Болезни Военный билет Призыв

Принципы и методы культивирования бактерий. Основные принципы культивирования бактерии.Питательные среды. Основные принципы культивирования бактерий

Страница 13 из 91

ОСНОВНЫЕ ПРИНЦИПЫ КУЛЬТИВИРОВАНИЯ МИКРООРГАНИЗМОВ

  1. Посев на скошенный агар штрихом. Правой рукой берут петлю и прожигают ее на пламени горелки докрасна. Левой рукой между большим и указательным пальцами держат пробирку с агаром почти в горизонтальном положении, чтобы во время посева в нее не попадали микробы из воздуха. Легким вращательным движением освобождают ватную пробку и мизинцем правой руки, прижимая к ладони, вынимают ее из пробирки. Край пробирки слегка обжигают. Петлей забирают немного материала, содержащего микробов, и зигзагообразными движениями наносят на поверхность агара в пробирке. После произведенного посева петлю извлекают из Пробирки, обжигают ее края и закрывают ватной пробкой. Затем снова прожигают петлю в пламени горелки, чтобы уничтожить оставшихся на ней микробов.
  2. Пересев на скошенный агар. Материал, содержащий микробов, также находится в пробирках. Для того чтобы сделать пересев из одной пробирки в другую, обе пробирки, т. е. ту, из которой производится посев, и ту, которая подлежит засеву, берут вместе и держат между большим и указательным и средним пальцами левой руки. Вынимают сначала пробки из пробирок по указанной выше методике, набирают материал и переносят материал на поверхность стерильного агара, где и производят посев, затем обжигают края пробирки и закрывают (рис. 33).
  3. Посев на бульон. Посев на бульон или с бульона на бульон или агар делают так же, как и посев на агар, но все манипуляции следует производить осторожно, чтобы бульон не вылился из пробирки или не смочил ее краев. Материал, внесенный в бульон для посева, растирают на стенке пробирки ближе к жидкости и взбалтывают в бульоне. Пересев из бульона в бульон можно делать также при помощи стерильной пастеровской пипетки.
  4. Посев в молоко и другие питательные (жидкие) среды производится так же, как и посев в бульон.
  5. Посев уколом в столбик агара или желатины. Пробирку с агаром или желатиной держат дном кверху. Материал, подлежащий посеву, берут платиновой иглой, которую отвесно вкалывают в поверхность агара или желатины и продвигают по оси пробирки до самого дна. Иглу затем извлекают, обжигают и закрывают пробирку пробкой (рис. 34).

Во внешней среде и в организме человека микробы чаше всего встречаются в смеси с другими микробами. Для изучения свойств того или иного микроба (без чего не может быть поставлен диагноз) его нужно иметь в чистой культуре, т. е. приходится отделять его от других микробов, с которыми он смешан.

Рис. 33. Посев петлей.

Рис. 34. Посев уколом.

Рис. 35. Заливка чашки агаром.
Существуют следующие методы выделения чистых культур бактерий:
а) посев на среду в чашку Гейденрейха - Петри;
б) биологические методы (применение элективных сред, использование различных оптимальных температур, заражение лабораторных животных). Наиболее часто пользуются посевом исследуемого материала на среду в чашки Гейденрейха - Петри.

  1. Техника посева на чашку Гейденрейха - Петри с застывшим агаром. Агар в колбах, флаконах, пробирках расплавляют в кипящей водяной бане. Затем агар охлаждают до 50-60° и разливают в чашки Гейденрейха - Петри. Чашки должны быть стерильными. Их устанавливают на горизонтальной поверхности, и из сосуда, содержащего расплавленный агар, вынимают пробку, края сосуда обжигают, после чего среду выливают в чашку (рис. 35). Крышку чашки приподнимают левой рукой с одной стороны, не открывая чашки полностью. Слегка наклоняя чашку в разные стороны, распределяют налитый в нее агар ровным слоем по всему дну. Когда агар затвердеет, чашки ставят в термостат вверх дном для подсушивания. Полезно также удалить стерильной ватой конденсационную воду, собирающуюся на крышке чашки. Посев на чашки с агаром производят штрихом при помощи петли или втиранием стеклянным шпателем. Для его изготовления стеклянную палочку необходимой толщины (4- 5 мм) вводят в пламя горелки, нагревают до размягчения, конец обжимают предварительно нагретыми плоскозубцами и придают форму треугольника (рис. 36). Практически удобнее пользоваться металлическими шпателями Дригальского.

Посев петлей производится следующим образом. Платиновой петлей набирают небольшое количество материала, легко проводят по поверхности агара, нанося ряд параллельных линий. Той же петлей, не набирая материала, вновь наносят штрихи на второй и третьей чашке с агаром. На первой чашке может получиться сплошной рост, тогда как на второй и третьей наблюдается рост единичных, изолированных колоний. Каждая колония представляет обособленное скопление однородных микробов. Можно также пользоваться одной чашкой, разделив ее на несколько секторов, нанеся линии деления по стеклу дна чашки.

Рис. 36. Шпатель Дригальского.
Каждый отдельный сектор будет заменять одну чашку. При последующем пересеве из колоний на косой агар или другую питательную среду получают чистую культуру.
При посеве шпателем на поверхность агара наносят петлей одну каплю исследуемого материала. Затем, приоткрыв чашку, прокаленным и остуженным стеклянным шпателем растирают каплю по всей поверхности, производя легкие поглаживающие движения по всей поверхности агара (рис. 37). Не обжигая шпателя, им же засевают вторую и третью чашки с агаром.


Рис. 37. Посев шпателем.

Биологические методы выделения чистых культур. Выделение чистых культур на основе различных биологических свойств бактерий широко проводится на специальных питательных средах. Например, специальные среды нашли широкое применение при выделении возбудителей кишечных инфекций. Добавление к питательной среде малахитового или бриллиантового зеленого, солей желчных кислот, значительных концентраций поваренной соли или лимоннокислых солей подавляет рост кишечной палочки и не влияет на размножение патогенных бактерий кишечнотифозной группы. Для выделения из мокроты и слизи культуры коклюшной палочки к питательной среде добавляют антибиотик пенициллин, который угнетает рост сопутствующей микрофлоры и в то же время не задерживает роста и размножения возбудителя коклюша. Для выделения холерного вибриона используют элективную среду - пептонную воду, а для выделения дифтерийной палочки - свернутую лошадиную сыворотку.

Для облегчения выделения чистых культур некоторых бактерий можно воспользоваться и тем, что они растут при различных температурных оптимумах. В качестве примера можно привести метод выделения чистой культуры кишечной палочки из воды путем выращивания посевов в термостате при температуре 43°, выделение возбудителя чумы из загрязненного материала путем выращивания при 20° и даже при 5°.
Наконец, следует указать, что рост некоторых патогенных бактерий (пневмококк, бациллы сибирской язвы, бактерии туляремии и др.) можно получить в чистой культуре, заражая лабораторных животных, чувствительных к тому или другому микробу. Например, для выделения культуры пневмококка из мокроты больного человека производится заражение белой мыши.

Термостат


Рис. 38. Термостаты.

Засеянную среду помещают в термостат, где температура наиболее благоприятна для выращивания микробов. Для патогенных микробов эта температура должна соответствовать температуре человеческого тела, т. е. 37°. Электрические термостаты с автоматическим регулированием температуры бывают различных размеров- от величины небольшого ящика до величины комнаты. Термостат для обычной бактериологической работы представляет собой шкаф с двойными стенками из металла или дерева, обшитый снаружи плохими проводниками тепла, например, пробкой, асбестом и т. п. (рис. 38). Термостат имеет двойную дверку, наружную, обшитую изолирующим слоем, и внутреннюю в виде рамки со стеклом. Внутри термостата устроены съемные полки из металлической сетки.


29. Основные принципы культивирования бактерий. Факторы, влияющие на рост и размножение бактерий. Культуральные свойства бактерий.

Универсальным инструментом для производства посевов явля­ется бактериальная петля. Кроме нее, для посева уколом при­меняют специальную бактериальную иглу , а для посевов на чашках Петри - металлические или стеклянные шпатели. Для посевов жидких материалов наряду с петлей используют пасте­ровские и градуированные пипетки. Первые предварительно из­готовляют из стерильных легкоплавких стеклянных трубочек, которые вытягивают на пламени в виде капилляров. Конец ка­пилляра сразу же запаивают для сохранения стерильности. У пастеровских и градуированных пипеток широкий конец за­крывают ватой, после чего их помещают в специальные пеналы или обертывают бумагой и стерилизуют.

При пересеве бактериальной культуры берут пробирку в левую руку, а правой, обхватив ватную пробку IV и V пальцами, вынимают ее, пронося над пламенем горелки. Удерживая дру­гими пальцами той же руки петлю, набирают ею посевной ма­териал, после чего закрывают пробирку пробкой. Затем в пробирку со скошенным агаром вносят петлю с посевным материалом, опуская ее до конденсата в нижней ча­сти среды, и зигзагообразным движением распределяют мате риал по скошенной поверхности агара. Вынув петлю, обжигают край пробирки и закрывают ее пробкой. Петлю стерилизуют в пламени горелки и ставят в штатив. Пробирки с посевами над г писывают, указывая дату посева и характер посевного мате­риала (номер исследования или название культуры).

Посевы «газоном» производят шпателем на питательный агар в чашке Петри. Для этого, приоткрыв левой рукой крышку, пет­лей или пипеткой наносят посевной материал на поверхность питательного агара. Затем проводят шпатель через пламя горел­ки, остужают его о внутреннюю сторону крышки и растирают материал по всей поверхности среды. После инкубации посева появляется равномерный сплошной рост бактерий.

Для того чтобы культура микроорганизмов могла нормально расти, размножаться и осуществлять биосинтез какого-либо вещества, необходимы благоприятные условия окружающей среды. При неблагоприятных условиях изменяются свойства микроорганизмов, подавляется их жизнедеятельность или происходит гибель. При неблагоприятных условиях изменяются свойства микроорганизмов, подавляется их жизнедеятельность или происходит гибель.

Физические – температура, влажность среды, концентрация питательных веществ.

К химическим факторам , которые влияют на жизнедеятельность микроорганизмов, относятся: рН среды, окислительно-восстановительный потенциал (гН2) и присутствие в среде токсичных веществ.

Биологические факторы – сводятся к взаимоотношению между микроорганизмами, соприкасающимися в процессе своей жизнедеятельности.

Культуральные свойства бактерий – питательные потребности, условия роста и характер роста бактерий на бактериол. средах. В питательные , азота и ростовых факторов, способность бактерий расти на определенных питательных средах, в условия роста - рН, Eh, концентрацию О2 плотность, осмотическое давление среды, температуру роста; в характер роста - скорость роста (быстрый, медленный), внешний вид к-ры на жидких, плотных и полужидких средах, изменения, к-рые наступают в среде или отдельных ее компонентах в процессе роста микробов. Сведения о К.с. используют при выборе способов культивирования и при идентификации выделенной к-ры

30. Принципы и методы выделения чистых культур аэробных и анаэробных бактерий.

Чистой культурой называется популяция бактерий одного вида или одной разновидности, выращенная на питательной среде. Многие виды бактерий подразделяют по одному признаку на биологические варианты -биовары (син: биотипы). Биовары, различающиеся по биохимическим свойствам, называют хемоварами, по антигенным свойствам - сероварами, по чувствительности к фагу-фаговарами. Культуры микробов одного и того же вида, или биовара, выделенные из различных источников или в разное время из одного и того же источника, называют штаммами, которые обычно обозначаются номерами или какими-либо символами. Чистые культуры бактерий в диагностических бактериологических лабораториях получают из изолированных колоний, пересевая их петлей в пробирку с твердой или, реже, жидкой питательной средой.

Колония представляет собой изолированное скопление бактерий одного вида, или биовара, выросших на плотной питательной среде в результате размножения одной или нескольких бактериальных клеток. Колонии бактерий разных видов отличаются друг от друга по своей морфологии, цвету и другим признакам.

Чистую культуру -бактерий получают для проведения диагностических исследований , которые заключаются в идентификации, т. е. определении родовой и видовой принадлежности выделенных бактерий. Это достигается путем изучения их морфологических, культуральных, биохимических и других признаков (см. схему 1).

Морфологические и тинкториальные признаки бактерий изучают при микроскопическом исследовании мазков, окрашенных разными методами, и нативных препаратов.

Культуральные свойства характеризуют питательные потребности, условия и тип роста бактерий на плотных и жидких питательных средах. Эти свойства устанавливаются по морфологии колоний и особенностям роста культуры.

Биохимические признаки бактерий определяются набором конститутивных и индуцибельных ферментов, присущих определенному роду, виду, варианту. В бактериологической практике таксономическое значение имеют чаще всего сахаролитические и протеолитические признаки бактерий, которые определяют на дифференциально-диагностических средах.

Для идентификации бактерий до рода и вида имеют значение пигменты, окрашивающие колонии и культуры в разнообразные цвета. Например, красный пигмент образуют Serratia marcescens (палочка чудесной крови), золотистый пигмент-Staphylococcus aureus (золотистый стафилококк), сине-зеленый пигмент-Pseudomonas aeruginosa (палочка синезе-леного гноя).

Для установления биовара (хемовара, серовара, фаготипа) проводят дополнительные исследования по выполнению соответствующего маркера - определению фермента, антигена, чувствительности к фагам.

31. Микрофлора почвы, воды, воздуха. Патогенные виды, сохраняющиеся во внешней среде и передающиеся через почву, воду, пищевые продукты, воздух.

Почва. В зависимости от глубины залегания слоя почвы меняется и состав ее микрофлоры. В верхних слоях, богатых растительными и животными остатками, а также хорошо снабженных воздухом, преобладают аэробные микроорганизмы, способные разлагать сложные органические соединения. В более глубоких почвенных слоях содержится меньше органических соединений и воздуха, вследствие чего там преобладают анаэробные бактерии.

Почва служит местом обитания спорообразующих палочек родов Bacillus и Clostridium. Непатогенные бациллы (Вас. megatherium, Вас. subtilis и др.) наряду с псевдомонадами , протеем и некоторыми другими бактериями являются аммонифицирующими, составляя группу гнилостных бактерий, осуществляющих минерализацию белков. Патогенные палочки (возбудитель сибирской язвы, ботулизма, столбняка, газовой гангрены) способны длительно сохраняться в почве.

В почве находятся также многочисленные представители грибов. Грибы участвуют в почвообразовательных процессах, превращениях соединений азота, выделяют биологически активные вещества, в том числе антибиотики и токсины. Токсинообразующие грибы, попадая в продукты питания человека, вызывают интоксикации - микотоксикозы и афлатоксикозы.

Микрофлора воды отражает микробный состав почвы, так как микроорганизмы, в основном, попадают в воду с ее частичками. В воде формируются определенные биоценозы с преобладанием микроорганизмов, адаптировавшихся к условиям местонахождения, освещенности, степени растворимости кислорода и диоксида углерода, содержания органических и минеральных веществ.

В водах пресных водоемов обнаруживаются различные бактерии: палочковидные (псевдомонады, аэромонады), кокковидные (микрококки) и извитые. Загрязнение воды органическими веществами сопровождается увеличением анаэробных и аэробных бактерий, а также грибов. Микрофлора воды выполняет роль активного фактора в процессе самоочищения ее от органических отходов, которые утилизируются микроорганизмами. Вместе с сточными водами попадают представители нормальной микрофлоры человека и животных (кишечная палочка, цитробактер, энтеробактер, энтерококки, клостридии) и возбудители кишечных инфекций (брюшного тифа, паратифов, дизентерии, холеры, лептоспироза, энтеровирусных инфекций). Таким образом, вода является фактором передачи возбудителей многих инфекционных заболеваний. Некоторые возбудители могут даже размножаться в воде (холерный вибрион, легионеллы).

Микрофлора воздуха взаимосвязана с микрофлорой почвы и воды. В воздух также попадают микроорганизмы из дыхательных путей и с каплями слюны человека и животных. Солнечные лучи и другие факторы способствуют гибели микрофлоры воздуха. В воздухе обнаруживаются кокковидные и палочковидные бактерий, бациллы и клостридии, актиномицеты, грибы и вирусы. Много микроорганизмов содержится в воздухе закрытых помещений , микробная обсемененность которых зависит от степени уборки помещения, уровня освещенности, количества людей в помещении, частоты проветривания и др. Количество микроорганизмов в 1 м3 воздуха (так называемое микробное число, или обсемененность воздуха) отражает санитарно-гигиеническое состояние воздуха, особенно в больничных и детских учреждениях. Косвенно о выделении патогенных микроорганизмов (возбудителей туберкулеза, дифтерии, коклюша, скарлатины, кори, гриппа и др.) при разговоре, кашле, чиханье больных и носителей можно судить по наличию санитарно-показательных бактерий (золотистого стафилококка и стрептококков), так как последние являются представителями микрофлоры верхних дыхательных путей и имеют общий путь выделения с патогенными микроорганизмами, передающимися воздушно-капельным путем.

32. Санитарно – показательные микроорганизмы. Коли – титр, коли – индекс, методы определения.

Санитарно-показательными называют микроорганизмы, по которым можно косвенно и с еще большей степенью вероятности судить о возможном присутствии патогенов во внешней среде.

Их наличие свидетельствует о загрязнении объекта выделениями человека и животных, так как они постоянно обитают в тех же органах, что и возбудители заболеваний, и имеют общий путь выделения в окружающую среду. Например, возбудители кишечных инфекций имеют общий путь выделения (с фекалиями) с такими санитарно-показательными бактериями, как бактерии группы кишечной палочки -(в группу входят сходные по свойствам бактерии родов Citrobacter, Enterobacter, Klebsiella), энтерококки, клостридии перфрингенс. Возбудители воздушно-капельных инфекций имеют общий путь выделения с бактериями (кокками), постоянно обитающими на слизистой оболочке верхних дыхательных путей, выделяющимися в окружающую среду (при кашле, чиханье, разговоре), поэтому в качестве санитарно-показательных бактерий для воздуха закрытых помещений предложены гемолитические стрептококки и золотистые стафилококки. Санитарно-показательные микроорганизмы должны отвечать следующим основным требованиям:

1. должны обитать только в организме людей или животных и постоянно обнаруживаться в их выделениях;

2. не должны размножаться или обитать в почве и воде;

3. сроки их выживания и устойчивость к различным факторам после выделения из организма в окружающую среду должны быть равными или превышать таковые у патогенных микробов;

5. методы их обнаружения и идентификации должны быть простыми, методически и экономически доступными;

6. должны встречаться в окружающей среде в значительно больших количествах, чем патогенные микроорганизмы;

7. в окружающей среде не должно быть близко сходных обитателей - микроорганизмов.

Коли-индекс - количество особей кишечной палочки, обнаруживаемое в 1 л (для твердых тел в 1 кг) исследуемого объекта; определяется путем подсчета колоний кишечной палочки, выросших на плотной питательной среде при посеве определенного количества исследуемого материала, с последующим пересчетом на 1 л (кг). Коли-индекс - величина, пропорциональная фактическому содержанию кишечной палочки в исследуемом субстрате.

Коли-титр - это наименьшее количество исследуемого материала в миллилитрах (для твердых тел - в граммах), в котором обнаружена одна кишечная палочка. Для определения коли-титра раздельно засевают на жидкие среды десятикратно уменьшающиеся объемы исследуемого материала (например, 100; 10; 1; 0,1; 0,01; 0,001 мл).

Для перевода коли-титра в коли-индекс следует 1000 разделить на число, выражающее коли-титр; для перевода коли-индекса в коли-титр 1000 разделить на число, выражающее коли-индекс.

33. Микрофлора тела человека в различные возрастные периоды. Роль микробов – постоянных обитателей тела человека в физиологических процессах. Понятие о дисбактериозе, его классификация, проявления и методы лечения.

Микрофлора располагается только на коже и на слизистых оболочках полостей, сообщающихся с внешней средой (кроме матки и мочевого пузыря). Все ткани организма в норме совершенно свободны от микробов.

Естественная аутомикрофлора тела- единый природный комплекс, состоящий из совокупности гетерогенных микробоценозов в различных участках человеческого организма.

До рождения организм человека стерилен,- в утробе матери эмбрион защищен от вторжения микробов плацентарным и другими барьерами.

Микрофлора пищеварительного тракта - самая многочисленная и самая значимая для поддержания здоровья человека. Особенно велика ее роль в развивающемся детском организме.

Существует два критических момента в процессе формирования кишечного микробиоценоза. Первый - при рождении ребенка, когда в течение первых суток начинается колонизация стерильного кишечника, второй - когда ребенка отлучают от грудного вскармливания.

В ходе родов кожа и слизистые ребенка впервые соприкасаются с микрофлорой родовых путей матери, воздуха, рук медицинского персонала. Вследствие этого кишечная микрофлора первых дней жизни ребенка представлена ассоциацией аэробов (в основном факультативными анаэробами) - микрококками, энтерококками, клостридиями, стафилококками. К 4-5-му дню жизни видовой состав фекальной микрофлоры становится более разнообразным , появляются ассоциации неспорообразующих анаэробов (бифидобактерии, пропионибактерии, пептококки, пептострептококки, бактероиды и фузобактерии). Однако пока еще доминируют аэробные бактерии - лактобациллы, кокки, дрожжевые грибки.

Дальнейшее формирование аутомикрофлоры желудочно-кишечного тракта в основном зависит от типа вскармливания. При грудном вскармливанииу здоровых доношенных детей уже в конце первой - начале второй недели жизни в микробоценозе толстого кишечника за счет опережающих темпов роста отчетливо преобладает анаэробная составляющая (более 95%). Оставшаяся часть (около 4-5%) представлена разнообразными факультативными аэробами: лактобациллами, эшерихиями, энтерококками, эпидермальным стафилококком, дрожжевыми грибками.

Роль микробов – постоянных обитателей тела человека в физиологических процессах

Микробные биоценозы поддерживают нормальные физиологические функции и играют определённую роль в иммунитете. Нарушения в микробных биоценозах во многих случаях могут привести к возникновению патологических процессов в соответствующих органах.

Важную роль играет микрофлора толстой кишки. Она обладает выраженными антагонистическими свойствами (особенно анаэробные микробы) и препятствует развитию патогенных бактерий, которые могут попасть с пищей и водой в кишечник, а также гнилостных бактерий. Микробы – постоянные обитатели кишечника образуют бактериоцины, антибиотики, молочную кислоту, спирты, перекись водорода, жирные кислоты, которые подавляют размножение патогенных видов. Таким образом, анаэробы кишечника участвуют в обеспечении колонизационной резистентности, так как предотвращают колонизацию (заселение) слизистых оболочек посторонними микроорганизмами.

Микробы кишечника также участвуют в процессах пищеварения, водно-солевом, белковом, углеводном, липидном обменах, образуют на слизистой оболочке кишечника защитную плёнку, способствуют формированию и развитию иммунной системы, участвуют в обезвреживании токсических соединений, синтезируют биологически активные вещества (витамины, антибиотики, бактериоцины).

Большое значение имеет E. сoli, которая обладает высокой ферментативной активностью, синтезирует витамины B1, B2, B12, B5, K, обладает антагонистическими свойствами против патогенных представителей семейства Enterobacteriaceae, против стафилококков и грибов p. Candida.

Понятие о дисбактериозе, его классификация, проявления и методы лечения.

Дисбактериоз (дисбиоз) – это состояние, развивающееся в результате утраты нормальных функций микрофлоры. При этом происходит нарушение сложившегося равновесия между видами микробов, а также между ними и организмом человека, т.е. нарушается состояние эубиоза. При дисбактериозе происходят качественные и количественные изменения бактериальной микрофлоры. При дисбиозе – изменения и среди других микроорганизмов (вирусов, грибов). Дисбактериозы вызывают различные эндогенные (внутренние) и экзогенные (внешние) факторы. Чаще всего развиваются дисбактериозы кишечника.

Вид дисбактериоза по возбудителю:


  • стафилококковый

  • протейный

  • дрожжевой

  • ассоциированный (стафилококковый, протейный, дрожжевой)
По степени компенсации:

  • компенсированная - клинических проявлений может не быть;

  • субкомпенсированная - проявления дисбактериоза иногда возникают при диетических нарушениях, например;

  • декомпенсированная - приспособительные механизмы истощены, вылечить дисбактериоз трудно.
Лечение заключается в восстановлении нормальной микрофлоры. Для восстановления нормальной микрофлоры применяются пробиотики.

План

  1. Метаболизм микроорганизмов
  2. Питание бактерий
  3. Дыхание микроорганизмов
  4. Принципы культивирование микроорганизмов
  5. Светящиеся и ароматобразующие микроорганизмы
  6. Рост и размножение бактерий
  7. Пигменты микроорганизмов

Физиологические и биохимические особенности микроорганизмов положены в основу их систематики. Они важны для изучения механизмов патогенного действия культивирования, дифференцировки и идентификации отдельных микроорганизмов а также для разработки биотехнологии производства вакцин, антибиотиков и других биологически активных продуктов.

Метаболизм микроорганизмов

Для роста и размножения микроорганизмы нуждаются в веществах, используемых для построения структурных компонентов клетки и получения энергии. Метаболизм (т.е. обмен веществ и энергии) имеет две составляющих - анаболизм и катаболизм. Анаболизм - синтез компонентов клетки (конструктивный обмен). Катаболизм - энергетический обмен, связан с окислительно-восстановительными реакциями, расщеплением глюкозы и других органических соединений, синтезом АТФ.

У прокариот, так же как у эукариот, в процессе ферментативных катаболических реакций происходит выделение энергии, которая аккумулируется в молекулах АТФ. В процессе ферментативных анаболических реакций эта энергия расходуется на синтез многочисленных макромолекул органических соединений, из которых в конечном итоге монтируются биополимеры - составные части микробной клетки. Взаимосвязь анаболизма и катаболизма выражается также в том, что на определенных этапах метаболизма образуются одинаковые промежуточные продукты (амфиболиты), которые используются в обоих процессах.

Питательные вещества могут поступать в клетку в растворимом виде (это характерно для прокариот) - осмотрофы, или в виде от­дельных частиц - фаготрофы.

Основным регулятором поступления веществ в бактериальную клетку является цитоплазматическая мембрана. Существует четыре основных механизма поступления ве­ществ:

-пассивная диффузия - по градиенту концентрации, энергонезатратная, не имеющая субстратной специфичности;

  • облегченная диффузия - по градиенту концентрации, субстратспецифичная, энерго­незатратная, осуществляется при участии специализированных белков пермеаз;
  • активный транспорт - против градиента концентрации, субстратспецифичен (специальные связывающие белки в комплексе с пермеазами), энергозатратный (за счет АТФ), вещества поступают в клетку в химически неизмененном виде;
  • транслокация (перенос групп) - против градиента концентрации, с помощью фос-фотрансферазной системы, энергозатратна, вещества (преимущественно сахара) поступа­ют в клетку в форфорилированном виде.

Из бактериальной клетки

Синтезируемые в бактериальных клетках соединения выходят из них тремя путями:

1) Фосфотрансферазная реакция. Происходит при фосфорилировании переносимой молекулы

2) Контрансляционная секреция. В этом случае синтезируемые молекулы должны иметь особую лидирующую последовательность аминокислот, чтобы прикрепиться к мембране и сформировать канал, через который молекулы белка смогут выйти в окружающую среду. Таким образом выходят из клетки соответствующих бактерий токсины столбняка, дифтерии и другие молекулы.

3) Почкование мембраны. Молекулы, образующиеся в клетке, окружаются мембранным пузырьком, который отшнуровываются в окружающую среду.

Метаболизм микроорганизмов характеризуется ярко выраженным разнообразием. В качестве питательных веществ микробные клетки используют различные органические и минеральные соединения.

Питание бактерий

Особенностями питания бактериальной клетки являются поступление питательных субстратов внутрь через всю ее поверхность, а также высокая скорость процессов метаболизма и адаптации к меняющимся условиям окружающей среды.

Типы питания. Широкому распространению бактерий способствует разнообразие типов питания. Микроорганизмы нуждаются в углероде, азоте, сере, фосфоре, калии и других элементах.

Основные химические элементы- органогены, необходимые для синтеза органических соединений - углерод, азот, водород, кислород.

В зависимости от источника потребляемого углерода микробы подразделяют на ау-тотрофы (используют СО2) и гетеротрофы (используют готовые органические соеди­нения). В зависимости от источника энергии микроорганизмы делят на фототрофы (энергию получают за счет фотосинтеза - например, цианобактерии) и хемотрофы (энер­гия добывается за счет химических, окислительно- восстановительных реакций). Если при этом донорами электронов являются неорганические соединения, то это литотрофы, если органические - органотрофы. Если бактериальная клетка в состоянии синтезировать все необходимые для жизнедеятельности вещества, то это прототрофы. Если бактерии нуждаются в дополнительных веществах (факторах роста), то это ауксотрофы.

Факторы роста

К факторам роста относят аминокислоты, пуриновые и пиримидиновые основание липиды, витамины, железопорфирины (тем) и другие соединения. Некоторые микроорганизмы самостоятельно синтезируют необходимые им ростовые факторы, другие получают их в готовом виде из окружающей среды.

Потребность того или другого микроорганизма в определенных ростовых факторах является стабильным признаком, который используется для дифференциации и идентификации бактерий, а также при изготовлении питательных сред для лабораторных и биотехнологических целей.

Аминокислоты. Многие микроорганизмы, особенно бактерии, нуждаются в тех или других аминокислотах (одной или нескольких), поскольку они не могут их самостоятельно синтезировать, например клостридии - в лейцине, тирозине, стрептококки - в лейцине, аргинине и др. Такого рода микроорганизмы называются ауксотрофными по тем аминокислотам или другим соединениям, которые они не способны синтезировать.

Пуриновые и пиримидиновые основания и их производные (аденин, гуанин, цитозин, урацил, тимин и др.) являются факторами роста для разных видов стрептококков, некоторые азотистые основания нужны для роста стафилококков и других бактерий. В нуклеотидах нуждаются некоторые виды микоплазм.

Витамины , главным образом группы В, входят в состав коферментов или их простетических групп. Многие бактерии ауксотрофны по определенным витаминам. Например, коринебактерии дифтерии, шигеллы нуждаются в никотиновой кислоте или ее амиде, который входит в состав НАД и НАДФ, золотистый стафилококк, пневмококк, бруцеллы - тиамине (В,), входящем в состав пирофосфата, некоторые виды стрептококков, бациллы столбняка - в пантотеновой кислоте, являющейся составной частью кофермента КоА и т.д. Кроме того, факторами роста для многих бактерий являются фолиевая кислота, биотин, а также гемы - компоненты цитохромов. Последние необходимы гемофильным бактериям, микобактериям туберкулеза и др.

Дыхание микроорганизмов

Путем дыхания микроорганизмы добывают энергию. Дыхание - биологический про­цесс переноса электронов через дыхательную цепь от доноров к акцепторам с образовани­ем АТФ. В зависимости от того, что является конечным акцептором электронов, выделя­ют аэробное и анаэробное дыхание. При аэробном дыхании конечным акцептором элек­тронов является молекулярный кислород (02), при анаэробном - связанный кислород (-Х03, =S04, =S03).

Аэробное дыхание донор водорода →

Анаэробное дыханиенитратное окисление

(факультативные анаэробы) донор водорода →

сульфатное окисление

(облигатные анаэробы) донор водорода →

По типу дыхания выделяют четыре группы микроорганизмов.

  1. Облигатные (строгие) аэробы. Им необходим молекулярный (атмосферный) ки-" слород для дыхания.
  2. Микроаэрофилы нуждаются в уменьшенной концентрации (низком парциальном давлении) свободного кислорода. Для создания этих условий в газовую смесь для культи­вирования обычно добавляют С02, например до 10- процентной концентрации.
  3. Факультативные анаэробы могут потреблять глюкозу и размножаться в аэробных и анаэробных условиях. Среди них имеются микроорганизмы, толерантные к относитель­но высоким (близких к атмосферным) концентрациям молекулярного кислорода - т.е. аэротолерантные, а также микроорганизмы которые способны в определенных условиях пе­реключаться с анаэробного на аэробное дыхание.
  4. Строгие анаэробы размножаются только в анаэробных условиях т.е. при очень низких концентрациях молекулярного кислорода, который в больших концентрациях для них губителен. Биохимически анаэробное дыхание протекает по типу бродильных процес­сов, молекулярный кислород при этом не используется.

Аэробное дыхание энергетически более эффективно (синтезируется большее коли­чество АТФ).

В процессе аэробного дыхания образуются токсические продукты окисления (Н202-перекись водорода, -02 - свободные кислородные радикалы), от которых защищают спе­цифические ферменты, прежде всего каталаза, пероксидаза, пероксиддисмутаза. У анаэробов эти ферменты отсутствуют, также как и система регуляции окислительно- восста­ новительного потенциала (rH 2 )

Основные методы создания анаэробных условий для культивирования микроорганизмов.

  1. Физический - откачивание воздуха, введение специальной газовой безкислородной смеси (чаще- N2- 85%, С02- 10%, Н2- 5%).
  2. Химический - применяют химические поглотители кислорода.
  3. Биологический - совместное культивирование строгих аэробов и анаэробов (аэро­бы поглощают кислород и создают условия для размножения анаэробов).
  4. Смешанный - используют несколько разных подходов.

Необходимо отметить, что создание оптимальных условий для строгих анаэробов - очень сложная задача. Очень непросто обеспечить постоянное поддержание безкислородных условий культивирования, необходимы специальные среды без содержания раство­ренного кислорода, поддержание необходимого окислительно - восстановительного по­тенциала питательных сред, взятие и доставка, посев материала в анаэробных условиях.

Существует ряд приемов, обеспечивающих более подходящие условия для анаэро­бов - предварительное кипячение питательных сред, посев в глубокий столбик агара, за­ливка хред вазелиновым маслом для сокращения доступа кислорода, использование гер­метически закрывающихся флаконов и пробирок, шприцев и лабораторной посуды с инертным газом, использование плотно закрывающихся эксикаторов с горящей свечой. Используются специальные приборы для создания анаэробных условий - анаэростаты. Од­нако в настоящее время наиболее простым и эффективным оборудованием для создания анаэробных и микроаэрофильных условий является система "Газпак" со специальными газорегенерирующими пакетами, действующими по принципу вытеснения атмосферного воздуха газовыми смесями в герметически закрытых емкостях.

Принципы культивирования бактерий

Выделение микроорганизмов из различных материалов и получение их культур широко используется в лабораторной практике для микробиологической диагностики инфекционных заболеваний, в научно-исследовательской работе и в микробиологическом производстве вакцин, антибиотиков и других биологически активных продуктов микробной жизнедеятельности.

Условия культивирования также зависят от свойств соответствующих микроорганизмов. Большинство патогенных микробов выращивают на пита­тельных средах при температуре 37 °С в течение 1-2 суток. Однако некото­рые из них нуждаются в более длительных сроках. Например, бактерии кок­люша - в 2-3 сутках, а микобактерии туберкулеза - в 3-4 неделях.

Для стимуляции процессов роста и размножения аэробных микробов, а также сокращения сроков их выращивания используют метод глубинного культивирования, который заключается в непрерывном аэрировании и пере­мешивании питательной среды. Глубинный метод нашел широкое примене­ние в биотехнологии.

Основные принципы культивирования микроорганизмов

на питательных средах.

  1. Использование всех необходимых для соответствующих микробов питательных компонентов.
  2. Оптимальные температура, рН, гН2, концентрация ионов, степень насыщения ки­слородом, газовый состав и давление.
  3. Концентрация ионов водорода. Ионы Н+ и ОН- наиболее подвижны из всех ионов, поэтому уже малейшие изменения их концентрации оказывают на микроорганизмы сильное влияние. Поэтому поддержание заданной оптимальной величины рН имеет существенное значение для роста. Большинство микроорганизмов лучше растет при рН 7.

Микроорганизмы культивируют на питательных средах при оптимальной темпера­туре в термостатах, обеспечивающих условия инкубации.

По температурному оптимуму роста выделяют три основные группы микроорганиз мов.

  1. Психрофилы - растут при температурах ниже +20 градусов Цельсия.
  2. Мезофилы - растут в диапазоне температур от 20 до 45 градусов (часто оптимум-при 37 градусах С).

3. Термофилы - растут при температурах выше плюс 45 градусов.
Краткая характеристика питательных сред.

По консистенции выделяют жидкие, плотные (1,5- 3% агара) и полужидкие (0,3- 0,7 % агара) среды.

Агар - полисахарид сложного состава из морских водорослей, основной отвердитель для плотных (твердых) сред. В качестве универсального источника углерода и азота при­меняют пептоны- продукты ферментации белков пепсином, различные гидролизаты- мясной, рыбный, казеиновый, дрожжевой и др.

По назначению среды разделяют на ряд групп:

  • универсальные (простые), пригодные для различных нетребовательных микроорга­низмов (мясо-пептонный бульон - МПБ, мясо-пептонный агар - МПА);
  • специальные - среды для микроорганизмов, не растущих на универсальных средах (среда Мак-Коя на туляремию, среда Левенштейна-Иенсена для возбудителя туберкулеза);
  • дифференциально-диагностические - для дифференциации микроорганизмов по ферментативной активности и культуральным свойствам (среды Эндо, Плоскирева, Левина, Гисса);
  • селективные (элективные) - для выделения определенных видов микроорганизмов и подавления роста сопутствующих - пептонная вода, селенитовая среда, среда Мюллера.

По происхождению среды делят на естественные, полусинтетические и синтетиче­ские.

Для получения плотных питательных сред к жидким питательным растворам добавляют особые вещества которые предают им железообразную консистенцию. Желатину применяют в отдельных случаях, т.к. она имеет нижнюю точку плавления 26-30 градусов, кроме того разжижается многими микроорганизмами.

Идеальным средством является агар, который Гессе, сотрудник Р. Коха ввел бактериологическую практику в 1883 году.

Агар - полисахарид сложного состава из морских водорослей, добавляют к водным растворам 15-20 гр. на литр, температура плавления 1000С, остается жидким до 450С, применяет также силикогель в тех случаях, когда требуются плотные среды не содержащие органические компоненты.

Светящиеся и ароматообразующие микроорганизмы

Некоторые бактерии, вибрионы и грибы обладают способностью све­титься (лгоминеецировать). Они вызывают свечение тех субстратов, напри­мер чешуи рыб, высших грибов, гниющих деревьев, пищевых продуктов, на поверхности которых размножаются. Большинство светящихся бактерий от­носятся к галофильным видам, способным размножаться при повышенных, концентрациях солей. Они обитают в морях и океанах и редко - в пресных водоемах. Все светящиеся бактерии являются аэробами. Механизм свечения связан с освобождением энергии в процессе биологического окисления суб­страта.

Свечение пищевых продуктов, вызванное бактериями, не приводит к их порче. Более того, оно свидетельствует об отсутствии в этих продуктах процесса гниения, поскольку свечение прекращается при развитии гнилост­ных микроорганизмов.

Некоторые микроорганизмы вырабатывают летучие ароматические вещества, в.Еапример уксусноэтиловый и уксусноамиловый эфиры, которые придают аромат вину, пиву, молочнокислым и другим пищевым продуктам, вследствие чего применяются в их производстве.

Рост и размножение бактерий

Жизнедеятельность бактерий характеризуется ростом - формировани­ем структурно-функциональных компонентов клетки и увеличением самой бактериальной клетки и размножением - самовоспроизведением, приводя­щим к увеличению количества бактериальных клеток в популяции.

Бактерии размножаются путем бинарного деления пополам, реже пу­тем почкования. Актиномицеты, как и грибы, могут размножаться спорами. Актиномицеты, являясь ветвящимися бактериями, размножаются путем фрагментации нитевидных клеток. Грамположительные бактерии делятся путем врастания синтезирующихся перегородок деления внутрь клетки, а грамотрицательные - путем перетяжки, в результате образования гантелевидных фигур, из которых образуются две одинаковые клетки.

Размножение бактерий в жидкой питательной среде.

Бактерии, засеян­ные в определенный, не изменяющийся объем питательной среды, размножа­ясь потребляют питательные элементы, что приводит в дальнейшем к истощению питательной среды и прекращению роста бактерий. Культивирование бактерий в такой системе называют периодическим культивированием, а культуру - периодической. Если же условия культивирования поддержива­ются путем непрерывной подачи свежей питательной среды и оттока такого же объема культуральной жидкости, то такое культивирование называется непрерывным, а культура - непрерывной.

При выращивании бактерий на жидкой питательной среде наблюдается придонный, диффузный или поверхностный (в виде пленки) рост культуры. Рост периодической культуры бактерий, выращиваемых на жидкой питательной среде, подразделяют на несколько фаз, или периодов: 1) лаг-фаза; 2) фаза логарифмического роста; 3) фаза стационарного роста, или максималь­ной концентрации бактерий; 4) фаза гибели бактерий. Эти фазы можно изо­бразить графически, в виде отрезков кривой размножения бактерий, отра­жающей зависимость логарифма числа живых клеток от времени их культи­вирования. Лаг-фаза (от англ. lag - запаздывание) - период между посевом бактерий и началом размножения. Продолжительность лаг-фазы в среднем 4-5 ч. Бактерии при этом увеличиваются в размерах и готовятся к делению; увеличивается количество нуклеиновых кислот, белка и других компонентов. Фаза логарифмического (экспоненциального) роста является периодом ин­тенсивного деления бактерий. Продолжительность ее около 5-6 ч. При опти­мальных условиях роста бактерии могут делиться каждые 20-40 мин. Во время этой фазы бактерии наиболее ранимы, что объясняется высокой чувст­вительностью компонентов метаболизма интенсивно растущей клетки к ин­гибиторам синтеза белка, нуклеиновых кислот и другие. Затем наступает фа­за стационарного роста, при которой количество жизнеспособных клеток ос­тается без изменений, составляя максимальный уровень (М-концентрация). Ее продолжительность выражается в часах и колеблется в зависимости от вида бактерий, особенностей, культивирования. Завершает процесс роста бактерий фаза гибели, характеризующаяся отмиранием бактерий в условиях истощения источников питательной среды и накопления в ней продуктов ме­таболизма бактерий. Продолжительность ее колеблется от десятка часов до нескольких недель. Интенсивность роста и размножения, бактерий зависит от многих факторов, в том числе оптимального состава питательной среды, окислительно-восстановительного потенциала, рН, температуры и др.

Размножение бактерий на плотной питательной среде. Бактерии, рас­тущие на плотных питательных средах, образуют изолированные колонии округлой формы с ровными или неровными краями (S= и R-формы), различ­ной консистенции и цвета, зависящего от пигмента бактерий.

Пигменты, растворимые в воде, диффундируют в питательную среду и окрашивают ее, например, синегнойная палочка окрашивает среду в синий цвет. Другая группа пигментов не растворима в воде, но растворима в орга­нических растворителях. Так, колонии «чудесной палочки» имеют кроваво-красный пигмент, растворимый в спирте. И, наконец, существуют пигменты, не растворимые ни в воде, ни в органических соединениях.

Наиболее распространены среди микроорганизмов такие пигменты как каротины, ксантофиллы и меланины. Меланины являются нерастворимыми пигментами черного, коричневого или красного цвета, синтезирующимися из фенольных соединений. Меланины, наряду с каталазой, супероксидисмутазой и пероксидазами, защищают микроорганизмы от воздействия токсичных перекисных радикалов кислорода. Многие пигменты обладают антимикробным, антибиотикоподобным действием.

Вид, форма, цвет и другие особенности колоний на плотной питательной среде могут учитываться при идентификации бактерий, а также отборе колоний для получения чистых культур.

В промышленных условиях, при получении биомассы микроорганиз­мов с целью приготовления антибиотиков, вакцин, диагностических препара­тов, эубиотиков, культивирование бактерий и грибов осуществляют в ферментерах при строгом соблюдении оптимальных параметров.

Пигменты

Многие микроорганизмы в процессе своей жизнедеятельности синте­зируют пигменты, различающиеся по цвету, химическому составу и раство­римости.

Жирорастворимые, каротиноидные пигменты красного, оранжевого или желтого цветов образуют сарцины, микобактерии туберкулеза, некото­рые актиномицеты. Эти пигменты предохраняют их от действия УФ-лучей. Нерастворимые в воде и даже сильных кислотах пигменты черного или ко­ричневого цвета - меланины - синтезируются облигатными анаэробами Bacteroldles nlger и др. К пирроловым пигментам ярко-красного цвета отно­сится продигиозин, образуемый некоторыми еерациями. Водорастворимые фенозиновые пигменты, например пиоцианин, продуцируются синегнойными бактериями (Pseudomonas aeruginosa). При этом питательная среда с ней­тральным или щелочным рН окрашивается в сине-зеленый цвет.

Цвет пигмента используется в качестве теста для идентификации пигментообразующих бактерий.

Физиология и принципы культивирования микроорганизмов.

Метаболизм микроорганизмов.

Для роста и размножения микроорганизмы нуждаются в веществах, используемых для построения структурных компонентов клетки и получения энергии. Метаболизм (т.е. обмен веществ и энергии) имеет две составляющих- анаболизм и катаболизм . Анаболизм- синтез компонентов клетки (конструктивный обмен ). Катаболизм- энергетический обмен, связан с окислительно- восстановительными реакциями, расщеплением глюкозы и других органических соединений, синтезом АТФ. Питательные вещества могут поступать в клетку в растворимом виде (это характерно для прокариот) — осмотрофы , или в виде отдельных частиц- фаготрофы .

Основным регулятором поступления веществ в бактериальную клетку является цитоплазматическая мембрана. Существует четыре основных механизма поступления веществ: -пассивная диффузия — по градиенту концентрации, энергонезатратная, не имеющая субстратной специфичности;

облегченная диффузия — по градиенту концентрации, субстратспецифичная, энергонезатратная, осуществляется при участии специализированных белков пермеаз ;

активный транспорт- против градиента концентрации, субстратспецифичен (специальные связывающие белки в комплексе с пермеазами), энергозатратный (за счет АТФ), вещества поступают в клетку в химически неизмененном виде;

транслокация (перенос групп) — против градиента концентрации, с помощью фосфотрансферазной системы, энергозатратна, вещества (преимущественно сахара) поступают в клетку в форфорилированном виде.

Основные химические элементы- органогены , необходимые для синтеза органичеких соединений- углерод, азот, водород, кислород.

В зависимости от источника потребляемого углерода микробы подразделяют на аутотрофы (используют CO2) и гетеротрофы (используют готовые органические соединения). В зависимости от источника энергии микроорганизмы делят на фототрофы (энергию получают за счет фотосинтеза- например, цианобактерии) и хемотрофы (энергия добывается за счет химических, окислительно- восстановительных реакций). Если при этом донорами электронов являются неорганические соединения, то это литотрофы , если органические- органотрофы . Если бактериальная клетка в состоянии синтезировать все необходимые для жизнедеятельности вещества, то это прототрофы . Если бактерии нуждаются в дополнительных веществах (факторах роста), то это ауксотрофы. Основными факторами роста для труднокультивируемых бактерий являются пуриновые и пиримидиновые основания, витамины, некоторые (обычно незаменимые) аминокислоты, кровяные факторы (гемин) и др.

Дыхание микроорганизмов.

Путем дыхания микроорганизмы добывают энергию. Дыхание- биологический процесс переноса электронов через дыхательную цепь от доноров к акцепторам с образованием АТФ. В зависимости от того, что является конечным акцептором электронов, выделяют аэробное и анаэробное дыхание. При аэробном дыхании конечным акцептором электронов является молекулярный кислород (О 2), при анаэробном- связанный кислород (-NO 3 , =SO 4 , =SO 3).

Аэробное дыхание донор водорода H 2 O

Анаэробное дыхание

Нитратное окисление NO 3

(факультативные анаэробы) донор водорода N 2

Сульфатное окисление SO 4

(облигатные анаэробы) донор водорода H 2 S

По типу дыхания выделяют четыре группы микроорганизмов.

1.Облигатные (строгие) аэробы . Им необходим молекулярный (атмосферный) кислород для дыхания.

2.Микроаэрофилы нуждаются в уменьшенной концентрации (низком парциальном давлении) свободного кислорода. Для создания этих условий в газовую смесь для культивирования обычно добавляют CO 2 , например до 10- процентной концентрации.

3.Факультативные анаэробы могут потреблять глюкозу и размножаться в аэробных и анаэробных условиях. Среди них имеются микроорганизмы, толерантные к относительно высоким (близких к атмосферным) концентрациям молекулярного кислорода — т.е. аэротолерантные, а также микроорганизмы которые способны в определенных условиях переключаться с анаэробного на аэробное дыхание.

4.Строгие анаэробы размножаются только в анаэробных условиях т.е. при очень низких концентрациях молекулярного кислорода, который в больших концентрациях для них губителен. Биохимически анаэробное дыхание протекает по типу бродильных процессов, молекулярный кислород при этом не используется.

Аэробное дыхание энергетически более эффективно (синтезируется большее количество АТФ).

В процессе аэробного дыхания образуются токсические продукты окисления (H 2 O 2 — перекись водорода, -О 2 — свободные кислородные радикалы), от которых защищают специфические ферменты, прежде всего каталаза, пероксидаза, пероксиддисмутаза . У анаэробов эти ферменты отсутствуют, также как и система регуляции окислительно- восстановительного потенциала (rH 2 ).

Основные методы создания анаэробных условий для культивирования микроорганизмов.

1.Физический- откачивание воздуха, введение специальной газовой безкислородной смеси (чаще- N 2 — 85%, CO 2 — 10%, H 2 — 5%).

2.Химический- применяют химические поглотители кислорода.

3.Биологический- совместное культивирование строгих аэробов и анаэробов (аэробы поглощают кислород и создают условия для размножения анаэробов).

4.Смешанный- используют несколько разных подходов.

Необходимо отметить, что создание оптимальных условий для строгих анаэробов- очень сложная задача. Очень непросто обеспечить постоянное поддержание безкислородных условий культивирования, необходимы специальные среды без содержания растворенного кислорода, поддержание необходимого окислительно- восстановительного потенциала питательных сред, взятие и доставка, посев материала в анаэробных условиях.

Существует ряд приемов, обеспечивающих более подходящие условия для анаэробов- предварительное кипячение питательных сред, посев в глубокий столбик агара, заливка сред вазелиновым маслом для сокращения доступа кислорода, использование герметически закрывающихся флаконов и пробирок, шприцев и лабораторной посуды с инертным газом, использование плотно закрывающихся эксикаторов с горящей свечой. Используются специальные приборы для создания анаэробных условий- анаэростаты. Однако в настоящее время наиболее простым и эффективным оборудованием для создания анаэробных и микроаэрофильных условий является система “Газпак” со специальными газорегенерирующими пакетами, действующими по принципу вытеснения атмосферного воздуха газовыми смесями в герметически закрытых емкостях.

Основные принципы культивирования микроорганизмов на питательных средах.

1.Использование всех необходимых для соответствующих микробов питательных компонентов.

2.Оптимальные температура, рН, rH 2 , концентрация ионов, степень насыщения кислородом, газовый состав и давление.

Микроорганизмы культивируют на питательных средах при оптимальной температуре в термостатах, обеспечивающих условия инкубации.

По температурному оптимуму роста выделяют три основные группы микроорганизмов.

1.Психрофилы- растут при температурах ниже +20 градусов Цельсия.

2.Мезофилы- растут в диапозоне температур от 20 до 45 градусов (часто оптимум- при 37 градусах С).

3.Термофилы- растут при температурах выше плюс 45 градусов.

Краткая характеристика питательных сред.

По консистенции выделяют жидкие, плотные (1,5- 3% агара) и полужидкие (0,3- 0,7 % агара) среды.

Агар- полисахарид сложного состава из морских водорослей, основной отвердитель для плотных (твердых) сред. В качестве универсального источника углерода и азота применяют пептоны — продукты ферментации белков пепсином, различные гидролизаты- мясной, рыбный, казеиновый, дрожжевой и др.

По назначению среды разделяют на ряд групп:

— универсальные (простые), пригодные для различных нетребовательных микроорганизмов (мясо- пептонный бульон- МПБ, мясо- пептонный агар- МПА);

— специальные- среды для микроорганизмов, не растущих на универсальных средах (среда Мак- Коя на туляремию, среда Левенштейна- Иенсена для возбудителя туберкулеза);

— дифференциально- диагностические- для дифференциации микроорганизмов по ферментативной активности и культуральным свойствам (среды Эндо, Плоскирева, Левина, Гисса);

— селективные (элективные) — для выделения определенных видов микроорганизмов и подавления роста сопутствующих- пептонная вода, селенитовая среда, среда Мюллера.

По происхождению среды делят на естественные, полусинтетические и синтетические.

Рост и размножение микроорганизмов.

Бактериальные клетки размножаются в результате деления. Основные стадии размножения микробов в жидкой среде в стационарных условиях:

— лаг- фаза (начальная стадия адаптации с медленным темпом прирости биомассы бактерий);

— экспоненциальная (геометрического роста) фаза с резким ростом численности популяции микроорганизмов (2 в степеии n);

— стационарная фаза (фаза равновесия размножения и гибели микробных клеток);

— стадия гибели — уменьшение численности популяции в связи с уменьшением и отсутствием условий для размножения микроорганизмов (дефицит питательных веществ, изменение рH, rH 2 , концентрации ионов и других условий культивирования).

Данная динамика характерна для периодических культур с постепенным истощением запаса питательных веществ и накоплением метаболитов.

Если в питательной среде создают условия для поддержания микробной популяции в экспоненциальной фазе- это хемостатные (непрерывные) культуры .

Характер роста бактерий на плотных и жидких питательных средах: сплошной рост, образование колоний, осадок, пленка, помутнение.

Чистая культура — популяция одного вида микроорганизмов.

Основные принципы получения чистых культур: механическое разобщение, рассев, серийные разведения, использование элективных сред, особых условий культивирования (с учетом устойчивости некоторых микробов к определенным температурам, кислотам, щелочам, парциальному давлению кислорода, рН и мн.др).

принципы культивирования микроорганизмов. Как лечить болезнь?
принципы культивирования микроорганизмов. Народные способы лечения и исцеления.
Уникальные исцеляющие видео-сеансы.

Метаболизм микроорганизмов.

Для роста и размножения микроорганизмы нуждаются в веществах, используемых для построения структурных компонентов клетки и получения энергии. Метаболизм (т. е. обмен веществ и энергии) имеет две составляющих - анаболизм и катаболизм . Анаболизм - синтез компонентов клетки (конструктивный обмен ). Катаболизм - энергетический обмен, связан с окислительно - восстановительными реакциями, расщеплением глюкозы и других органических соединений, синтезом АТФ. Питательные вещества могут поступать в клетку в растворимом виде (это характерно для прокариот) - осмотрофы , или в виде отдельных частиц - фаготрофы .

Основным регулятором поступления веществ в бактериальную клетку является цитоплазматическая мембрана. Существует четыре основных механизма поступления веществ: - пассивная диффузия - по градиенту концентрации, энергонезатратная, не имеющая субстратной специфичности;

- облегченная диффузия - по градиенту концентрации, субстратспецифичная, энергонезатратная, осуществляется при участии специализированных белков пермеаз ;

- активный транспорт - против градиента концентрации, субстратспецифичен (специальные связывающие белки в комплексе с пермеазами), энергозатратный (за счет АТФ), вещества поступают в клетку в химически неизмененном виде;

- транслокация (перенос групп) - против градиента концентрации, с помощью фосфотрансферазной системы, энергозатратна, вещества (преимущественно сахара) поступают в клетку в форфорилированном виде.

Основные химические элементы - органогены , необходимые для синтеза органичеких соединений - углерод, азот, водород, кислород.

В зависимости от источника потребляемого углерода микробы подразделяют на аутотрофы (используют CO2) и гетеротрофы (используют готовые органические соединения). В зависимости от источника энергии микроорганизмы делят на фототрофы (энергию получают за счет фотосинтеза - например, цианобактерии) и хемотрофы (энергия добывается за счет химических, окислительно-восстановительных реакций). Если при этом донорами электронов являются неорганические соединения, то это литотрофы , если органические - органотрофы . Если бактериальная клетка в состоянии синтезировать все необходимые для жизнедеятельности вещества, то это прототрофы . Если бактерии нуждаются в дополнительных веществах (факторах роста), то это ауксотрофы. Основными факторами роста для труднокультивируемых бактерий являются пуриновые и пиримидиновые основания, витамины, некоторые (обычно незаменимые) аминокислоты, кровяные факторы (гемин) и др.

Дыхание микроорганизмов.

Путем дыхания микроорганизмы добывают энергию. Дыхание - биологический процесс переноса электронов через дыхательную цепь от доноров к акцепторам с образованием АТФ. В зависимости от того, что является конечным акцептором электронов, выделяют аэробное и анаэробное дыхание. При аэробном дыхании конечным акцептором электронов является молекулярный кислород (О 2), при анаэробном - связанный кислород (-NO 3 , =SO 4 , =SO 3).

По типу дыхания выделяют четыре группы микроорганизмов.

  • 1. Облигатные (строгие) аэробы . Им необходим молекулярный (атмосферный) кислород для дыхания.
  • 2. Микроаэрофилы нуждаются в уменьшенной концентрации (низком парциальном давлении) свободного кислорода. Для создания этих условий в газовую смесь для культивирования обычно добавляют CO 2 , например до 10 - процентной концентрации.
  • 3. Факультативные анаэробы могут потреблять глюкозу и размножаться в аэробных и анаэробных условиях. Среди них имеются микроорганизмы, толерантные к относительно высоким (близких к атмосферным) концентрациям молекулярного кислорода - т. е. аэротолерантные, а также микроорганизмы которые способны в определенных условиях переключаться с анаэробного на аэробное дыхание.
  • 4. Строгие анаэробы размножаются только в анаэробных условиях т. е. при очень низких концентрациях молекулярного кислорода, который в больших концентрациях для них губителен. Биохимически анаэробное дыхание протекает по типу бродильных процессов, молекулярный кислород при этом не используется.

Аэробное дыхание энергетически более эффективно (синтезируется большее количество АТФ).

В процессе аэробного дыхания образуются токсические продукты окисления (H 2 O 2 - перекись водорода, -О 2 - свободные кислородные радикалы), от которых защищают специфические ферменты, прежде всего каталаза, пероксидаза, пероксиддисмутаза . У анаэробов эти ферменты отсутствуют, также как и система регуляции окислительно-восстановительного потенциала (rH 2 ).

Основные методы создания анаэробных условий для культивирования микроорганизмов.

  • 1. Физический - откачивание воздуха, введение специальной газовой безкислородной смеси (чаще - N 2 - 85%, CO 2 - 10%, H 2 - 5%).
  • 2. Химический - применяют химические поглотители кислорода.
  • 3. Биологический - совместное культивирование строгих аэробов и анаэробов (аэробы поглощают кислород и создают условия для размножения анаэробов).
  • 4. Смешанный - используют несколько разных подходов.

Необходимо отметить, что создание оптимальных условий для строгих анаэробов - очень сложная задача. Очень непросто обеспечить постоянное поддержание безкислородных условий культивирования, необходимы специальные среды без содержания растворенного кислорода, поддержание необходимого окислительно-восстановительного потенциала питательных сред, взятие и доставка, посев материала в анаэробных условиях.

Существует ряд приемов, обеспечивающих более подходящие условия для анаэробов - предварительное кипячение питательных сред, посев в глубокий столбик агара, заливка сред вазелиновым маслом для сокращения доступа кислорода, использование герметически закрывающихся флаконов и пробирок, шприцев и лабораторной посуды с инертным газом, использование плотно закрывающихся эксикаторов с горящей свечой. Используются специальные приборы для создания анаэробных условий - анаэростаты. Однако в настоящее время наиболее простым и эффективным оборудованием для создания анаэробных и микроаэрофильных условий является система “Газпак” со специальными газорегенерирующими пакетами, действующими по принципу вытеснения атмосферного воздуха газовыми смесями в герметически закрытых емкостях.

Основные принципы культивирования микроорганизмов на питательных средах.

  • 1. Использование всех необходимых для соответствующих микробов питательных компонентов.
  • 2. Оптимальные температура, рН, rH 2 , концентрация ионов, степень насыщения кислородом, газовый состав и давление.

Микроорганизмы культивируют на питательных средах при оптимальной температуре в термостатах, обеспечивающих условия инкубации.

По температурному оптимуму роста выделяют три основные группы микроорганизмов.

  • 1. Психрофилы - растут при температурах ниже +20 градусов Цельсия.
  • 2. Мезофилы - растут в диапозоне температур от 20 до 45 градусов (часто оптимум - при 37 градусах С).
  • 3. Термофилы - растут при температурах выше плюс 45 градусов.

Краткая характеристика питательных сред.

По консистенции выделяют жидкие, плотные (1,5 - 3% агара) и полужидкие (0,3 - 0,7 % агара) среды.

Агар - полисахарид сложного состава из морских водорослей, основной отвердитель для плотных (твердых) сред. В качестве универсального источника углерода и азота применяют пептоны - продукты ферментации белков пепсином, различные гидролизаты - мясной, рыбный, казеиновый, дрожжевой и др.

По назначению среды разделяют на ряд групп:

Универсальные (простые), пригодные для различных нетребовательных микроорганизмов (мясо - пептонный бульон - МПБ, мясо - пептонный агар - МПА);

Специальные - среды для микроорганизмов, не растущих на универсальных средах (среда Мак - Коя на туляремию, среда Левенштейна - Иенсена для возбудителя туберкулеза);

Дифференциально - диагностические - для дифференциации микроорганизмов по ферментативной активности и культуральным свойствам (среды Эндо, Плоскирева, Левина, Гисса);

Селективные (элективные) - для выделения определенных видов микроорганизмов и подавления роста сопутствующих - пептонная вода, селенитовая среда, среда Мюллера.

По происхождению среды делят на естественные, полусинтетические и синтетические.

Рост и размножение микроорганизмов.

Бактериальные клетки размножаются в результате деления. Основные стадии размножения микробов в жидкой среде в стационарных условиях:

Лаг-фаза (начальная стадия адаптации с медленным темпом прирости биомассы бактерий);

Экспоненциальная (геометрического роста) фаза с резким ростом численности популяции микроорганизмов (2 в степеии n);

Стационарная фаза (фаза равновесия размножения и гибели микробных клеток);

Стадия гибели - уменьшение численности популяции в связи с уменьшением и отсутствием условий для размножения микроорганизмов (дефицит питательных веществ, изменение рH, rH 2 , концентрации ионов и других условий культивирования).

Данная динамика характерна для периодических культур с постепенным истощением запаса питательных веществ и накоплением метаболитов.

Если в питательной среде создают условия для поддержания микробной популяции в экспоненциальной фазе - это хемостатные (непрерывные) культуры .

Характер роста бактерий на плотных и жидких питательных средах: сплошной рост, образование колоний, осадок, пленка, помутнение.

Чистая культура - популяция одного вида микроорганизмов.

Основные принципы получения чистых культур: механическое разобщение, рассев, серийные разведения, использование элективных сред, особых условий культивирования (с учетом устойчивости некоторых микробов к определенным температурам, кислотам, щелочам, парциальному давлению кислорода, рН и мн. др).