Болезни Военный билет Призыв

Простые и сложные множители. Что такое простые числа? Алгоритм разложения числа на простые множители

Что значит разложить на простые множители? Как это сделать? Что можно узнать по разложению числа на простые множители? Ответы на эти вопросы иллюстрируются конкретными примерами.

Определения:

Простым называют число, которое имеет ровно два различных делителя.

Составным называют число, которое имеет более двух делителей.

Разложить натуральное число на множители - значит представить его в виде произведения натуральных чисел.

Разложить натуральное число на простые множители - значит представить его в виде произведения простых чисел.

Замечания:

  • В разложении простого числа один из множителей равен единице, а другой - самому этому числу.
  • Говорить о разложении единицы на множители не имеет смысла.
  • Составное число можно разложить на множители, каждый из которых отличен от 1.

Разложим число 150 на множители. Например, 150 - это 15 умножить на 10.

15 - это составное число. Его можно разложить на простые множители 5 и 3.

10 - это составное число. Его можно разложить на простые множители 5 и 2.

Записав вместо 15 и 10 их разложения на простые множители, мы получили разложение числа 150.

Число 150 можно по-другому разложить на множители. Например, 150 - это произведение чисел 5 и 30.

5 - число простое.

30 - это число составное. Его можно представить как произведение 10 и 3.

10 - число составное. Его можно разложить на простые множители 5 и 2.

Мы получили разложение числа 150 на простые множители другим способом.

Заметим, что первое и второе разложение одинаковы. Они отличаются только порядком следования множителей.

Принято записывать множители в порядке возрастания.

Всякое составное число можно разложить на простые множители единственным образом с точностью до порядка множителей.

При разложении больших чисел на простые множители используют запись в столбик:

Наименьшее простое число, на которое делится 216 - это 2.

Разделим 216 на 2. Получим 108.

Полученное число 108 делится на 2.

Выполним деление. Получим в результате 54.

Согласно признаку делимости на 2 число 54 делится на 2.

Выполнив деление, получим 27.

Число 27 заканчивается на нечетную цифру 7 . Оно

Не делится на 2. Следующее простое число - это 3.

Разделим 27 на 3. Получим 9. Наименьшее простое

Число, на которое делится 9, - это 3. Три - само является простым числом, оно делится на себя и на единицу. Разделим 3 на себя. В итоге мы получили 1.

  • Число делится лишь на те простые числа, которые входят в состав его разложения.
  • Число делится лишь на те составные числа, разложение которых на простые множители полностью в нем содержится.

Рассмотрим примеры:

4900 делится на простые числа 2, 5 и 7. (они входят в разложение числа 4900), но не делится, например, на 13.

11 550 75. Это так, потому что разложение числа 75 полностью содержится в разложении числа 11550.

В результате деления будет произведение множителей 2, 7 и 11.

11550 не делится на 4 потому, что в разложении четырех есть лишняя двойка.

Найти частное от деления числа a на число b, если эти числа раскладываются на простые множители следующим образом a=2∙2∙2∙3∙3∙3∙5∙5∙19; b=2∙2∙3∙3∙5∙19

Разложение числа b полностью содержится в разложении числа a.

Результат деления a на b - это произведение оставшихся в разложении числа a трех чисел.

Итак, ответ: 30.

Список литературы

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. - М.: Мнемозина, 2012.
  2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. - Гимназия. 2006.
  3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. - М.: Просвещение, 1989.
  4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс. - М.: ЗШ МИФИ, 2011.
  5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6-х классов заочной школы МИФИ. - М.: ЗШ МИФИ, 2011.
  6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. - М.: Просвещение, Библиотека учителя математики, 1989.
  1. Интернет-портал Matematika-na.ru ().
  2. Интернет-портал Math-portal.ru ().

Домашнее задание

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. - М.: Мнемозина, 2012. № 127, № 129, № 141.
  2. Другие задания: № 133, № 144.

Разложим число 120 на простые множители

120 = 2 ∙ 2 ∙ 2 ∙ 3 ∙ 5

Решение
Разложим число 120

120: 2 = 60
60: 2 = 30 - делится на простое число 2
30: 2 = 15 - делится на простое число 2
15: 3 = 5
Завершаем деление, так как 5 простое число

Ответ: 120 = 2 ∙ 2 ∙ 2 ∙ 3 ∙ 5

Разложим число 246 на простые множители

246 = 2 ∙ 3 ∙ 41

Решение
Разложим число 246 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом

246: 2 = 123 - делится на простое число 2
123: 3 = 41 - делится на простое число 3.
Завершаем деление, так как 41 простое число

Ответ: 246 = 2 ∙ 3 ∙ 41

Разложим число 1463 на простые множители

1463 = 7 ∙ 11 ∙ 19

Решение
Разложим число 1463 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом

1463: 7 = 209 - делится на простое число 7
209: 11 = 19
Завершаем деление, так как 19 простое число

Ответ: 1463 = 7 ∙ 11 ∙ 19

Разложим число 1268 на простые множители

1268 = 2 ∙ 2 ∙ 317

Решение
Разложим число 1268 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом

1268: 2 = 634 - делится на простое число 2
634: 2 = 317 - делится на простое число 2.
Завершаем деление, так как 317 простое число

Ответ: 1268 = 2 ∙ 2 ∙ 317

Разложим число 442464 на простые множители

442464

Решение
Разложим число 442464 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом

442464: 2 = 221232 - делится на простое число 2
221232: 2 = 110616 - делится на простое число 2
110616: 2 = 55308 - делится на простое число 2
55308: 2 = 27654 - делится на простое число 2
27654: 2 = 13827 - делится на простое число 2
13827: 3 = 4609 - делится на простое число 3
4609: 11 = 419 - делится на простое число 11.
Завершаем деление, так как 419 простое число

Ответ: 442464 = 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 3 ∙ 11 ∙ 419

Данная статья дает ответы на вопрос о разложении числа на простыне множители. Рассмотрим общее представление о разложении с примерами. Разберем каноническую форму разложения и его алгоритм. Будут рассмотрены все альтернативные способы при помощи использования признаков делимости и таблицы умножения.

Что значит разложить число на простые множители?

Разберем понятие простые множители. Известно, что каждый простой множитель – это простое число. В произведении вида 2 · 7 · 7 · 23 имеем, что у нас 4 простых множителя в виде 2 , 7 , 7 , 23 .

Разложение на множители предполагает его представление в виде произведений простых. Если нужно произвести разложение числа 30 , тогда получим 2 , 3 , 5 . Запись примет вид 30 = 2 · 3 · 5 . Не исключено, что множители могут повторяться. Такое число как 144 имеет 144 = 2 · 2 · 2 · 2 · 3 · 3 .

Не все числа предрасположены к разложению. Числа, которые больше 1 и являются целыми можно разложить на множители. Простые числа при разложении делятся только на 1 и на самого себя, поэтому невозможно представить эти числа в виде произведения.

При z , относящемуся к целым числам, представляется в виде произведения а и b , где z делится на а и на b . Составные числа раскладывают на простые множители при помощи основной теоремы арифметики. Если число больше 1 , то его разложение на множители p 1 , p 2 , … , p n принимает вид a = p 1 , p 2 , … , p n . Разложение предполагается в единственном варианте.

Каноническое разложение числа на простые множители

При разложении множители могут повторяться. Их запись выполняется компактно при помощи степени. Если при разложении числа а имеем множитель p 1 , который встречается s 1 раз и так далее p n – s n раз. Таким образом разложение примет вид a=p 1 s 1 · a = p 1 s 1 · p 2 s 2 · … · p n s n . Эта запись имеет название канонического разложения числа на простые множители.

При разложении числа 609840 получим, что 609 840 = 2 · 2 · 2 · 2 · 3 · 3 · 5 · 7 · 11 · 11 ,его канонический вид будет 609 840 = 2 4 · 3 2 · 5 · 7 · 11 2 . При помощи канонического разложения можно найти все делители числа и их количество.

Чтобы правильно разложить на множители необходимо иметь представление о простых и составных числах. Смысл заключается в том, чтобы получить последовательное количество делителей вида p 1 , p 2 , … , p n чисел a , a 1 , a 2 , … , a n - 1 , это дает возможность получить a = p 1 · a 1 , где a 1 = a: p 1 , a = p 1 · a 1 = p 1 · p 2 · a 2 , где a 2 = a 1: p 2 , … , a = p 1 · p 2 · … · p n · a n , где a n = a n - 1: p n . При получении a n = 1 , то равенство a = p 1 · p 2 · … · p n получим искомое разложение числа а на простые множители. Заметим, что p 1 ≤ p 2 ≤ p 3 ≤ … ≤ p n .

Для нахождения наименьших общих делителей необходимо использовать таблицу простых чисел. Это выполняется на примере нахождения наименьшего простого делителя числа z . При взятии простых чисел 2 , 3 , 5 , 11 и так далее, причем на них делим число z . Так как z не является простым числом, следует учитывать, что наименьшим простым делителем не будет больше z . Видно, что не существуют делителей z , тогда понятно, что z является простым числом.

Пример 1

Рассмотрим на примере числа 87 . При его делении на 2 имеем, что 87: 2 = 43 с остатком равным 1 . Отсюда следует, что 2 делителем не может являться, деление должно производиться нацело. При делении на 3 получим, что 87: 3 = 29 . Отсюда вывод – 3 является наименьшим простым делителем числа 87 .

При разложении на простые множители необходимо пользоваться таблицей простых чисел, где a . При разложении 95 следует использовать около 10 простых чисел, а при 846653 около 1000 .

Рассмотрим алгоритм разложения на простые множители:

  • нахождение наименьшего множителя при делителе p 1 числа a по формуле a 1 = a: p 1 , когда a 1 = 1 , тогда а является простым числом и включено в разложение на множители, когда не равняется 1 , тогда a = p 1 · a 1 и следуем к пункту, находящемуся ниже;
  • нахождение простого делителя p 2 числа a 1 при помощи последовательного перебора простых чисел, используя a 2 = a 1: p 2 , когда a 2 = 1 , тогда разложение примет вид a = p 1 · p 2 , когда a 2 = 1 , тогда a = p 1 · p 2 · a 2 , причем производим переход к следующему шагу;
  • перебор простых чисел и нахождение простого делителя p 3 числа a 2 по формуле a 3 = a 2: p 3 , когда a 3 = 1 , тогда получим, что a = p 1 · p 2 · p 3 , когда не равняется 1 , тогда a = p 1 · p 2 · p 3 · a 3 и производим переход к следующему шагу;
  • производится нахождение простого делителя p n числа a n - 1 при помощи перебора простых чисел с p n - 1 , а также a n = a n - 1: p n , где a n = 1 , шаг является завершающим, в итоге получаем, что a = p 1 · p 2 · … · p n .

Результат алгоритма записывается в виде таблицы с разложенными множителями с вертикальной чертой последовательно в столбик. Рассмотрим рисунок, приведенный ниже.

Полученный алгоритм можно применять при помощи разложения чисел на простые множители.

Во время разложения на простые множители следует придерживаться основного алгоритма.

Пример 2

Произвести разложение числа 78 на простые множители.

Решение

Для того, чтобы найти наименьший простой делитель, необходимо перебрать все простые числа, имеющиеся в 78 . То есть 78: 2 = 39 . Деление без остатка, значит это первый простой делитель, который обозначим как p 1 . Получаем, что a 1 = a: p 1 = 78: 2 = 39 . Пришли к равенству вида a = p 1 · a 1 , где 78 = 2 · 39 . Тогда a 1 = 39 , то есть следует перейти к следующему шагу.

Остановимся на нахождении простого делителя p 2 числа a 1 = 39 . Следует перебрать простые числа, то есть 39: 2 = 19 (ост. 1). Так как деление с остатком, что 2 не является делителем. При выборе числа 3 получаем, что 39: 3 = 13 . Значит, что p 2 = 3 является наименьшим простым делителем 39 по a 2 = a 1: p 2 = 39: 3 = 13 . Получим равенство вида a = p 1 · p 2 · a 2 в виде 78 = 2 · 3 · 13 . Имеем, что a 2 = 13 не равно 1 , тогда следует переходит дальше.

Наименьший простой делитель числа a 2 = 13 ищется при помощи перебора чисел, начиная с 3 . Получим, что 13: 3 = 4 (ост. 1). Отсюда видно, что 13 не делится на 5 , 7 , 11 , потому как 13: 5 = 2 (ост. 3), 13: 7 = 1 (ост. 6) и 13: 11 = 1 (ост. 2). Видно, что 13 является простым числом. По формуле выглядит так: a 3 = a 2: p 3 = 13: 13 = 1 . Получили, что a 3 = 1 , что означает завершение алгоритма. Теперь множители записываются в виде 78 = 2 · 3 · 13 (a = p 1 · p 2 · p 3) .

Ответ: 78 = 2 · 3 · 13 .

Пример 3

Разложить число 83 006 на простые множители.

Решение

Первый шаг предусматривает разложение на простые множители p 1 = 2 и a 1 = a: p 1 = 83 006: 2 = 41 503 , где 83 006 = 2 · 41 503 .

Второй шаг предполагает, что 2 , 3 и 5 не простые делители для числа a 1 = 41 503 , а 7 простой делитель, потому как 41 503: 7 = 5 929 . Получаем, что p 2 = 7 , a 2 = a 1: p 2 = 41 503: 7 = 5 929 . Очевидно, что 83 006 = 2 · 7 · 5 929 .

Нахождение наименьшего простого делителя p 4 к числу a 3 = 847 равняется 7 . Видно, что a 4 = a 3: p 4 = 847: 7 = 121 , поэтому 83 006 = 2 · 7 · 7 · 7 · 121 .

Для нахождения простого делителя числа a 4 = 121 используем число 11 , то есть p 5 = 11 . Тогда получим выражение вида a 5 = a 4: p 5 = 121: 11 = 11 , и 83 006 = 2 · 7 · 7 · 7 · 11 · 11 .

Для числа a 5 = 11 число p 6 = 11 является наименьшим простым делителем. Отсюда a 6 = a 5: p 6 = 11: 11 = 1 . Тогда a 6 = 1 . Это указывает на завершение алгоритма. Множители запишутся в виде 83 006 = 2 · 7 · 7 · 7 · 11 · 11 .

Каноническая запись ответа примет вид 83 006 = 2 · 7 3 · 11 2 .

Ответ: 83 006 = 2 · 7 · 7 · 7 · 11 · 11 = 2 · 7 3 · 11 2 .

Пример 4

Произвести разложение числа 897 924 289 на множители.

Решение

Для нахождения первого простого множителя произвести перебор простых чисел, начиная с 2 . Конец перебора приходится на число 937 . Тогда p 1 = 937 , a 1 = a: p 1 = 897 924 289: 937 = 958 297 и 897 924 289 = 937 · 958 297 .

Второй шаг алгоритма заключается в переборе меньших простых чисел. То есть начинаем с числа 937 . Число 967 можно считать простым, потому как оно является простым делителем числа a 1 = 958 297 . Отсюда получаем, что p 2 = 967 , то a 2 = a 1: p 1 = 958 297: 967 = 991 и 897 924 289 = 937 · 967 · 991 .

Третий шаг говорит о том, что 991 является простым числом, так как не имеет ни одного простого делителя, который не превосходит 991 . Примерное значение подкоренного выражения имеет вид 991 < 40 2 . Иначе запишем как 991 < 40 2 . Отсюда видно, что p 3 = 991 и a 3 = a 2: p 3 = 991: 991 = 1 . Получим, что разложение числа 897 924 289 на простые множители получается как 897 924 289 = 937 · 967 · 991 .

Ответ: 897 924 289 = 937 · 967 · 991 .

Использование признаков делимости для разложения на простые множители

Чтобы разложить число на простые множители, нужно придерживаться алгоритма. Когда имеются небольшие числа, то допускается использование таблицы умножения и признаков делимости. Это рассмотрим на примерах.

Пример 5

Если необходимо произвести разложение на множители 10 , то по таблице видно: 2 · 5 = 10 . Получившиеся числа 2 и 5 являются простыми, поэтому они являются простыми множителями для числа 10 .

Пример 6

Если необходимо произвести разложение числа 48 , то по таблице видно: 48 = 6 · 8 . Но 6 и 8 – это не простые множители, так как их можно еще разложить как 6 = 2 · 3 и 8 = 2 · 4 . Тогда полное разложение отсюда получается как 48 = 6 · 8 = 2 · 3 · 2 · 4 . Каноническая запись примет вид 48 = 2 4 · 3 .

Пример 7

При разложении числа 3400 можно пользоваться признаками делимости. В данном случае актуальны признаки делимости на 10 и на 100 . Отсюда получаем, что 3 400 = 34 · 100 , где 100 можно разделить на 10 , то есть записать в виде 100 = 10 · 10 , а значит, что 3 400 = 34 · 10 · 10 . Основываясь на признаке делимости получаем, что 3 400 = 34 · 10 · 10 = 2 · 17 · 2 · 5 · 2 · 5 . Все множители простые. Каноническое разложение принимает вид 3 400 = 2 3 · 5 2 · 17 .

Когда мы находим простые множители, необходимо использовать признаки делимости и таблицу умножения. Если представить число 75 в виде произведения множителей, то необходимо учитывать правило делимости на 5 . Получим, что 75 = 5 · 15 , причем 15 = 3 · 5 . То есть искомое разложение пример вид произведения 75 = 5 · 3 · 5 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Всякое составное число может быть единственным образом представлено в виде произведения простых множителей. Например,

48 = 2 · 2 · 2 · 2 · 3, 225 = 3 · 3 · 5 · 5, 1050 = 2 · 3 · 5 · 5 · 7 .

Для небольших чисел это разложение легко делается на основе таблицы умножения. Для больших чисел рекомендуем пользоваться следующим способом, который рассмотрим на конкретном примере. Разложим на простые множители число 1463. Для этого воспользуемся таблицей простых чисел:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,

47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,

103, 107, 109, 113, 127, 131, 137, 139, 149, 151,

157, 163, 167, 173, 179, 181, 191, 193, 197, 199.

Перебираем числа по этой таблице и останавливаемся на том числе, которое является делителем данного числа. В нашем примере это 7. Делим 1463 на 7 и получаем 209. Теперь повторяем процесс перебора простых чисел для 209 и останавливаемся на числе 11, которое является его делителем (см. ). Делим 209 на 11 и получаем 19, которое в соответствии с этой же таблицей является простым числом. Таким образом, имеем:

Это один из самых элементарных способов упростить выражение. Для применения этого метода давай вспомним распределительный закон умножения относительно сложения (не пугайся этих слов, ты обязательно знаешь этот закон, просто мог забыть его название).

Закон гласит: чтобы сумму двух чисел умножить на третье число, нужно каждое слагаемое умножить на это число и полученные результаты сложить, иначе говоря, .

Так же можно проделать и обратную операцию, вот именно эта обратная операция нас и интересует. Как видно из образца, общий множитель а, можно вынести за скобку.

Подобную операцию можно проделывать как с переменными, такими как и, например, так и с числами: .

Да, это слишком элементарный пример, так же, как и приведенный ранее пример, с разложением числа, ведь все знают, что числа, и делятся на, а как быть, если вам досталось выражение посложнее:

Как узнать на что, например, делится число, неет, с калькулятором-то любой сможет, а без него слабо? А для этого существуют признаки делимости, эти признаки действительно стоит знать, они помогут быстро понять, можно ли вынести за скобку общий множитель.

Признаки делимости

Запомнить их не так сложно, скорее всего, большинство из них и так тебе были знакомы, а что-то будет новым полезным открытием, подробнее в таблице:

Примечание: В таблице не хватает признака делимости на 4. Если две последние цифры делятся на 4, то и всё число делится на 4.

Ну как тебе табличка? Советую ее запомнить!

Что ж, вернемся к выражению, может вынести за скобку да и хватит с него? Нет, у математиков принято упрощать, так по полной, выносить ВСЕ что выносится!

И так, с игреком все понятно, а что с числовой частью выражения? Оба числа нечетные, так что на разделить не удастся,

Можно воспользоваться признаком делимости на, сумма цифр, и, из которых состоит число, равна, а делится на, значит и делится на.

Зная это, можно смело делить в столбик, в результате деления на получаем (признаки делимости пригодились!). Таким образом, число мы можем вынести за скобку, так же, как y и в результате имеем:

Чтоб удостовериться, что разложили все верно, можно проверить разложение, умножением!

Также общий множитель можно выносить и в степенных выражениях. Вот тут, например, видишь общий множитель?

У всех членов этого выражения есть иксы - выносим, все делятся на - снова выносим, смотрим что получилось: .

2. Формулы сокращенного умножения

Формулы сокращенного умножения уже упоминались в теории, если ты с трудом помнишь что это, то тебе стоит освежить их в памяти .

Ну, а если ты считаешь себя очень умным и тебе лень читать такую тучу информации, то просто читай дальше, глянь на формулы и сразу берись за примеры.

Суть этого разложения в том, что бы заметить в имеющемся перед тобой выражении какую-то определенную формулу, применить ее и получить, таким образом, произведение чего-то и чего-то, вот и все разложение. Дальше приведены формулы:

А теперь попробуй, разложи на множители следующие выражения, используя приведенные выше формулы:

А вот что должно было получиться:

Как ты успел заметить, эти формулы - весьма действенный способ разложения на множители, он подходит не всегда, но может очень пригодиться!

3. Группировка или метод группировки

А вот тебе еще примерчик:

ну и что с ним делать будешь? Вроде бы и на что-то делится и на, а что-то на и на

Но все вместе на что-то одно не разделишь, ну нет тут общего множителя , как не ищи, что, так и оставить, не раскладывая на множители?

Тут надо смекалку проявить, а имя этой смекалке - группировка!

Применяется она как раз, когда общие делители есть не у всех членов. Для группировки необходимо найти группки слагаемых, имеющих общие делители и переставить их так, чтобы из каждой группы можно было получить один и тот же множитель.

Переставлять местами конечно не обязательно, но это дает наглядность, для наглядности же можно взять отдельные части выражения в скобки, их ставить не запрещается сколько угодно, главное со знаками не напутать.

Не очень понятно все это? Объясню на примере:

В многочлене -- ставим член - после члена - получаем

группируем первые два члена вместе в отдельной скобке и так же группируем третий и четвертый члены, вынеся за скобку знак «минус», получаем:

А теперь смотрим по отдельности на каждую из двух "кучек", на которые мы разбили выражение скобками.

Хитрость в том, чтоб разбить на такие кучки, из которых можно будет вынести максимально большой множитель, либо, как в этом примере, постараться сгруппировать члены так, чтобы после вынесения из кучек множителей за скобку у нас внутри скобок оставались одинаковые выражения.

Из обеих скобок выносим за скобки общие множители членов, из первой скобки, а из второй, получаем:

Но это же не разложение!

П осле разложения должно остаться только умножение , а пока у нас многочлен просто поделен на две части...

НО! Этот многочлен имеет общий множитель. Это

за скобку и получаем финальное произведение

Бинго! Как видишь, тут уже произведение и вне скобок нет ни сложения, ни вычитания, разложение завершено, т.к. вынести за скобки нам больше нечего.

Может показаться чудом, что после вынесения множителей за скобки у нас в скобках остались одинаковые выражения, которые опять же мы и вынесли за скобку.

И вовсе это не чудо, дело в том, что примеры в учебниках и в ЕГЭ специально сделаны так, что большинство выражений в заданиях на упрощение или разложение на множители при правильном к ним подходе легко упрощаются и резко схлопываются как зонтик при нажатии на кнопку, вот и ищи в каждом выражении ту самую кнопку.

Что-то я отвлекся, что у нас там с упрощением? Замысловатый многочлен принял более простой вид: .

Согласись, уже не такой громоздкий, как был?

4. Выделение полного квадрата.

Иногда для применения формул сокращенного умножения (повтори тему ) необходимо преобразовать имеющийся многочлен , представив одно из его слагаемых в виде суммы или разности двух членов.

В каком случае приходится это делать, узнаешь из примера:

Многочлен в таком виде не может быть разложен при помощи формул сокращенного умножения, поэтому его необходимо преобразовать. Возможно, поначалу тебе будет не очевидно какой член на какие разбивать, но со временем ты научишься сразу видеть формулы сокращенного умножения, даже если они не присутствуют не целиком, и будете довольно быстро определять, чего здесь не хватает до полной формулы, а пока - учись, студент, точнее школьник.

Для полной формулы квадрата разности здесь нужно вместо. Представим третий член как разность, получим: К выражению в скобках можно применить формулу квадрата разности (не путать с разностью квадратов!!!) , имеем: , к данному выражению можно применить формулу разности квадратов (не путать с квадратом разности!!!) , представив, как, получим: .

Не всегда разложенное на множители выражение выглядит проще и меньше, чем было до разложения, но в таком виде оно становится более подвижным, в том плане, что можно не париться про смену знаков и прочую математическую ерунду. Ну а вот тебе для самостоятельного решения, следующие выражения нужно разложить на множители.

Примеры:

Ответы:​

5. Разложение квадратного трехчлена на множители

О разложении квадратного трехчлена на множители смотри далее в примерах разложения.

Примеры 5 методов разложения многочлена на множители

1. Вынесение общего множителя за скобки. Примеры.

Помнишь, что такое распределительный закон? Это такое правило:

Пример:

Разложить многочлен на множители.

Решение:

Еще пример:

Разложи на множители.

Решение:

Если слагаемое целиком выносится за скобки, в скобках вместо него остается единица!

2. Формулы сокращенного умножения. Примеры.

Чаще всего используем формулы разность квадратов, разность кубов и сумма кубов. Помнишь эти формулы? Если нет, срочно повтори тему !

Пример:

Разложите на множители выражение.

Решение:

В этом выражении несложно узнать разность кубов:

Пример:

Решение:

3. Метод группировки. Примеры

Иногда можно поменять слагаемые местами таким образом, чтобы из каждой пары соседних слагаемых можно было выделить один и тот же множитель. Этот общий множитель можно вынести за скобку и исходный многочлен превратится в произведение.

Пример:

Разложите на множители многочлен.

Решение:

Сгруппируем слагаемые следующим образом:
.

В первой группе вынесем за скобку общий множитель, а во второй − :
.

Теперь общий множитель также можно вынести за скобки:
.

4. Метод выделения полного квадрата. Примеры.

Если многочлен удастся представить в виде разности квадратов двух выражений, останется только применить формулу сокращенного умножения (разность квадратов).

Пример:

Разложите на множители многочлен.

Решение: Пример:

\begin{array}{*{35}{l}}
{{x}^{2}}+6{x}-7=\underbrace{{{x}^{2}}+2\cdot 3\cdot x+9}_{квадрат\ суммы\ {{\left(x+3 \right)}^{2}}}-9-7={{\left(x+3 \right)}^{2}}-16= \\
=\left(x+3+4 \right)\left(x+3-4 \right)=\left(x+7 \right)\left(x-1 \right) \\
\end{array}

Разложите на множители многочлен.

Решение:

\begin{array}{*{35}{l}}
{{x}^{4}}-4{{x}^{2}}-1=\underbrace{{{x}^{4}}-2\cdot 2\cdot {{x}^{2}}+4}_{квадрат\ разности{{\left({{x}^{2}}-2 \right)}^{2}}}-4-1={{\left({{x}^{2}}-2 \right)}^{2}}-5= \\
=\left({{x}^{2}}-2+\sqrt{5} \right)\left({{x}^{2}}-2-\sqrt{5} \right) \\
\end{array}

5. Разложение квадратного трехчлена на множители. Пример.

Квадратный трехчлен - многочлен вида, где - неизвестное, - некоторые числа, причем.

Значения переменной, которые обращают квадратный трехчлен в ноль, называются корнями трехчлена. Следовательно, корни трехчлена - это корни квадратного уравнения.

Теорема.

Пример:

Разложим на множители квадратный трехчлен: .

Сначала решим квадратное уравнение:Теперь можно записать разложение данного квадратного трехчлена на множители:

Теперь твое мнение...

Мы расписали подробно как и для чего раскладывать многочлен на множители.

Мы привели массу примеров как это делать на практике, указали на подводные камни, дали решения...

А что скажешь ты?

Как тебе эта статья? Ты пользуешься этими приемами? Понимаешь их суть?

Пиши в комментриях и... готовься к экзамену!

Пока что он самый важный в твоей жизни.