Болезни Военный билет Призыв

Пробой при высоком напряжении

Сейчас мы качественным образом рассмотрим некоторые ха­рактеристики полей вокруг проводников. Зарядим электри­чеством проводник, но на сей раз не сферический, а такой, у ко­торого есть острие или ребро (например, в форме, изображен­ной на фиг. 6.14). Тогда поле в этом месте окажется намного сильнее, чем в других местах. Причина в общих чертах состоит в том, что заряды стремятся как можно шире растечься по по­верхности проводника, а кончик острия всегда отстоит дальше всего от остальной поверхности. Поэтому часть зарядов на пла­стине течет к острию. Относительно малое количество заряда на нем может создать большую поверхностную плотность, а высокая плотность означает сильное поле близ проводника в этом месте.

Фиг. 6.14. Электрическое по­ле у острого края проводника очень велико.

Вообще в тех местах проводника, в которых радиус кривизны меньше, поле оказывается сильнее. Чтобы убедиться в этом, рас­смотрим комбинацию из большой и маленькой сфер, соединен­ных проводом, как показано на фиг. 6.15. Сам провод не будет сильно влиять на внешние поля; его дело - уравнять потен­циалы сфер. Возле какого шара поле окажется более напряжен­ным? Если радиус левого шара а, а зарядQ, то его потенциал примерно равен

(Конечно, наличие одного шара скажется на распределении за­рядов на другом, так что на самом деле ни на одном из них заря­ды не будут распределены симметрично. Но если нас интересует лишь примерная величина поля, то можно пользоваться форму­лой для потенциала сферического заряда.) Если меньший шар радиусом b обладает зарядом q, то его потенциал примерно ра­вен

Но  1 = 2 , так что

Сдругой стороны, поле у поверхности [см. уравнение (5.8)] пропорционально поверхностной плотности заряда, которая в свою очередь пропорциональна суммарному заряду, делен­ному на квадрат радиуса. Получается, что

Фиг. 6.15. Поле остроконеч­ного предмета можно прибли­женно считать полем двух сфер одинакового потенциала.

Значит, у поверхности меньшей сферы поле больше. Поля об­ратно пропорциональны радиусам.

Этот результат с технической точки зрения очень важен, потому что в воздухе возникает пробой, если поле чересчур велико. Какой-нибудь свободный заряд в воздухе (электрон или ион) ускоряется этим полем, и если оно очень сильное, то за­ряд может набрать до столкновения с атомом такую скорость, что вышибет из атома новый электрон. В итоге появляется все больше и больше ионов. Их движение и составляет искру, или разряд. Если вам требуется зарядить тело до высокого потен­циала так, чтобы оно не разрядилось в воздух, вы должны быть уверены, что поверхность тела гладкая, что на нем нет мест, где поле чересчур велико.

§ 12. Ионный микроскоп

Сверхвысокое электрическое поле, окружающее всякий острый выступ заряженного проводника, получило интересное применение в одном приборе. Работа ионного микроскопа обус­ловлена мощными полями, возникающими вокруг металличе­ского острия. Устроен этот прибор так. Очень тонкая игла, диаметр кончика которой не более 1000 Å, помещена в центре стеклянной сферы, из которой выкачан воздух (фиг. 6.16). Внутренняя поверхность сферы покрыта тонким проводящим слоем флуоресцирующего вещества, и между иглой и флуоре­сцирующим покрытием создана очень высокая разность потенциалов.

Посмотрим сперва, что будет, если игла по отношению к флу­оресцирующему экрану заряжена отрицательно. Линии поля у кончика иглы сконцентрированы очень сильно. Электрическое поле может достигать 40 10 6 в на 1 см. В таких сильных полях электроны отрываются от поверхности иглы и ускоряются на участке от иглы до экрана за счет разности потенциалов. Достигнув экрана, они вызывают в этом месте свечение (в точности, как на экране телевизионной трубки).

Фиг. 6.16. Ионный мик­роскоп.

Электроны, пришедшие в данную точку флуоресцирующей поверхности,- это, в очень хорошем приближении, те самые электроны, которые покинули другой конец радиальной линии поля, потому что электроны движутся вдоль линий поля, сое­диняющих кончик иглы с поверхностью сферы. Так что на поверхности мы видим своего рода изображение кончика иглы. А точнее, мы видим картину испускателъной способности по­верхности иглы, т. е. легкости, с которой электроны могут оставить поверхность металлического острия. Если сила разре­шения достаточно высока, то можно рассчитывать разрешить положения отдельных атомов на кончике иглы. Но с электро­нами такого разрешения достичь нельзя по следующим причи­нам. Во-первых, возникает квантовомеханическая дифракция электронных волн, и изображение затуманится. Во-вторых, в результате внутреннего движения в металле электроны имеют небольшую поперечную начальную скорость в момент вырывания из иглы и эта случайная поперечная составляющая ско­рости приведет к размазыванию изображения. В общей слож­ности эти эффекты ограничивают разрешимость деталей вели­чиной порядка 25А.

Если, однако, мы переменим знак напряжения и впустим в колбу немного гелия, то детали разрешены будут лучше. Когда атом гелия сталкивается с кончиком острия, мощное поле срывает с атома электрон, и атом заряжается положительно.

Фие. 6 .17. Изображение, полученное ионным микро­скопом.

Затем ион гелия ускоряется вдоль силовой линии, пока не по­падет в экран. Поскольку ион гелия несравненно тяжелее элект­рона, то и квантовомеханические длины волн у него намного меньше. А если к тому же температура не очень высока, то и влияние тепловых скоростей также значительно слабее, чем у электрона. Изображение размазывается меньше и получается куда более резкое изображение кончика иглы. С микроскопом, работающим на принципе ионной эмиссии, удалось добиться увеличения вплоть до 2 000 000 раз, т. е. в десять раз лучше, чем на лучших электронных микроскопах.

На фиг. 6.17 показано, что удалось получить на таком мик­роскопе, применив вольфрамовую иглу. Центры атомов вольфра­ма ионизуют атомы гелия чуть иначе, чем промежутки между атомами вольфрама. Расположение пятен на флуоресцирующем экране демонстрирует расстановку отдельных атомов на воль­фрамовом острие. Почему пятна имеют вид колец, можно по­нять, если представить себе большой ящик, набитый шарами, уложенными в прямоугольную сетку и образующими таким обра­зом кубическую решетку. Эти шары - как бы атомы в металле. Если вы из этого ящика вырежете примерно сферическую часть, то увидите картину колец, характерную для атомной структуры. Ионный микроскоп впервые снабдил человечество средством видеть атомы. Замечательное достижение, да еще полученное с таким простым прибором.

*См. статью Мюллера [Е. W. Mueller , The field-ion microscope, Advances in Electronics and Electron Physics, 13, 83 (I960)].

В воздухе при атмосферном давлении необходимо напряжение в 30 тыс. в, чтобы пробить зазор в 1 см между шарами с радиусом также в 1 см. Раздвинем шары. Придется приложить более , чтобы пробить воздушный промежуток.

Невольно напрашивается аналогия из механики. В стальной баллон накачивается воздух. Он давит на стенки. При очень высоком давлении они в конце концов могут разорваться. Чем толще стенки, тем более высокое давление выдерживает баллон. При электрическом пробое кажется естественным, что больший слой воздуха выдерживает большее напряжение.

Вместо того чтобы увеличивать расстояние между электродами, можно увеличить плотность окружающего их воздуха, поместить электроды в сжатый газ. Это также увеличит пробивное напряжение.

В двигателях внутреннего сгорания смесь поджигается электрической искрой. В цилиндр двигателя ввинчивается «свеча» с двумя никелевыми электродами на расстоянии около миллиметра один от другого. При атмосферном давлении этот зазор между электродами пробивается при 3-5 кв. А когда смесь в цилиндре сжата, требуется напряжение, в несколько раз большее.

Иная зависимость пробивного напряжения от давления и зазора в электровакуумных приборах. В тиратронах, например, уменьшают зазор между сеткой и анодом, чтобы увеличить пробивное напряжение. В тиратронах уменьшение расстояния увеличивает электрическую прочность прибора.

Пробой газового промежутка развивается так: в зазоре между электродами всегда имеется некоторое количество свободных электронов. Когда к электродам прикладывается напряжение, то электроны начинают двигаться к положительному электроду. На своем пути эти электроны могут встречать нейтральные молекулы газа. Расстояние между двумя такими встречами, двумя соударениями называется свободным пробегом электрона. Свободный пробег от плотности газа. При атмосферном давлении свободный пробег - это ничтожные доли миллиметра. А при высоком разрежении свободный пробег достигает нескольких сантиметров.

Если электрон ударяется о нейтральную молекулу с достаточно большой скоростью, он разбивает ее - вырывает из нее один или даже несколько электронов. Эти электроны совместно с начальными движутся также к положительному электроду. На пути они могут встретить еще нейтральные молекулы, вырвать из них еще новые электроны. Когда напряжение между электродами достаточно велико, то возникает электронная лавина. Небольшое начальное количество электронов в результате многочисленных столкновений возрастает, как снежный ком, катящийся с горы.

Возникновение электронной лавины - это и есть пр’обой. Когда плотность газа велика, то электрон на пробеге между двумя соударениями может накопить достаточно энергии, чтобы выбить из молекулы новый электрон лишь при высоком напряжении между электродами. Чем больше плотность газа, тем выше напряжение, при котором может образоваться электронная лавина и произойдет пробой.

Если же плотность газа мала, свободный пробег электронов велик, то большое их число будет пролетать между электродами, вообще не встречая молекул газа и не выбивая новых электронов.

В этом случае чем меньше плотность газа или чем меньше расстояние между электродами, тем большее напряжение необходимо, чтобы вызвать лавину электронов, произвести пробой.

На фиг. 7-22 приведена примерная кривая зависимости пробивного напряжения от произведения плотности газа на зазор между электродами.

Фиг. 7-22. Зависимость пробивного напряжения между ‘двумя электродами от произведения плотности р газа, окружающего электроды, на расстояние d между электродами.

Наименьшее пробивное напряжение получается, когда свободный пробег электрона имеет величину одного порядка с расстоянием между электродами. Пробивное напряжение возрастает в обоих случаях: и когда свободный пробег электрона значительно меньше расстояния между электродами (область высоких давлений) и когда свободный пробег электрона значительно больше расстояния между электродами (область низких давлений).

Наименьшее напряжение требуется для пробоя, когда расстояние между электродами одного порядка со свободным пробегом электрона. В электрических цепях часто применяются разрядники. Они действуют как предохранительные клапаны. Их назначение быть самым слабым местом в электрической цепи. В разрядниках так подбирают конструктивные размеры, что они соответствуют минимуму кривой пробоя.

При атмосферном давлении, чтобы получить малое пробивное напряжение, надо давать зазор между электродами разрядника несколько микрон. Удобнее поместить электроды разрядника в колбу с пониженным дав лением. Тогда минимальное пробивное напряжение соответствует зазору в несколько миллиметров.

Минимальное пробивное напряжение может быть 100-200 в. Если уменьшить плотность газа, окружающего электроды, величина пробивного напряжения возрастет. В газотронах (фиг. 2-4) расстояние между катодом и анодом такое же, как и в разрядниках, но в разрядниках давление газа в баллоне - несколько миллиметров ртутного столба, а в газотронах давление равно всего лишь нескольким десятитысячным миллиметра ртутного столба. Пробивное напряжение газотрона около 20 000 в. При еще большем разрежении между электродами пробивное напряжение возрастает до нескольких сотен тысяч вольт.

Плоскогорье вместо вершины

Бывает, что точка максимума выражена неотчетливо.

При индукционном нагреве в плавильной печи (фиг.

7- 9), или для поверхностной закалки (о закалке будет рассказано в последующих разделах) важно получить высокий к. п. д. Переменный ток, циркулирующий в индукторе, создает вокруг его проводников быстропеременный электромагнитный поток. Этот поток пронизывает помещенное в индуктор изделие, возбуждает в изделии вихревые токи. Отношение мощности, выделяемой в изделии вихревыми -токами, ко всей мощности, подводимой к индуктору,- это и есть интересующий нас электрический к. п. д. индуктора.

При низкой частоте тока в индукторе изделие, как уже говорилось, прозрачно для магнитного потока. Вихревые токи в изделии слабы, мощность, ими выделяемая, ничтожна по сравнению с потерями в индукторе. С повышением частоты тока в индукторе мощность в изделии растет сначала как квадрат частоты. Быстро растет к. п. д. Но затем рост к. п. д. замедляется. Вихревой ток в изделии не может быть интенсивнее, нежели породивший его ток индуктора. Коэффициент полезного действия приближается к некоторому предельному значению. Эго предельное значение к. п. д. η„ от материала индуктора р ь материала нагреваемого изделия р в и от соотношения поверхностей, омываемых быстропеременным магнитным потоком в индукторе S t и изделии S a .

Можно повысить частоту тока в 10 или даже в. 100 раз, но к. п. д. никогда не достигнет значения η 0 При еще большем повышении частоты к. п. д. может начать падать из-за того, что индуктор станет излучать электромагнитную энергию во все стороны, как широковещательной радиостанции, и появятся большие потери в окружающих индуктор предметах. Но до этого предела обычно никогда не доходят по ряду других причин.

Фиг. 7·23. Коэффициент полезного действия индуктора, нагревающего шар, в зависимости от частоты тока. Размеры шара и индуктора показаны в верхнем леЕсм углу рисунка.

Кривая « - Ш ар из магнитной стали (у;ельное электросопротивление р ■» 1C·’ ом. см и магнитная пронииаемость μ ■» 100); γ- сталь немагнитная (нагретая вьше 7oS e С); р - ΙΟ- 4 , μ - 1; С - графит: р - 5·10- 5 , μ - 1; Си - медь: р-1,7*10·*, μ-1*

На фиг. 7-23 представлен ход кривых к. п. д. для случая нагрева шаров диаметром 50 мм из разных материалов, помещаемых внутрь индуктора в виде цилиндрической спирали с высотой и диаметром, равным 100 мм (кривые построены на основе расчетов, проведенных мною перед войной на заводе «Светлана»).

Как здесь определить наивыгоднейшую частоту? Точки максимума на этих кривых нет. После крутого подъема идет перегиб, а затем почти горизонтальный участок.

Прежде всего надо указать, что нагревательный индуктор - это лишь одно звено установки высокочастотного нагрева. С индуктором всегда соединена (непосредственно или через ) конденсаторная батарея. И стоимость этой батареи, и потери в ней зависят от частоты. При одной и той же передаваемой полезной мощности затраты на батарею конденсаторов для разных частот могут отличаться в несколько раз.

От частоты тока и тип генератора. Если частота тока выше 10 000 гц, то целесообразно применять только с электронными лампами. Потери энергии в этих лампах могут превышать 20% от преобразуемой мощности. При более низких частотах можно применять и машинные , и с ионными лампами, в которых потери меньше 10%. Может оказаться выгодным несколько пожертвовать к. п. д. индуктора, но зато выиграть на к. п. д. генератора.

Можно построить кривую полного к. п. д. и полных эксплоатационных расходов нагревательной установки в зависимости от частоты тока. Но и эта кривая большей частью не имеет вида острого пика, а напоминает собой плоскогорье.

Но здесь электрик должен прислушаться к голосу металлурга и машиностроителя. При высокочастотном нагреве металлов энергетика - только служанка технологии. Основное назначение нагревательной установки - это не экономить энергию, а давать продукцию высшего качества. При поверхностной закалке часто приходится выбирать частоту, значительно более высокую, чем это нужно по соображениям к. п. д. Так бывает при нагреве изделий сложной формы. Только высокочастотный ток может обойти ‘по всем выступам и впадинам изделия. Иногда же, наоборот, выбирают явно заниженную с точки зрения частоту, для того чтобы получить прогрев сразу в толстом слое и узкую переходную зону между нагретым и сердцевинным металлом.

Поэтому на кривой зависимости к. п. д. нагревательного индуктора от частоты тока надо иметь только какую-то опорную точку. Точку, ниже которой к. п. д. растет быстро, а выше - медленно. Но это не такая определенная вещь, как точка максимума или минимума, которая определяется математически совершенно однозначно. Точка перехода от крутого склона к пологой части (колено на кривой) это понятие условное.

В моей книге «Индукционный нагрев металлов» я так определил минимально допустимую частоту тока, или, что одно и то же, максимальную допустимую длину волны:

«При нагреве цилиндра. или шара из немагнитного материала надо, чтобы длина электромагнитной волны в этом цилиндре или шаре была меньше его радиуса. Коэффициент полезного действия сильно ухудшается, если ток имеет более низкую частоту и, следовательно, более длинную волну. При нагреве шара из магнитного материала колено кривой к. п. д. соответствует волне, которая в магнитную проницаемость (μ) раз меньше радиуса шара. Когда нагревается не шаровое и не цилиндрическое изделие, а плоская плита, то желательно, чтобы ширина индуктора была больше длины волны».

Разные авторы неоднократно предлагали иные формулировки дляграницы «достаточного электрического к. п. д.». Одни писали, что волна должна в полтора, два раза быть меньше радиуса нагреваемого цилиндра, а другие, наоборот, считали, что достаточно иметь волну, равную трем четвертям от радиуса.

Мне приходилось слышать споры: «Ваш критерий не точен, а вот формула такого-то дает прекрасные [результаты». Другие, наоборот, хвалили мое определение. Кто же прав? Да никто. Определение «достаточного электрического к. п. д.»-это не формула и не критерий, это скорее мнемоническое правило. Никакой особой точки на колене не существует. Это правило только указывает «быстро» или «медленно» растет к. п. д. на данном участке кривой. А конкретные значения этого к. п. д. надо получать полным расчетом.

И в других областях электротехники приходится сталкиваться с кривыми, не имеющими максимума. Кривая намагничения стали идет сначала круто, а затем переходит в пологий участок. Где здесь точка насыщения? При каком значении индукции происходит перегиб в кривой? И здесь нельзя дать точною однозначного указания, а можно лишь отметить некоторую область магнитных индукций. Ниже нет насыщения, выше оно есть.

Основы > Электротехнические материалы > Диэлектрики

Пробой диэлектриков

При напряженности электрического поля, превосходящей предел электрической прочности диэлектрика, наступает пробой. Пробой представляет собой процесс разрушения диэлектрика, в результате чего диэлектрик теряет электроизоляционные свойства в месте пробоя.
Величину напряжения, при котором происходит пробой диэлектрика, называют
пробивным напряжением , а соответствующее значение напряженности электрического поля называется электрической прочностью диэлектрика .
Для равномерного электрического поля электрическая прочность (пробивная напряженность) диэлектрика определяется по формуле

где d - толщина диэлектрика в месте пробоя, м.
Пробой газообразных диэлектриков см. раздел .
Пробой жидких диэлектриков - явление сложное, что объясняется сложным составом жидких диэлектриков и сильным влиянием загрязнений на развитие пробоя. На рис. 5-13 показана зависимость изменения электрической прочности трансформаторного масла от содержания влаги. Наиболее резкое снижение электрической прочности жидких диэлектриков вызывает эмульсионная вода. С повышением температуры эмульсионная вода переходит в растворенную; при этом жидкий диэлектрик становится более однородным и электрическая прочность его повышается.
Другие загрязнения (волокна, смолистые вещества и др.) подобно воде понижают электрическую прочность жидких диэлектриков.
Чистота поверхности электродов оказывает существенное влияние на электрическую прочность жидких диэлектриков.
Большая продолжительность воздействия электрического поля на жидкий диэлектрик вызывает резкое снижение пробивного напряжения (рис. 5-14).
Конфигурация электрического поля и полярность электродов также вызывают изменение пробивных характеристик жидких диэлектриков (рис. 5-15 и 5-16).
Пробивное напряжение жидких диэлектриков повышается с увеличением давления (рис. 5-17). Зависимость пробивного напряжения от давления заметно уменьшается с повышением степени очистки электроизоляционных жидкостей, что указывает на большое влияние газообразных примесей.
При импульсных воздействиях напряжения на слой жидкого диэлектрика зависимости пробивного напряжения от давления практически не наблюдается. С увеличением плотности жидкого диэлектрика его электрическая прочность линейно возрастает.
Влияние температуры на пробивные характеристики жидких диэлектриков различно в зависимости от их химического состава и степени загрязнения примесями. Заметные изменения электрической прочности с температурой наблюдаются у электроизоляционных жидкостей сложного химического состава, особенно при наличии в них загрязнений (влага, газы и др.). По мере приближения к температуре кипения электрическая прочность жидких диэлектриков резко понижается.
Наибольший практический интерес представляют теории, посвященные процессам пробоя технических электроизоляционных жидкостей. В большинстве этих теорий (авторы Н. Н. Семенов и А. Ф. Вальтер, Эдлер и др.) пробой жидких диэлектриков рассматривается как тепловой процесс, в результате которого в слое жидкого диэлектрика образуются газовые или паровые каналы. Паровая и газовая фазы в жидком диэлектрике возникают при нагреве его токами проводимости, повышенные значения которых наблюдаются в наиболее загрязненных частях диэлектрика. При критических значениях напряженности электрического поля в газовых и паровых каналах начинает развиваться процесс ударной ионизации газа, завершающийся пробоем.
Пробой твердых диэлектриков представляет собой или чисто электрический процесс (электрическая форма пробоя), или тепловой процесс (тепловая форма пробоя). В основе электрического пробоя лежат явления, в результате которых в твердых диэлектриках имеет место лавинное возрастание электронного тока, подобно тому как это наблюдается в процессе ударной ионизации в газообразных диэлектриках.

Характерными признаками электрического пробоя твердых диэлектриков являются:
1. Независимость или очень слабая зависимость электрической прочности диэлектрика от температуры и длительности приложенного напряжения (до с).
2. Электрическая прочность твердого диэлектрика в однородном поле не зависит от толщины диэлектрика (до толщин см).
3. Электрическая прочность твердых диэлектриков находится в сравнительно узких пределах: В/см; причем она больше, чем при тепловой форме пробоя.
4. Перед пробоем ток в твердом диэлектрике увеличивается по экспоненциальному закону, а непосредственно перед наступлением пробоя наблюдается скачкообразное возрастание тока.
5. При наличии неоднородного поля электрический пробой происходит в месте наибольшей напряженности поля (краевой эффект).

Тепловой пробой имеет место при повышенной проводимости твердых диэлектриков и больших диэлектрических потерях, а также при подогреве диэлектрика посторонними источниками тепла или при плохом теплоотводе. Процесс теплового пробоя твердого диэлектрика состоит в следующем. Вследствие неоднородности состава отдельные части объема диэлектрика обладают повышенной проводимостью. Они представляют собой тонкие каналы, проходящие через всю толщину диэлектрика. Вследствие повышенной плотности тока в одном из таких каналов будут выделяться значительные количества тепла. Это повлечет за собой еще большее нарастание тока вследствие резкого уменьшения сопротивления этого участка в диэлектрике. Процесс нарастания тепла будет продолжаться до тех пор, пока не произойдет тепловое разрушение материала (расплавление, науглероживание) по всей его толщине - по ослабленному месту.

Характерными признаками теплового пробоя твердых диэлектриков являются:
1. Пробой наблюдается в месте наихудшего теплоотвода от диэлектрика в окружающую среду.
2. Пробивное напряжение диэлектрика снижается с повышением температуры окружающей среды (рис. 5-18).
3. Пробивное напряжение снижается с увеличением длительности приложенного напряжения (рис. 5-19).
4. Электрическая прочность уменьшается с увеличением толщины диэлектрика.
5. Электрическая прочность твердого диэлектрика уменьшается с ростом частоты приложенного переменного напряжения.
При пробое твердых диэлектриков часто наблюдаются случаи, когда до определенной температуры имеет место электрический пробой, а затем в связи с дополнительным нагревом диэлектрика наступает процесс теплового пробоя диэлектрика (рис. 5-20).
Аналогичный переход электрической формы пробоя в тепловую происходит в зависимости от времени выдержки твердого диэлектрика под напряжением.
Согласно выводам теории теплового пробоя твердых диэлектриков (В. А. Фок, Н. Н. Семенов) можно подсчитать величину пробивного напряжения для простых электроизоляционных конструкций (пластины) по формулам
а) для постоянного напряжения

б) для переменного напряжения

где - функция величины,

Коэффициент теплоотдачи в окружающую среду; - коэффициент теплопроводности электродов, Дж/(с м °С); - коэффициент теплопроводности диэлектрика Дж/(с м °С); h - половина толщины диэлектрика, м; - толщина электрода, м; а - постоянная, характеризующая рост проводимости диэлектрика с температурой; - диэлектрическая проницаемость твердого диэлектрика (при температуре окружающей среды); - тангенс угла диэлектрических потерь твердого диэлектрика (при температуре окружающей среды); f - частота, Гц.
По известным значениям
вычисляют величину с и, воспользовавшись графиком (рис. 5-21), находят .
При неограниченном возрастании с величина
стремится к пределу, равному 0,66.

Сейчас мы качественным образом рассмотрим некоторые ха­рактеристики полей вокруг проводников. Зарядим электри­чеством проводник, но на сей раз не сферический, а такой, у ко­торого есть острие или ребро (например, в форме, изображен­ной на фиг. 6.14). Тогда поле в этом месте окажется намного сильнее, чем в других местах. Причина в общих чертах состоит в том, что заряды стремятся как можно шире растечься по по­верхности проводника, а кончик острия всегда отстоит дальше всего от остальной поверхности. Поэтому часть зарядов на пла­стине течет к острию. Относительно малое количество заряда на нем может создать большую поверхностную плотность, а высокая плотность
означает сильное поле близ проводника в этом месте.

Фиг. 6.14. Электрическое по­ле у острого края проводника очень велико.


Вообще в тех местах проводника, в которых радиус кривизны меньше, поле оказывается сильнее. Чтобы убедиться в этом, рас­смотрим комбинацию из большой и маленькой сфер, соединен­ных проводом, как показано на фиг. 6.15. Сам провод не будет сильно влиять на внешние поля; его дело - уравнять потен­циалы сфер. Возле какого шара поле окажется более напряжен­ным? Если радиус левого шара а, а заряд Q, то его потенциал примерно равен

(Конечно, наличие одного шара скажется на распределении за­рядов на другом, так что на самом деле ни на одном из них заря­ды не будут распределены симметрично. Но если нас интересует лишь примерная величина поля, то можно пользоваться форму­лой для потенциала сферического заряда.) Если меньший шар радиусом b обладает зарядом q, то его потенциал примерно ра­вен


Но j 1 =j 2 , так что



С другой стороны, поле у поверхности [см. уравнение (5.8)] пропорционально поверхностной плотности заряда, которая в свою очередь пропорциональна суммарному заряду, делен­ному на квадрат радиуса. Получается, что


Фиг. 6.15. Поле остроконеч­ного предмета можно прибли­женно считать полем двух сфер одинакового потенциала.

Значит, у поверхности меньшей сферы поле больше. Поля об­ратно пропорциональны радиусам.

Этот результат с технической точки зрения очень важен, потому что в воздухе возникает пробой, если поле чересчур велико. Какой-нибудь свободный заряд в воздухе (электрон или ион) ускоряется этим полем, и если оно очень сильное, то за­ряд может набрать до столкновения с атомом такую скорость, что вышибет из атома новый электрон. В итоге появляется все больше и больше ионов. Их движение и составляет искру, или разряд. Если вам требуется зарядить тело до высокого потен­циала так, чтобы оно не разрядилось в воздух, вы должны быть уверены, что поверхность тела гладкая, что на нем нет мест, где поле чересчур велико.

Конец работы -

Эта тема принадлежит разделу:

Фейнмановские лекции по физике

Этим выпуском мы начинаем печатание перевода второго тома лекций, прочитанных р. фейнманом студентам второго курса. «фейнмановские лекции по физике», вы будете понемногу приобщаться к живой, развивающейся науке....

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Прямой провод
В качестве первого примера снова вычислим поле прямого провода, которое мы находили в предыдущем параграфе, поль­зуясь уравнением (14.2) и соображениями симметрии. Возьмем длинный прямой провод рад

Длинный соленоид
Еще пример. Рассмотрим опять бесконечно длинный соле­ноид с током по окружности, равным пI на единицу длины. (Мы считаем, что имеется n витков проволоки на единицу дли­ны, несущих каж

Поле маленькой петли; магнитный диполь
Воспользуемся методом векторного потенциала, чтобы найти магнитное поле маленькой петли с током. Как обычно, под словом «маленькая» мы просто подразумеваем, что нас интере­суют поля только на больш

Векторный потенциал цепи
Нас часто интересует магнитное поле, создаваемое цепью проводов, в которой диаметр провода очень мал по сравнению с размерами всей системы. В таких случаях мы можем упро­стить уравнения для магнитн

Закон Био-Савара
В ходе изучения электростатики мы нашли, что электриче­ск

Сейчас мы качественным образом рассмотрим некоторые ха­рактеристики полей вокруг проводников. Зарядим электри­чеством проводник, но на сей раз не сферический, а такой, у ко­торого есть острие или ребро (например, в форме, изображен­ной на фиг. 6.14). Тогда поле в этом месте окажется намного сильнее, чем в других местах. Причина в общих чертах состоит в том, что заряды стремятся как можно шире растечься по по­верхности проводника, а кончик острия всегда отстоит дальше всего от остальной поверхности. Поэтому часть зарядов на пла­стине течет к острию. Относительно малое количество заряда на нем может создать большую поверхностную плотность, а высокая плотность
означает сильное поле близ проводника в этом месте.

Фиг. 6.14. Электрическое по­ле у острого края проводника очень велико.

Вообще в тех местах проводника, в которых радиус кривизны меньше, поле оказывается сильнее. Чтобы убедиться в этом, рас­смотрим комбинацию из большой и маленькой сфер, соединен­ных проводом, как показано на фиг. 6.15. Сам провод не будет сильно влиять на внешние поля; его дело - уравнять потен­циалы сфер. Возле какого шара поле окажется более напряжен­ным? Если радиус левого шара а, а заряд Q, то его потенциал примерно равен

(Конечно, наличие одного шара скажется на распределении за­рядов на другом, так что на самом деле ни на одном из них заря­ды не будут распределены симметрично. Но если нас интересует лишь примерная величина поля, то можно пользоваться форму­лой для потенциала сферического заряда.) Если меньший шар радиусом bобладает зарядом q, то его потенциал примерно ра­вен

Но j 1 =j 2 , так что

С другой стороны, поле у поверхности [см. уравнение (5.8)] пропорционально поверхностной плотности заряда, которая в свою очередь пропорциональна суммарному заряду, делен­ному на квадрат радиуса. Получается, что

Фиг. 6.15. Поле остроконеч­ного предмета можно прибли­женно считать полем двух сфер одинакового потенциала.

Значит, у поверхности меньшей сферы поле больше. Поля об­ратно пропорциональны радиусам.

Этот результат с технической точки зрения очень важен, потому что в воздухе возникает пробой, если поле чересчур велико. Какой-нибудь свободный заряд в воздухе (электрон или ион) ускоряется этим полем, и если оно очень сильное, то за­ряд может набрать до столкновения с атомом такую скорость, что вышибет из атома новый электрон. В итоге появляется все больше и больше ионов. Их движение и составляет искру, или разряд. Если вам требуется зарядить тело до высокого потен­циала так, чтобы оно не разрядилось в воздух, вы должны быть уверены, что поверхность тела гладкая, что на нем нет мест, где поле чересчур велико.