожные слухи и когда здоровье Наташи стало поправляться и она перестала возбуждать в нем прежнее чувство бережливой жалости, им стало овладевать более и более непонятное для него беспокойство. Он чувствовал, что то положение, в котором он находился, не могло продолжаться долго, что наступает катастрофа, долженствующая изменить всю его жизнь, и с нетерпением отыскивал во всем признаки этой приближающейся катастрофы. Пьеру было открыто одним из братьев масонов следующее, выведенное из Апокалипсиса Иоанна Богослова, пророчество относительно Наполеона.
В Апокалипсисе, главе тринадцатой, стихе восемнадцатом сказано: «Зде мудрость есть; иже имать ум да почтет число зверино: число бо человеческо есть и число его шестьсот шестьдесят шесть».
И той же главы в стихе пятом: «И даны быта ему уста глаголюща велика и хульна; и дана бысть ему область творити месяц четыре – десять два».
Французские буквы, подобно еврейскому число изображению, по которому первыми десятью буквами означаются единицы, а прочими десятки, имеют следующее значение:
a b c d e f g h i k.. l..m..n..o..p..q..r..s..t.. u…v w.. x.. y.. z
1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Написав по этой азбуке цифрами слова L"empereur Napoleon [император Наполеон], выходит, что сумма этих чисел равна 666 ти и что поэтому Наполеон есть тот зверь, о котором предсказано в Апокалипсисе. Кроме того, написав по этой же азбуке слова quarante deux [сорок два], то есть предел, который был положен зверю глаголати велика и хульна, сумма этих чисел, изображающих quarante deux, опять равна 666 ти, из чего выходит, что предел власти Наполеона наступил в 1812 м году, в котором французскому императору минуло 42 года. Предсказание это очень поразило Пьера, и он часто задавал себе вопрос о том, что именно положит предел власти зверя, то есть Наполеона, и, на основании тех же изображений слов цифрами и вычислениями, старался найти ответ на занимавший его вопрос. Пьер написал в ответе на этот вопрос: L"empereur Alexandre? La nation Russe? [Император Александр? Русский народ?] Он счел буквы, но сумма цифр выходила гораздо больше или меньше 666 ти. Один раз, занимаясь этими вычислениями, он написал свое имя – Comte Pierre Besouhoff; сумма цифр тоже далеко не вышла. Он, изменив орфографию, поставив z вместо s, прибавил de, прибавил article le и все не получал желаемого результата. Тогда ему пришло в голову, что ежели бы ответ на искомый вопрос и заключался в его имени, то в ответе непременно была бы названа его национальность. Он написал Le Russe Besuhoff и, сочтя цифры, получил 671. Только 5 было лишних; 5 означает «е», то самое «е», которое было откинуто в article перед словом L"empereur. Откинув точно так же, хотя и неправильно, «е», Пьер получил искомый ответ; L"Russe Besuhof, равное 666 ти. Открытие это взволновало его. Как, какой связью был он соединен с тем великим событием, которое было предсказано в Апокалипсисе, он не знал; но он ни на минуту не усумнился в этой связи. Его любовь к Ростовой, антихрист, нашествие Наполеона, комета, 666, l"empereur Napoleon и l"Russe Besuhof – все это вместе должно было созреть, разразиться и вывести его из того заколдованного, ничтожного мира московских привычек, в которых, он чувствовал себя плененным, и привести его к великому подвигу и великому счастию.
Пьер накануне того воскресенья, в которое читали молитву, обещал Ростовым привезти им от графа Растопчина, с которым он был хорошо знаком, и воззвание к России, и последние известия из армии. Поутру, заехав к графу Растопчину, Пьер у него застал только что приехавшего курьера из армии.

Математические модели многих сигналов, широко применяемых в радиотехнике, не удовлетворяют условию абсолютной интегрируемости, поэтому метод преобразований Фурье в обычном виде к ним неприменим. Однако, как указывалось, можно говорить о спектральных плотностях таких сигналов, если допустить, что эти плотности описываются обобщенными функциями.

Обобщенная формула Рэлея. Докажем важное вспомогательное положение, касающееся спектральных свойств сигналов.

Пусть два сигнала в общем случае комплекснозначные, определены своими обратными преобразованиями Фурье:

Найдем скалярное произведение этих сигналов, выразив один из них, например через его спектральную плотность:

Здесь внутренний интеграл представляет собой, очевидно, спектральную плотность сигнала . Поэтому

Полученное соотношение представляет собой обобщенную формулу Рэлея. Легко запоминающаяся трактовка этой формулы такова: скалярное произведение двух сигналов с точностью до коэффициента пропорционально скалярному произведению их спектральных плотностей.

Обобщение понятия спектральной плотности.

Будем считать, что сигнал представляет собой абсолютно интегрируемую функцию. Тогда его преобразование Фурье - обычная классическая функция частоты. Пусть наряду с этим сигнал не удовлетворяет условию абсолютной интегрируемости и в обычном классическом смысле преобразование Фурье не существует. Однако можно расширить понятие спектральной плотности, допустив, что является обобщенной функцией в том смысле, который был установлен в § 1.2. Для этого в соответствии с обобщенной формулой Рэлея достаточно положить, что - функционал, который, действуя на известную функцию , дает следующий результат:

Приемы вычисления спектров неинтегрируемых сигналов целесообразно рассмотреть на конкретных примерах.

Спектральная плотность постоянного во времени сигнала. Простейший неинтегрируемый сигнал - это постоянная величина и . Предположим, что - произвольный вещественный абсолютно интегрируемый сигнал с известной спектральной плотностью

Раскрывая формулу (2.43), имеем

Но, как легко заметить,

Отсюда на основании фильтрующего свойства дельтафункции приходим к выводу, что равенство (2.43) возможно лишь при условии, что

Физический смысл полученного результата нагляден - неизменный во времени сигнал имеет спектральную составляющую только на нулевой частоте.

Спектральная плотность комплексного экспоненциального сигнала.

Пусть - комплексный экспоненциальный сигнал с заданной вещественной частотой Этот сигнал не является абсолютно интегрируемым, поскольку при функция s(t) не стремится ни к какому пределу. Преобразование Фурье этого сигнала, рассматриваемое в обобщенном смысле, должно удовлетворять соотношению

Отсюда искомая спектральная плотность S (со), выражается таким образом:

Отметим следующее:

1. Спектральная плотность комплексного экспоненциального сигнала равна нулю всюду, кроме точки где она имеет дельта-особенность.

2. Спектр данного сигнала несимметричен относительно точки и сосредоточивается в области либо положительных, либо отрицательных частот.

Спектральная плотность гармонических колебаний. Пусть По формуле Эйлера

Найденный выше спектр комплексного экспоненциального сигнала, а также свойство линейности преобразования Фурье позволяют сразу записать выражение спектральной плотности косинусоидального сигнала:

Читатель может легко проверитьсамостоятельно, что для синусоидального сигнала справедливо соотношение

Следует заметить, что выражение (2.46) представляет собой четную, а выражение (2.47) - нечетную функцию частоты.

Спектральная плотность произвольного периодического сигнала.

Ранее периодические сигналы исследовались методами теории рядов Фурье. Теперь можно расширить представления об их спектральных свойствах, описав периодические сигналы с помощью преобразования Фурье.

Периодический сигнал, заданный своим рядом Фурье в комплексной форме. На основании формулы (2.45), принимая во внимание свойство линейности преобразования Фурье, сразу получаем выражение спектральной плотности такого сигнала:

Соответствующий график спектральной плотности своей конфигурацией повторяет обычную спектральную диаграмму периодического сигнала. График образован дельта-импульсами в частотной области, которые располагаются в точках с координатами

Спектральная плотность функции включения.

Вычислим спектральную плотность функции включения , которую для простоты определим во всех точках, кроме точки t = 0 [ср. с (1.2)]:

Заметим прежде всего, что функция включения получается путем предельного перехода из экспоненциального видеоимпульса:

Поэтому можно попытаться получить спектральную плотность функции включения, выполнив предельный переход при а- О в формуле спектральной плотности экспоненциального колебания:

Непосредственный переход к пределу, согласно которому справедлив при всех частотах, кроме значения , когда необходимо более тщательное рассмотрение.

Прежде всего выделим в спектральной плотности экспоненциального сигнала вещественную и мнимую части:

Можно убедиться в том, что

Действительно, предельное значение этой дроби при любых обращается в нуль, и в то же ремя

независимо от величины а, откуда и следует сделанное утверждение.

Итак, получено взаимно однозначное соответствие функции включения и ее спектральной плотности:

Дельта-особенность при свидетельствует о том, что функция включения имеет постоянную составляющую, равную 1/2.

Спектральная плотность радиоимпульса.

Как известно, радиоимпульс задается в виде произведения некоторого видеоимпульса играющего роль огибающей, и неинтегрируемого гармонического колебания: .

Чтобы найти спектральную плотность радиоимпульса, будем полагать известной функцию - спектр его огибающей. Спектр косинусоидального сигнала с произвольной начальной фазой получается путем элементарного обобщения формулы (2.46):

Спектр радиоимпульса есть свертка

Приняв во внимание фильтрующее свойство дельтафункции, получаем важный результат:

Рис. 2.8 иллюстрирует трансформацию спектра видеоимпульса при умножении его на высокочастотный гармонический сигнал.

Рис. 2.8. Частотные зависимости модуля спектральной плотности: а - видеоимпульса; б - радиоимпульса

Видно, что переход от видеоимпульса к радиоимпульсу при спектральном подходе означает перенос спектра видеоимпульса в область высоких частот - вместо единственного максимума спектральной плотности при наблюдаются два максимума при абсолютные значения максимумов сокращаются вдвое.

Отметим, что графики на рис. 2.8 отвечают ситуации, когда частота значительно превышает эффективную ширину спектра видеоимпульса (именно такой случай обычно и реализуется на практике). При этом не наблюдается ощутимого «перекрытия» спектров, отвечающих положительным и отрицательным частотам. Однако может оказаться, что ширина спектра видеоимпульса велика настолько (при коротком импульсе), что выбранное значение частоты не устраняет эффект «перекрытия». Как следствие, профили спектров видеоимпульса и радиоимпульса перестают быть подобными.

Пример 2.3. Спектральная плотность прямоугольного радиоимпульса.

Для простоты положим начальную фазу нулевой и запишем математическую модель радиоимпульса в виде

Зная спектр соответствующего видеоимпульса [см. формулу (2.20)], на основании (2.50) находим искомый спектр:

На рис. 2.9 изображены результаты расчета спектральной плотности по формуле (2.51) для двух характерных случаев,

В первом случае (рис. 2.9,а) импульс огибающей содержит 10 периодов высокочастотного заполнения частота здесь достаточно высока для того, чтобы избежать «перекрытия». Во втором случае (рис. 2.9, б) радиоимпульс состоит всего лишь из одного периода заполнения Наложение составляющих, которые соответствуют областям положительных и отрицательных частот, приводит к характерной асимметрии лепестковой структуры графика спектральной плотности радиоимпульса.

Рис. 2.9. Графики спектральных плотностей радиоимпульса с прямоугольной огибающей: а - при ; б - при

Пусть интервал разложения сигнала (см. рис. 2.1) стремится к бесконечности. При его увеличении частота = 2п/Т уменьшается до бесконечно малой величины:

Расстояние между спектральными компонентами при этом уменьшается до бесконечно малой величины, а значения превращаются в текущие значения частоты со (см. рис. 2.2). Интервал разложения стремится к бесконечной величине. Это позволяет при вычислении предела ряда Фурье в комплексной форме заменить знак суммы знаком интеграла, основную частоту О)! = 2п/Т - на?/со, а кратную частоту к(о { заменить текущей частотой со:

Интеграл, который записан в скобках выражения (2.13), обозначим

Тогда выражение (2.13) запишется более компактно:

Выражения (2.14) и (2.15) называются соответственно прямым и обратным преобразованиями Фурье. Функция 5(/со) называется

спектральной плотностью. Она является комплексной и имеет размерность [В/Гц], если размерность сигнала и{Р) [В].

Преобразование Фурье (2.14) может быть вычислено на основе общих правил интегрирования, если сигнал удовлетворяет условию абсолютной интегрируемости:

Это условие означает, что преобразование (2.14) существует для тех сигналов, площадь под кривой |м(?)| которых ограничена.

К этому классу не относятся, например, периодические сигналы, которые не удовлетворяют условию абсолютной интегрируемости. Однако это не означает, что для периодических сигналов спектральная плотность не может быть вычислена. Методы вычислений, специально разработанные для этих целей, используют так называемые обобщенные функции. Примером обобщенной функции является дельта-функция. Некоторые свойства дельта-функции приведены в приложении 1.

Преобразуем спектральную плотность сигналов, которые удовлетворяют условию абсолютной интегрируемости. Такие сигналы ограничены во времени.

С учетом формулы Эйлера перепишем выражение (2.14): где

Модуль |5(/со)| называется спектральной плотностью амплитуд сигнала или амплитудно-частотной характеристикой

(АЧХ) спектральной плотности сигнала. Функция ср(со) определяет фазо-частотную характеристику (ФЧХ) спектральной плотности сигнала. АЧХ и ФЧХ спектральной плотности являются непрерывными функциями частоты.

Перейдем к анализу спектральной плотности сигналов, не удовлетворяющих условию абсолютной интегрируемости. Такие сигналы не ограничены во времени и имеют бесконечно большую энергию.

На основе сигнала Ц)(?), удовлетворяющего условию абсолютной интегрируемости, построим периодически повторяющийся сигнал

и вычислим его спектральную плотность:
где

Размерность спектральной плотности периодически повторяющегося сигнала определяется размерностью спектральной плотности непериодического сигнала, из которого формируется периодически повторяющийся сигнал, т.е. [В/Гц].

Первый сомножитель полученного выражения в равенстве (2.16) определяет спектральную плотность ограниченного во времени сигнала и 0 (?), второй - спектральную плотность периодически повторяющейся дельта-функции

Убедимся в этом, вычислив указанную плотность:

При вычислении интеграла использовано фильтрующее свойство дельта-функции (см. приложение 1).

Если периодически повторяющуюся дельта-функцию разложить в ряд Фурье в комплексной форме, то се спектральную плотность можно выразить иначе:

При выводе последней формулы использовано выражение дельта-функции в частотной области. Приравнивая выражения спектральных плотностей, получим

Эта функция равна нулю, если со Ф к(х) ь и равна если со = к(о { . Подставим в (2.16) новое выражение 5 ф (/со):

Спектральная плотность периодически повторяющегося сигнала определяется значениями спектральной плотности ограниченного во времени сигнала г/ 0 (?), отсчитанными через интервал, равный со^ = 2л /Т.

Вычислим значение спектральной плотности ограниченного отрезком времени Т сигнала:

Умножим левую и правую части равенства на коэффициент 2/Т:

где а(/&а>1) - спектр ограниченного во времени сигнала в базисе экспоненциальных функций.

С учетом последней формулы спектральную плотность периодически повторяющегося сигнала запишем в виде

где модуль спектра определяется в базисе экспоненциальных функций формулой (2.9), а спектр фаз - формулой (2.10).

Значения АЧХ и ФЧХ спектральной плотности ограниченного во времени сигнала г/о(0> отсчитанные через интервал (щ = 2п/Т в точках частотной оси кщ, к = 0, ±1, ±2,..., определяют АЧХ и ФЧХ спектральной плотности этого периодического сигнала.

Рассмотрим некоторые свойства спектральной плотности сигнала, удовлетворяющие условию абсолютной интегрируемости.

  • 1. Спектральная плотность (2.14) - это комплексная и непрерывная функция частоты со, определенная в бесконечном интервале частот.
  • 2. АЧХ и ФЧХ спектральной плотности удовлетворяют уравнениям

где +(л)? - выбранные значения частот.

3. Преобразования Фурье (2.14), (2.15) являются линейными преобразованиями. Поэтому спектральная плотность суммы сигналов равна сумме спектральных плотностей этих сигналов, а сумма сигналов определяется обратным преобразованием Фурье от суммы их спектральных плотностей:


где Uj(t) - i- й сигнал; б’/О"оз) - спектральная плотность г-го сигнала.

4. Спектральная плотность сигнала, ограниченная бесконечно малыми интервалами 2лА/(рис. 2.3) вблизи, например, частот -со 0 , со (), определяет гармонический сигнал с бесконечно малой амплитудой.

Убедимся в этом, считая, что из-за малости А/ значения спектральной плотности около частот -ю () , (н () равны соответственно S (-jco 0) = |А(70) 0)| _ - /

Рис. 2.3.

Поскольку в бесконечно малых интервалах спектральная плотность остается постоянной, можно вынести за знак интегралов выражения |50"со 0)|е;ф(10о) и |50"м 0)|е - - ,ф(а)о) :

Как следует из полученной формулы, амплитуда полученного сигнала определяется значением спектральной плотности, функцией (бшл -)/^ и весьма малым диапазоном частот А/. При стремлении Д/ к нулю функция (81 пх)/х стремится к единице, а амплитуда становится равной нулю.

5. Если все составляющие спектральной плотности ограниченного во времени сигнала сдвигаются по фазе на +(л)?о> то этот сиг- нал сдвигается во времени на величину +? 0 . Действительно:

6. При передаче ограниченного во времени сигнала через линейный четырехполюсник, АЧХ которого в полосе пропускания равна постоянной величине К 0 , а фазовая характеристика ср(со) = = -а)? 0 > форма этого сигнала остается неизменной, а сигнал запаздывает во времени на величину? 0:

Решение. Спектральная плотность задержанного на время? 0 импульса равна

где м(?) - импульс, который расположен в начале координат;

Вычисления дают следующий результат:

Запишем эту плотность в виде где

Последнее выражение определяет спектральную плотность сигнала и(?). В диапазоне частот спектральная плотность является положительной величиной, д(со) = = 1. Поэтому в этом диапазоне фазовая характеристика ф(со) = 0, так как (о)) = = со8ф(со) + ^ з1п ср(со).

В диапазоне частот спектральная плотность является отрицательной величиной. Фазовая характеристика в этом диапазоне равна ср(со) = я, так как

АЧХ спектральной плотности задержанного импульса совпадает с АЧХ спектральной плотности сигнала «(?), а ФЧХ определяется выражением

Спектральная плотность прямоугольного импульса г/(?), АЧХ и ФЧХ этой плотности изображены на рис. 2.4.

Рис. 2.4.

Пример 2.3. Вычислить спектральную плотность кодированного сигнала

где ак - элементы кодового слова, равные -1 или 1, т.е. = +1, и 0 (0 - прямоугольный импульс с амплитудой А и длительностью т и.

Решение. Применим формулу (2.14):

После замены переменной , получим

Пример 2.4. Вычислить спектральную плотность периодического сигнала, записанного в виде ряда Фурье в тригонометрической форме [см. формулу (2.11)]. Записать выражения АЧХ и ФЧХ постоянной, синусной и косинусной составляющих этого ряда.

Решение. Функции, определяющие формулу (2.11), - периодические, за исключением постоянной составляющей. Эту составляющую аппроксимируем периодической косинусной функцией с частотой, которая стремится к нулю:

Вычислим спектральную плотность периодического сигнала u(t ) = = a cos fit, записав его в виде

щ(():

Значение первого слагаемого, стоящего в скобках выражения, равно 1, если со = -Q, и равно 0 для других дискретных значений частоты со = kfl, k = 0, 1, ±2, ±3, ±4, .... Значение второго слагаемого равно 1, если со = Q, и равно 0 для других дискретных значений частоты to = kQ, k = 0, -1, ±2, ±3, ±4, .... Учитывая это, найдем спектральную плотность, АЧХ и ФЧХ спектральной плотности периодического сигнала u(t ) = a cos Q?:

Значения АЧХ спектральной плотности в точках частотной оси со = +?2 равны паТ/(2п) = аТ/2.

Значения ФЧХ спектральной плотности гармонического сигнала в точках частотной оси со = равны 0.

По формуле спектральной плотности косинусоидального сигнала можно найти спектральную плотность постоянной составляющей:

АЧХ спектральной плотности постоянной составляющей определяется значением

Вычисление спектральной плотности синусоидального сигнала аналогично вычислению спектральной плотности косинусоидального сигнала.

Запишем периодический сигнал u(t) = bsinQ? в виде

где

Спектральная плотность сигнала и 0 (О:

По найденному выражению найдем спектральную плотность периодического сигнала u(t ) = b sin Qt:

АЧХ спектральной плотности этого сигнала в точках частотной оси со = +П:

Значения ФЧХ спектральной плотности сигнала в точках частотной оси со = +П равны -я/2, п/ 2.

Полученные формулы для спектральных плотностей гармонических сигналов позволяют найти спектральную плотность суммы этих сигналов:

где - модуль спектра, равный амплитуде гармонического

сигнала; ф(П) = -экЛ%(Ь/а) - значение фазы спектра, равное значению начальной фазы этого сигнала.

Ряд Фурье в тригонометрической форме (2.11) содержит бесконечно большое число сумм гармонических сигналов:

Спектральная плотность этой суммы находится по последнему выражению спектральной плотности заменой П = ко)^. Используя эту формулу и формулу спектральной плотности постоянной составляющей, получим выражение спектральной плотности сигнала, записанного в виде ряда Фурье в тригонометрической форме:

где - модуль спектра; ф^о^) = - значение фазы спектра, равное значению начальной фазы гармонического сигнала.

Для периодической последовательности импульсов, приведенной на рис. 2.1,

Спектральная плотность


Вычисленная спектральная плотность является математической моделью периодически повторяющегося видеоимпульса прямоугольной формы в частотной области. График спектральной плотности показан на рис. 2.5. Дельта-функции на этом рисунке условно изображены стрелками.


Рис. 2.5.

импульсов

График содержит информацию о постоянной составляющей и гармонических сигналах, входящих в ряд Фурье в тригонометрической форме.

Пример 2.5. По спектральной плотности, вид которой приведен на рис. 2.6, вычислить выражение для сигнала «(?)

Рис. 2.6.

Решение. Спектральная плотность сигнала ограничена значениями частоты, равными -со в, со в. Найдем сигнал.