Болезни Военный билет Призыв

С увеличением доверительной вероятности доверительный интервал. Доверительный интервал, доверительная вероятность - реферат. Статистическое оценивание параметров распределения

После получения точечной оценки желательно иметь данные о надежности такой оценки. Понятно, что величина является лишь приближенным значением параметра q. Вычисленная точечная оценка может быть близка к оцениваемому параметру, а может и очень сильно отличаться от него. Точечная оценка не несет информации о точности процедуры оценивания. Особенно важно иметь сведения о надежности оценок для небольших выборок. В таких случаях следует пользоваться интервальными оценками.

Задачу интервального оценивания в самом общем виде можно сформулировать следующим образом: по данным выборки построить числовой интервал, относительно которого с заранее выбранной вероятностью можно сказать, что внутри этого интервала находится оцениваемый параметр. Здесь существует несколько подходов. Наиболее распространенным методом интервального оценивания является метод доверительных интервалов .

Доверительным интервалом для параметра q называется интервал , содержащий неизвестное значение параметра генеральной совокупности с заданной вероятностью g, т.е.

.

Число g называется доверительной вероятностью , а число a=1–g – уровнем надежности . Доверительная вероятность задается априорно и определяется конкретными условиями. Обычно используется g=0,9; 0,95; 0,99 (соответственно, a=0,1; 0,05; 0,01).

Длина доверительного интервала, характеризующая точность интервальной оценки, зависит от объема выборки n и доверительной вероятности g. При увеличении величины n длина доверительного интервала уменьшается, а с приближением вероятности g к единице – увеличивается.

Часто доверительный интервал строят симметричным относительно точечной оценки, т.е. в виде

, (3.15)

Здесь число D называется предельной (или стандартной ) ошибкой выборки . Однако симметричные интервалы не всегда удается построить, более того, иногда приходится ограничиваться односторонними доверительными интервалами:

или .

Поскольку в эконометрических задачах часто приходится строить доверительные интервалы параметров случайных величин, имеющих нормальное распределение , приведем схемы их нахождения.



3.4.2. Доверительный интервал оценки генеральной
средней при известной генеральной дисперсии

Пусть количественный признак X генеральной совокупности имеет нормальное распределение с заданной дисперсией s 2 и неизвестным математическим ожиданием a . Для оценки параметра a извлечена выборка X 1 , X 2 , …, X n , состоящей из n независимых нормальной распределенных случайных величин с параметрами a и s, причем s известно, а величину a оценивают по выборке:

.

Оценим точность этого приближенного равенства. Для этого зададим вероятность g и попробуем найти такое число D, чтобы выполнялось соотношение

.

Далее воспользуемся свойствами нормального распределения. Известно, что сумма нормально распределенных величин также имеет нормальное распределение. Поэтому средняя величина имеет нормальное распределение, математическое ожидание и дисперсия которой равны

Следовательно,

.

Воспользуемся теперь формулой нахождения вероятностей отклонения нормально распределенной случайной величины от математического ожидания:

,

где F(x ) – функция Лапласа. Заменяя X на и s на , получим

,

где . Из последнее равенства находим, что предельная ошибка выборки будет равна

.

Приняв во внимание, что доверительная вероятность задана и равна g, получим окончательный результат.

Интервальная оценка генеральной средней (математического ожидания) имеет вид

, (3.17)

или более кратко

где число t g определяется из равенства .

Приведем значения t g для широко распространенных значений доверительной вероятности:

, , .

Обсудим, как влияет на точность оценивания параметра a объем выборки n , величина среднего квадратичного отклонения s, а также значение доверительной вероятности g.

а) При увеличении n точность оценки увеличивается. К сожалению, увеличение точности (т.е. уменьшение длины доверительного интервала) пропорционально , а не 1/n , т.е. происходит гораздо медленнее, чем рост числа наблюдений. Например, если мы хотим увеличить точность выводов в 10 раз чисто статистическими средствами, то мы должны увеличить объем выборки в 100 раз.

б) Чем больше s, тем ниже точность. Зависимость точности от этого параметра носит линейный характер.

в) Чем выше доверительная вероятность g, тем больше значение параметра t g , т.е. тем ниже точность. При этом между g и t g существует нелинейная связь. С увеличением g значение t g резко увеличивается ( при ). Поэтому с большой уверенностью (с высокой доверительной вероятностью) мы можем гарантировать лишь относительно невысокую точность. (Доверительный интервал окажется широким.) И наоборот: когда мы указываем для неизвестного параметра a относительно узкие пределы, мы рискуем совершить ошибку – с относительно высокой вероятностью.

Отметим, что величина

называется средней ошибкой выборки . Для бесповторной выборки эта формула примет вид

. (3.20)

Тогда предельная ошибка выборки D будет представлять собой t -кратную среднюю ошибку:

Пример 3.7. На основе продолжительных наблюдений за весом X пакетов орешков, заполняемых автоматически, установлено, что среднее квадратичное отклонение веса пакетов равно s=10 г . Взвешено 25 пакетов, при этом их средний вес составил . В каком интервале с надежностью 95% лежит истинное значение среднего веса пакетов?

.

Для определения 95%-го доверительного интервала вычислим предельную ошибку выборки

Следовательно 95%-й доверительный интервал для истинное значение среднего веса пакетов будет иметь вид

,

На первый взгляд может показаться, что полученный результат представляет только теоретический результат, поскольку среднее квадратичное отклонение s, как правило, тоже неизвестно и вычисляется по выборочным данным. Однако если выборка достаточно большая, то полученный результат вполне приемлем для практического использования, поскольку функция распределения будет мало отличаться от нормальной, а оценка дисперсии s 2 будет достаточно близка к истинному значению s 2 . Более того, полученный результат часто используют и в том случае, когда распределение генеральной совокупности отличается нормального. Это обусловлено тем, что сумма независимых случайных величин, в силу центральной предельной теоремы, при больших выборках имеет распределение, близкое к нормальному. â

Пример 3.8. Предположим, что в результате выборочного обследования жилищных условий жителей города на основе собственно-случайной повторной выборки, получен следующий вариационный ряд:

Таблица 3.5

Построить 95%-доверительный интервал для изучаемого признака.

Решение. Рассчитаем выборочную среднюю величину и дисперсию изучаемого признака.

Таблица 3.6

Общая площадь жилищ, приходящаяся на 1 чел., м 2 Число жителей, n i Середина интервала, x i
До 5,0 2,5 20,0 50,0
5,0–10,0 7,5 712,5 5343,8
10,0–15,0 12,5 2550,0 31875,0
15,0–20,0 17,5 4725,0 82687,5
20,0–25,0 22,5 4725,0 106312,5
25,0–30,0 27,5 3575,0 98312,5
30,0 и более 32,5 2697,5 87668,8
Итого 19005,0 412250,0

; ; .

Средняя ошибка выборки составит

.

Определим предельную ошибку выборки с вероятностью 0,95 ():

Установим границы генеральной средней

.

Таким образом, на основании проведенного выборочного обследования с вероятностью 0,95 можно заключить, что средний размер общей площади, приходящейся на 1 чел., в целом по городу лежит в пределах от 18,6 до 19,4 м 2 . â

3.4.3. Доверительный интервал оценки генеральной
средней при неизвестной генеральной дисперсии

Выше была решена задача построения интервальной оценки для математического ожидания нормального распределения, когда его дисперсия известна. Однако на практике дисперсия обычно тоже неизвестна и ее вычисляют по той же самой выборке, что и математическое ожидание. Это приводит к необходимости использования другой формулы при определении доверительного интервала для математического ожидания случайной величины, имеющей нормальное распределение. Такая постановка задачи особенно актуальна при малых объемах выборки.

Пусть количественный признак X генеральной совокупности имеет нормальное распределение N (a ,s), причем оба параметра a и s неизвестны. По данным выборки X 1 , X 2 , …, X n , вычислим среднее арифметическое и исправленную дисперсию:

, .

Для нахождения доверительного интервала в этом случае строится статистика

имеющая распределение Стьюдента с числом степеней свободы n=n–1 независимо от значений параметров a и s. Выбрав доверительную вероятность g и зная объем выборки n, можно найти такое число t, что будет выполняться равенство

,

.

Отсюда находим

интервальную оценку для генеральной средней (математического ожидания) при неизвестном s:

, (3.22)

или более кратко

Число t (коэффициент Стьюдента ) находится из таблиц для распределения Стьюдента. Отметим, что он является функцией двух аргументов: доверительной вероятности g и числа степеней свободы k =n –1, т.е. t=t (g,n).

Следует быть очень внимательным при использовании таблиц для распределения Стьюдента. Во-первых, обычно в таблицах вместо доверительной вероятности g используют уровень надежности a=1–g. Во-вторых, очень часто в таблицах приводятся значения т.н. одностороннего критерия Стьюдента

Или .

В этом случае в таблицах следует брать значения , если в таблице используется уровень надежности, или , если в таблице используется доверительная вероятность.

Несмотря на кажущееся сходство формул (3.17) и (3.22), между ними имеется существенное различие, заключающееся в том, что коэффициент Стьюдента t зависит не только от доверительной вероятности, но и от объема выборки. Особенно это различие заметно при малых выборках. (Напомним, что при больших выборках различие между распределением Стьюдента и нормальным распределением практически исчезает.) В этом случае использование нормального распределения приводит к неоправданному сужению доверительного интервала, т.е. к неоправданному повышению точности. Например, если n =5 и g=0,99, то, пользуясь распределением Стьюдента, получим t =4,6, а используя нормальное распределение, – t =2,58, т.е. доверительный интервал в последнем случае почти в два раза уже, чем интервал при использовании распределения Стьюдента.

Пример 3.9. Аналитик фондового рынка оценивает среднюю доходность определенных акций. Случайная выборка 15 дней показала, что средняя (годовая) доходность со средним квадратичным отклонением . Предполагая, что доходность акций подчиняется нормальному закону распределения, постройте 95%-доверительный интервал для средней доходности интересующего аналитика вида акций.

Решение. Поскольку объем выборки n =15, то необходимо применить распределение Стьюдента с степенями свободы. По таблицам для распределения Стьюдента находим

.

Используя это значение, строим 95%-доверительный интервал:

.

Следовательно, аналитик может быть на 95% уверен, что средняя годовая доходность по акциям находится между 8,44% и 12,3%. â

Cтраница 2


Качество исходных данных (статистика) о показателях надежности электрооборудования (вместе с показателями ущерба от нарушений электроснабжения и сведениями о режимах работы и ППР) оценивается точностью - шириной доверительного интервала, накрывающего показатель, и достоверностью - вероятностью не совершить ошибку, выбирая этот интервал. Точность математических моделей надежности оценивается их адекватностью реальному объекту, а точность метода расчета надежности - адекватностью полученного решения идеальному.  

Теперь коэффициент вариации дебита, так же как и сам дебит, существенно зависит от &0 / &1 - Так, например, при pi 1 м и ku / k 5 средний дебит уменьшается по сравнению с первоначальным примерно в 2 раза, а ширина доверительного интервала почти в 3 раза. Очевидно, уточнение параметров призабойной зоны в этом случае дает существенную информацию и значительно улучшает качество прогноза.  


Неизменность числа испытаний п на каждой ступени оказывает существенное влияние иа точность результатов. Ширина доверительного интервала уменьшается с увеличением объема выборки.  

Доверительными называют интервалы, в пределах которых находятся с определенными (доверительными) вероятностями истинные значения оцениваемых параметров. Обычно ширину доверительного интервала выражают через СКО результатов отдельных наблюдений ах.  

Ширина доверительного интервала зависит от желаемой статистической надежности е, объема выборки п и от распределения случайных значений, в особенности от разброса. Длина и ширина доверительных интервалов определяется также имеющейся (случайной) выборкой.  

Однако ширина доверительного интервала при этом получается неприемлемо большой. Однако и в этом случае ширина доверительного интервала получается слишком большой.  


Отсюда границы доверительного интервала составляют (23 85 - 2 776 - 0 13; 23 85 2 776Х Х0 13) (23 49; 24 21) МПа. Из результатов видно, что ширина доверительного интервала для той же вероятности должна быть почти в 1 5 раза больше за счет того, что при меньшем числе измерений доверие к ним меньше.  

Из соотношения (2.29) следует, что вероятность того, что доверительный интервал (0 - Д; в Д) со случайными границами накроет известный параметр 0, равна у. Величину Д, равную половине ширины доверительного интервала, называют точностью оценки, а вероятность у - доверительной вероятностью (или надежностью) оценки.  

Интервал (04, 042) называется доверительным, его границы 04 и 0W, являющиеся случайными величинами, соответственно нижним и верхним доверительными пределами. Любая интервальная оценка может быть охарактеризована совокупностью двух чисел: шириной доверительного интервала Н 04 - 0И, являющейся мерой точности оценивания параметра 0, и доверительной вероятностью у, характеризующей степень достоверности (надежности) результатов.  

При этих условиях доверительные границы определяются: для Мэ и а с помощью - распределения, а для Мн - с помощью распределения Стьюдента. Из графиков видно, что при малом числе п наблюдавшихся отказов ширина доверительного интервала, которая характеризует возможное отклонение в оценке параметра распределения, велика. Действительное значение параметра может в несколько раз отличаться от полученного из опыта значения соответствующей статистической оценки. С увеличением п границы доверительного интервала постепенно суживаются. Для получения достаточно точных и достоверных оценок требуется, чтобы при испытании наблюдалось большое число отказов, что, в свою очередь, требует значительного объема испытаний, особенно при высокой надежности объектов.  

Выборочное среднее квадратическое отклонение, размах выборки. 7. 2.

Контрольные вопросы

1. Запишите формулы для нахождения выборочного среднего по статистическим данным: 1) несгруппированным, 2) сгруппированным и поясните их. Приведите пример.

2. Запишите формулы для нахождения выборочного среднего квадратического отклонения по статистическим данным: 1) несгруппированным, 2) сгруппированным и поясните их. Приведите пример.

3. Назовите числовые характеристики выборки, которые описывают:

1) центр распределения,

2) рассеивание значений случайной величины вокруг центра,

3) симметричность распределения,

4) островершинность распределения?

Часть 2. статистические оценки параметров распределения генеральной совокупности

Тема 1. точечные оценки параметров генеральной совокупности

1. Оценка параметра и ее свойства

Изучаемая генеральная совокупность может быть очень большой. Поэтому ее изучают с помощью выборочного метода. Для выборки из генеральной совокупности вычисляют выборочную среднюю, выборочную дисперсию, и интересующие нас параметры . Например, для нормального распределения – это параметры и https://pandia.ru/text/78/148/images/image101_3.gif" width="16" height="20">.

Как оценить параметры генеральной совокупности, зная значения выборочных параметров?

Статистическая оценка

параметров распределения

Доверительный

Несмещенная Точечная Интервальная интервал

Эффективная оценка оценка

Состоятельная Доверительная

вероятность

* среднее арифметическое * размах варьирования

* медиана * выборочная дисперсия

* мода * выборочное среднее

квадратическое отклонение

Статистическое оценивание параметров распределения

Естественно возникает задача: как оценить (найти приближенное значение) параметра (параметров), которым определяется распределение?

Если генеральную совокупность описывает параметр https://pandia.ru/text/78/148/images/image104_4.gif" width="25" height="20">, которая вычислена по выборке. Например, выборочное среднее оценивает генеральную среднюю ; выборочная дисперсия оценивает генеральную дисперсию ..gif" width="25" height="28 src=">, а параметры – греческими , .

Если статистическая оценка параметра характеризуется одним числом, она называется точечной .

Для каждой конкретной выборки точечная статистическая оценка – это число, т. е. точка на числовой оси.

Статистическая оценка является случайной величиной и меняется в зависимости от выборки.

Для одной и той же неизвестной величины https://pandia.ru/text/78/148/images/image083_3.gif" width="15 height=25" height="25">, выборочная медиана , полусумма крайних элементов.

В силу многообразия оценок, применяемых для оценивания одной и той же неизвестной величины, возникает задача выбора лучшей оценки параметра в определенном смысле..gif" width="25" height="20"> должна быть несмещенной , т. е. ее математическое ожидание должно быть равно оцениваемому параметру.

2..gif" width="24" height="28 src="> представляет собой несмещенную оценку математического ожидания генеральной совокупности .

Выборочная дисперсия https://pandia.ru/text/78/148/images/image112_3.gif" width="20 height=19" height="19">.

Несмещенной оценкой генеральной дисперсии служит исправленная выборочная дисперсия , где - поправочный коэффициент.

При больших значения и будут мало отличаться, поэтому «исправление» выборочной дисперсии производят при малых (). В целях повышения надежности полученной оценки следует увеличивать объем выборки.

Пример 1. При обследовании 50 членов семей получен дискретный вариационный ряд.

Определите средний размер (среднее число членов) семьи.

Охарактеризуйте изменчивость размера семьи.

Объясните полученные результаты, сделайте выводы.

Решение

1. В данной задаче изучаемый признак является дискретным , так как размер семей не может отличаться друг от друга менее чем на одного человека. Рассчитаем среднее число членов семьи:

https://pandia.ru/text/78/148/images/image117_3.gif" width="209" height="60">:

https://pandia.ru/text/78/148/images/image119_3.gif" width="39 height=28" height="28">).

Найдем среднее квадратическое отклонение размера семьи: . Среднее квадратическое отклонение размера семьи - 2 человека.

Найдем коэффициент вариации размера семьи по формуле . Коэффициент вариации составляет 38%. Так как коэффициент вариации больше 35%, можно сделать вывод о том, что изучаемая совокупность семей является неоднородной , чем объясняется высокая изменчивость размера семьи в данной совокупности.

Тестовые задания

1. Точечная оценка параметра распределения признака, вычисленная по выборке, характеризуется:

1) одним числом 2) средним значением признака

3) точкой на прямой 4) результатами выборки

2. В результате измерений некоторой физической величины одним прибором (без систематических ошибок) получены следующие результаты (в мм): 11, 13, 15. Тогда оценка дисперсии измерений равна:

1) 4; 2) 13; 3) 8; 4) 3.

3. Отметьте правильные ответы. Качество точечной оценки параметра распределения признака характеризуется:

1) несмещенностью; 2) эффективностью;

3) состоятельностью; 4) случайностью.

4. Отметьте правильный ответ. Несмещенная оценка математического ожидания признака:

1) https://pandia.ru/text/78/148/images/image123_2.gif" width="93 height=60" height="60">;

3) https://pandia.ru/text/78/148/images/image125_2.gif" width="115" height="60">.

5. Оценка генеральной средней признака:

1) выборочное среднее значение 2) среднее значение признака

3) наибольшее значение признака 4) математическое ожидание

6. Несмещенная оценка дисперсии признака:

1) https://pandia.ru/text/78/148/images/image127_3.gif" width="176" height="60 src=">;

3) https://pandia.ru/text/78/148/images/image129_3.gif" width="144 height=60" height="60">.

7. Проведено четыре измерения (без систематических ошибок) некоторой случайной величины (в мм): 5, 6, 9, 12 . Оценка математического ожидания равна:

1) 8,25; 2) 8,5 ; 3) 7; 4) 8.

8. Математическое ожидание оценки параметра равно:

1) параметру; 2) выборочному среднему значению;

3) выборочной дисперсии; 4) нулю.

9. Несмещенная и состоятельная оценка генеральной дисперсии:

1) выборочная дисперсия; 2) исправленная выборочная дисперсия;

3) размах признака; 4) приближенное значение дисперсии.

Ответы . 1 . 1). 2. 1). 3 . 1, 2, 3. 4. 2).

5. 1). 6. 1). 7. 4). 8. 1). 9. 2).

контрольные вопросы

1. Дайте определение точечной статистической оценки.

2. Какая оценка параметра распределения называется точечной?

3..gif" width="25" height="28 src=">?

5. Какая числовая характеристика выборки является несмещенной для математического ожидания?

6. Какая числовая характеристика выборки является несмещенной для дисперсии?

Тема 2. интервальные оценки параметров генеральной совокупности

1. Доверительная вероятность и доверительный интервал

Точечные оценки являются приближенными, так как они указывают точку на числовой оси, в которой должно находиться значение неизвестного параметра.

Оценка параметра при разных выборках одного и того же объема будет принимать разные значения. Поэтому в ряде задач требуется найти не только подходящее значение параметра, но и определить его точность и надежность .

Для этого в математической статистике используется два понятия – доверительный интервал и доверительная вероятность.

Доверительный интервал – интервал значений, в пределах которого, как можно надеяться, находится параметр генеральной совокупности.

Наша надежда выражается доверительной вероятностью вероятность, с которой доверительный интервал «захватит» истинное значение параметра генеральной совокупности. Чем выше доверительная вероятность, тем шире доверительный интервал. Значение доверительной вероятности выбирает сам исследователь. Обычно это 0,9; 0,95; 0,99.

Если статистическая оценка параметра закона распределения случайной величины https://pandia.ru/text/78/148/images/image131_3.gif" width="53" height="24 src=">, в который попадает оцениваемый параметр с заданной надежностью (вероятностью), называется доверительным интервалом , а вероятность - доверительной вероятностью или уровнем надежности. Число называется уровнем значимости .

Вычисление доверительных интервалов основывается на предположении нормальности наблюдаемых величин . Если это предположение не выполнено, то оценка может оказаться плохой, особенно для малых выборок. При увеличении объема выборки, скажем, до 100 или более, качество оценки улучшается и без предположения нормальности выборки.

Например, если среднее выборки равно 23, а нижняя и верхняя границы доверительного интервала с уровнем p =.95 равны 19 и 27 соответственно, то можно заключить, что с вероятностью 95% интервал с границами 19 и 27 накрывает среднее популяции. Если мы установим больший уровень доверия, то интервал станет шире, поэтому возрастает вероятность, с которой он "накрывает" неизвестное среднее популяции, и наоборот.

Доверительный интервал применяется в случае сравнительно небольшого объема выборки , когда предполагается, что надежность точечной оценки может быть невысокой.

Доверительный интервал симметричен относительно оценки истинного значения параметра и имеет вид , где - предельная ошибка выборки (наибольшее отклонение выборочного значения параметра от его истинного значения)..gif" width="15" height="20">.

Для доверительного интервала половина его длины называется точностью интервального оценивания .

Если выполняется соотношение , то число называется точностью , а число - надежностью оценки генеральной числовой характеристики https://pandia.ru/text/78/148/images/image141_3.gif" width="115" height="25 src="> - выборка объема из генеральной совокупности объема ; - выборочное среднее; - выборочное среднее квадратическое отклонение.

Доверительный интервал уровня надежности https://pandia.ru/text/78/148/images/image105_2.gif" width="17" height="20 src="> имеет вид

,

где - предельная ошибка выборки , которая зависит от объема выборки , доверительной вероятности и равна половине доверительного интервала.

Https://pandia.ru/text/78/148/images/image144_1.gif" width="16" height="16 src="> служит доверительный интервал:

https://pandia.ru/text/78/148/images/image083_3.gif" width="15" height="25"> - выборочное среднее; - исправленное выборочное среднее квадратическое отклонение; https://pandia.ru/text/78/148/images/image147_2.gif" width="37" height="20 src=">) степеней свободы и доверительной вероятности .

Интервальной оценкой с надежностью генеральной средней https://pandia.ru/text/78/148/images/image144_1.gif" width="16" height="16 src="> служит доверительный интервал:

https://pandia.ru/text/78/148/images/image083_3.gif" width="15" height="25"> - выборочное среднее; - выборочное среднее квадратическое отклонение; https://pandia.ru/text/78/148/images/image151_1.gif" width="39" height="24">, при котором ; - объем выборки.

Выводы . Доверительный интервал для среднего представляет интервал значений вокруг оценки, где с данным уровнем доверия, находится "истинное" (неизвестное) среднее значение признака.

Хорошо известно, например, что чем «неопределенней» прогноз погоды (т. е. шире доверительный интервал), тем вероятнее он будет верным.

Пример. Найти доверительный интервал с надежностью 0,95 для оценки математического ожидания нормально распределенной случайной величины, если известны ее среднее квадратическое отклонение https://pandia.ru/text/78/148/images/image154_1.gif" width="61 height=28" height="28"> и объем выборки .

Воспользуемся формулой https://pandia.ru/text/78/148/images/image150_1.gif" width="11" height="17 src="> найдем по таблице значений функции Лапласа , с учетом того, что , т. е. ..gif" width="59 height=23" height="23">. Получим доверительный интервал:

https://pandia.ru/text/78/148/images/image162_1.gif" width="135" height="24 src=">.

Тестовые задания

1. Длина доверительного интервала уменьшается с увеличением:

1) выборочных значений 2) объема выборки

3) доверительной вероятности 4) выборочного среднего

2. Длина доверительного интервала с увеличением объема выборки:

1) уменьшается; 2) увеличивается;

3) не изменяется; 4) колеблется.

3. Длина доверительного интервала с увеличением доверительной вероятности:

1) изменяется, 2) уменьшается,

3) увеличивается, 4) постоянна.

4. Отметьте два правильных ответа..gif" width="19" height="20 src="> в формуле доверительного интервала означают:

1) оценка параметра; 2) доверительный интервал;

3) объем выборки; 4) доверительная вероятность.

Ответы. 1. 2). 2. 1 3. 2). 4. 4) и 3).

контрольные Вопросы

1. Что понимается под термином «интервальная оценка параметра распределения»?

2. Дайте определение доверительного интервала.

3. Что такое точность оценки и надежность оценки?

4. Что называется доверительной вероятностью? Какие значения она принимает?

5. Как изменится длина доверительного интервала, если увеличить: 1) объем выборки, 2) доверительную вероятность? Ответ обоснуйте.

6. Запишите формулу для нахождения доверительного интервала математического ожидания нормально распределенной случайной величины, если генеральная дисперсия: 1) известна; 2) неизвестна.

Часть 3. проверка статистических гипотез

Тема 1. Основные понятия теории принятия статистического решения

1. Нулевая и альтернативная статистические гипотезы

Статистической гипотезой называется такое предположение о виде или свойствах генерального или выборочного распределений, которое можно проверить статистическими методами на основе имеющейся выборк и.

Сущность проверки статистической гипотезы заключается в том, чтобы установить:

· согласуются ли экспериментальные данные и выдвинутая гипотеза;

· допустимо ли отнести расхождение между гипотезой и результатом статистического анализа экспериментальных данных за счет случайных причин.

· о законе распределения генеральной совокупности (например, гипотеза о том, что количество ошибок внимания у младших школьников имеет равномерное распределение);

· о числовых значениях параметров случайной величины (например, гипотеза о том, что среднее количество правильных ответов студентов контрольной группы на десять тестовых вопросов по теме равно восьми);

· об однородности выборок (т. е. принадлежности их одной и той же генеральной совокупности);

· о виде модели , описывающей статистическую зависимость между несколькими признаками (например, предположение о том, что связь между успешностью обучения математики и показателем невербального интеллекта учащихся линейная, прямо пропорциональная).

Доверительные интервалы.

Вычисление доверительного интервала базируется на средней ошибке соответствующего параметра. Доверительный интервал показывает, в каких пределах с вероятностью (1-a) находится истинное значение оцениваемого параметра. Здесь a – уровень значимости, (1-a) называют также доверительной вероятностью.

В первой главе мы показали, что, например, для среднего арифметического, истинное среднее по сово­купности примерно в 95% случаев лежит в пределах 2 средних ошибок среднего. Таким образом, границы 95% доверительного интервала для среднего будет отстоять от выборочного среднего на удвоенную среднюю ошибку среднего, т.е. мы умножаем среднюю ошибку среднего на некий коэффициент, зависящий от доверительной вероятности. Для среднего и разности средних берётся коэффициент Стьюдента (критическое значение критерия Стьюдента), для доли и разности долей критическое значение критерия z. Произведение коэффициента на среднюю ошибку можно назвать предельной ошибкой данного параметра, т.е. максимальную, которую мы можем получить при его оценке.

Доверительный интервал для среднего арифметического : .

Здесь - выборочное среднее;

Средняя ошибка среднего арифметического;

s – выборочное среднее квадратическое отклонение;

n

f = n -1 (коэффициент Стьюдента).

Доверительный интервал для разности средних арифметических :

Здесь - разность выборочных средних;

- средняя ошибка разности средних арифметических;

s 1 ,s 2 – выборочные средние квадратические отклонения;

n 1 ,n 2

Критическое значение критерия Стьюдента при заданных уровне значимости a и числе степеней свободы f=n 1 +n 2 -2 (коэффициент Стьюдента).

Доверительный интервал для доли :

.

Здесь d – выборочная доля;

– средняя ошибка доли;

n – объём выборки (численность группы);

Доверительный интервал для разности долей :

Здесь - разность выборочных долей;

– средняя ошибка разности средних арифметических;

n 1 ,n 2 – объёмы выборок (численности групп);

Критическое значение критерия z при заданном уровне значимости a ( , , ).

Вычисляя доверительные интервалы для разности показателей, мы, во-первых, непосредственно видим возможные значения эффекта, а не только его точечную оценку. Во-вторых, можем сделать вывод о принятии или опровержении нулевой гипотезы и, в-третьих, можем сделать вывод о мощности критерия.

При проверке гипотез с помощью доверительных интервалов надо придерживаться следующего правила:

Если 100(1-a)-процентный доверительный интервал разности средних не содержит нуля, то различия статистически значимы на уровне значимости a; напротив, если этот интервал содержит ноль, то различия статистически не значимы.

Действительно, если этот интервал содержит ноль, то, значит, сравниваемый показатель может оказаться как больше, так и меньше в одной из групп, по сравнению с другой, т.е. наблюдаемые различия случайны.

По месту, где находится ноль внутри доверительного интервала, можно судить о мощности критерия. Если ноль близок к нижней или верхней границе интервала, то возможно при большей численности сравниваемых групп, различия достигли бы статистической значимости. Если ноль близок к середине интервала, то, значит, равновероятно и увеличение и уменьшение показателя в экспериментальной группе, и, вероятно, различий действительно нет.

Примеры:

Сравнить операционную летальность при применении двух разных видов анестезии: с применением первого вида анестезии оперировалось 61 человек, умерло 8, с применением второго – 67 человек, умерло 10.

d 1 = 8/61 = 0,131; d 2 = 10/67 = 0,149; d1-d2 = - 0,018.

Разность летальностей сравниваемых методов будет находиться в интервале (-0,018 - 0,122; -0,018 + 0,122) или (-0,14 ; 0,104) с вероятностью 100(1-a) = 95%. Интервал содержит ноль, т.е. гипотезу об одинаковой летальности при двух разных видах анестезии отвергнуть нельзя.

Таким образом, летальность может и уменьшится до 14% и увеличиться до 10,4% с вероятностью 95%, т.е. ноль находится примерно по середине интервала, поэтому можно утверждать, что, скорее всего, действительно не отличаются по летальности эти два метода.

В рассмотренном ранее примере сравнивалось среднее время нажатия при теппинг-тесте в четырёх группах студентов, отличающихся по экзаменационной оценке. Вычислим доверительные интервалы среднего времени нажатия для студентов, сдавших экзамен на 2 и на 5 и доверительный интервал для разности этих средних.

Коэффициенты Стьюдента находим по таблицам распределения Стьюдента (см. приложение): для первой группы: = t(0,05;48) = 2,011; для второй группы: = t(0,05;61) = 2,000. Таким образом, доверительные интервалы для первой группы: = (162,19-2,011*2,18 ; 162,19+2,011*2,18) = (157,8 ; 166,6) , для второй группы (156,55-2,000*1,88 ; 156,55+2,000*1,88) = (152,8 ; 160,3). Итак, для сдавших экзамен на 2, среднее время нажатия лежит в пределах от 157,8 мс до 166,6 мс с вероятностью 95%, для сдавших экзамен на 5 – от 152,8 мс до 160,3 мс с вероятностью 95%.

Проверять нулевую гипотезу можно и по доверительным интервалам для средних, а не только для разности средних. Например, как в нашем случае, если доверительные интервалы для средних перекрываются, то нулевую гипотезу отвергнуть нельзя. Для того чтобы отвергнуть гипотезу на выбранном уровне значимости, соответствующие доверительные интервалы не должны перекрываться.

Найдём доверительный интервал для разности среднего времени нажатия в группах сдавших экзамен на 2 и на 5. Разность средних: 162,19 – 156,55 = 5,64. Коэффициент Стьюдента: = t(0,05;49+62-2) = t(0,05;109) = 1,982. Групповые средние квадратические отклонения будут равны: ; . Вычисляем среднюю ошибку разности средних: . Доверительный интервал: =(5,64-1,982*2,87 ; 5,64+1,982*2,87) = (-0,044 ; 11,33).

Итак, разница среднего времени нажатия в группах, сдавших экзамен на 2 и на 5, будет находиться в интервале от -0,044 мс до 11,33 мс. В этот интервал входит ноль, т.е. среднее время нажатия у отлично сдавших экзамен, может и увеличиться и уменьшится по сравнению с неудовлетворительно сдавшими, т.е. нулевую гипотезу отвергнуть нельзя. Но ноль находится очень близко к нижней границе, время нажатия гораздо вероятнее всё-таки уменьшается у отлично сдавших. Таким образом, можно сделать вывод, что различия в среднем времени нажатия между сдавшими на 2 и на 5 всё-таки есть, просто мы не смогли их обнаружить при данном изменении среднего времени, разбросе среднего времени и объёмах выборок.



Мощность критерия – это вероятность отвергнуть неверную нулевую гипотезу, т.е. найти различия там, где они действительно есть.

Мощность критерия определяется исходя из уровня значимости, величины различий между группами, разброса значений в группах и объёма выборок.

Для критерия Стьюдента и дисперсионного анализа можно воспользоваться диаграммами чувствительности.

Мощность критерия можно использовать при предварительном определении необходимой численности групп.

Доверительный интервал показывает, в каких пределах с заданной вероятностью находится истинное значение оцениваемого параметра.

С помощью доверительных интервалов можно проверять статистические гипотезы и делать выводы о чувствительности критериев.

ЛИТЕРАТУРА.

Гланц С. – Глава 6,7.

Реброва О.Ю. – с.112-114, с.171-173, с.234-238.

Сидоренко Е. В. – с.32-33.

Вопросы для самопроверки студентов.

1. Что такое мощность критерия?

2. В каких случаях необходимо оценить мощность критериев?

3. Способы расчёта мощности.

6. Как проверить статистическую гипотезу с помощью доверительного интервала?

7. Что можно сказать о мощности критерия при расчёте доверительного интервала?

Задачи.

Доверительный интервал. Доверительная вероятность.

ПРИМЕНЕНИЕ ТЕОРИИ ВЕРОЯТНОСТИ К СТАТИСТИКЕ.

Основные понятия.

Математическая статистика - это раздел математики, в котором изучаются методы обработки и анализа экспериментальных данных, полученных в результате наблюдений над массовыми случайными событиями, явлениями.

Наблюдения, проводимые над объектами, могут охватывать всех членов изучаемой совокупности без исключения и могут ограничиваться обследованиями лишь некоторой части членов данной совокупности. Первое наблюдение называется сплошным или полным, второе частичным или выборочным .

Естественно, что наиболее полную информацию дает сплошное наблюдение, однако к нему прибегают далеко не всегда. Во-первых, сплошное наблюдение очень трудоемко, а во-вторых, часто бывает практически невозможно или даже нецелесообразно. Поэтому в подавляющем большинстве случаев прибегают к выборочному исследованию.

Совокупность, из которой некоторым образом отбирается часть ее членов для совместного изучения, называется генеральной совокупностью , а отобранная тем или иным способом часть генеральной совокупности - выборочная совокупность или выборка .

Объем генеральной совокупности теоретически ничем неограничен , на практике же он всегда ограничен.

Объем выборки может быть большим или малым, но он не может быть меньше двух.

Отбор в выборку можно проводить случайным способом (по способу жеребьевки или лотереи). Либо планово, в зависимости от задачи и организации обследования. Для того, чтобы выборка была представительной, необходимо обращать внимание на размах варьирования признака и согласовывать с ним объем выборки.

2. Определение неизвестной функции распределения.

Итак, мы сделали выборку. Разобьем диапазон наблюдаемых значений на интервалы , , …. одинаковой длины . Для оценки необходимого числа интервалов можно использовать следующие формулы:

Далее пусть m i - число наблюдаемых значений , попавших в i -ый интервал. Разделив m i на общее число наблюдений n , получим частоту , соответствующую i -ому интервалу: , причем . Составим следующую таблицу:

Номер интервала Интервал m i
m 1
m 2
... ... ... ...
k m k

которая называется статистическим рядом . Эмпирической (или статистической ) функцией распределения случайной величины называется частота события, заключающегося в том, что величина в результате опыта примет значение, меньшее x :

На практике достаточно найти значения статистической функции распределения F * (x) в точках , которые являются границами интервалов статистического ряда:

(5.2)

Следует заметить, что при и при . Построив точки и соединив их плавной кривой, получим приближенный график эмпирической функции распределения (рис. 5.1). Используя закон больших чисел Бернулли, можно доказать, что при достаточно большом числе испытаний с вероятностью, близкой к единице, эмпирическая функция распределения отличается сколь угодно мало от неизвестной нам функции распределения случайной величины .

Часто вместо построения графика эмпирической функции распределения поступают следующим образом. На оси абсцисс откладывают интервалы , ,…. . На каждом интервале строят прямоугольник, площадь которого равна частоте , соответствующей данному интервалу. Высота h i этого прямоугольника равна , где - длинна каждого из интервалов. Ясно, что сумма площадей всех построенных прямоугольников равна единице.

Рассмотрим функцию , которая в интервале постоянна и равна . График этой функции называется гистограммой . Он представляет собой ступенчатую линию (рис. 5.2). С помощью закона больших чисел Бернулли можно доказать, что при малых и больших с практической достоверностью как угодно мало отличается от плотности распределения непрерывной случайной величины .

Таким образом на практике определяется вид неизвестной функции распределения случайной величины.

3. Определение неизвестных параметров распределения.

Таким образом мы получили гистограмму, которая дает наглядность. Наглядность представленных результатов позволяет сделать различные заключения, суждения об исследуемом объекте.

Однако на этом обычно не останавливаются, а идут дальше, анализируя данные на проверку определенных предположений относительно возможных механизмов изучаемых процессов или явлений.

Несмотря на то, что данных в каждом обследовании сравнительно немного, мы бы хотели, чтобы результаты анализа достаточно хорошо описывали бы все реально существующее или мыслимое множество (т.е. генеральную совокупность).

Для этого делают некоторые предположения о том, как вычисленные на основе экспериментальных данных (выборке) показатели соотносятся с параметрами генеральной совокупности.

Решение этой задачи составляет главную часть любого анализа экспериментальных данных и тесно связано с использованием ряда теоретических распределений, рассмотренных выше.

Широкое использование в статистических выводах нормального распределения имеет под собой как эмпирическое, так и теоретическое обоснование.

Во-первых, практика показывает, что во многих случаях нормальное распределение действительно является довольно точным представлением экспериментальных данных.

Во-вторых, теоретически показано, что средние значения интервалов гистограмм распределены по закону, близкому к нормальному.

Однако следует четко представлять, что нормальное распределение - это лишь чисто математический инструмент и совсем необязательно, чтобы реальные экспериментальные данные точно описывались нормальным распределением. Хотя во многих случаях, допуская небольшую ошибку, можно говорить, что данные распределены нормально.

Ряд показателей, такие как среднее, дисперсия и т.д., характеризуют выборку и называются статистиками. Такие же показатели, но относящиеся к генеральной совокупности в целом, называются параметрами. Таким образом, можно сказать, что статистики служат для оценки параметров.

Генеральной средней называется среднее арифметическое значений генеральной совокупности объема :

Выборочной средней называется среднее арифметическое выборки объема :

(5.4)

если выборка имеет вид таблицы.

Выборочную среднюю принимают в качестве оценки генеральной средней.

Генеральной дисперсией называется среднее арифметическое квадратов отклонения значений генеральной совокупности от их среднего значения :

Генеральным средним квадратическим отклонением называется корень квадратный из генеральной дисперсии: .

Выборочной дисперсией называется среднее арифметическое квадратов отклонения значений выборки от их среднего значения :

Выборочное среднее квадратическое отклонение определяется как .

Для лучшего совпадения с результатами экспериментов, вводят понятие эмпирической (или исправленной) дисперсии :

Для оценки генерального среднего квадратического отклонения служит исправленное среднее квадратическое отклонение, или эмпирический стандарт :

(5.5)

В случае, когда все значения выборки различны, т.е. , , формулы для и принимают вид:

(5.6)

Доверительный интервал. Доверительная вероятность.

Различные статистики, получаемые результате вычислений, представляют собой точечные оценки соответствующих параметров генеральной совокупности.

Если из генеральной совокупности извлечь некоторое количество выборок и для каждой из них найти интересующие нас статистики, то вычисленные значения будут представлять собой случайные величины, имеющие некоторый разброс вокруг оцениваемого параметра.

Но, как правило, в результате эксперимента в распоряжении исследователя имеется одна выборка. Поэтому значительный интерес представляет получение интервальной оценки, т.е. некоторого интервала, внутри которого, как можно предположить, лежит истинное значение параметра.

Вероятности, признанные достаточными для уверенных суждениях о параметрах генеральной совокупности на основании статистик, называются доверительными.

Для примера рассмотрим как оценку параметра .