Болезни Военный билет Призыв

Сложение световых волн в пространстве. Пример сложения двух световых волн

Благодаря прошлым урокам нам известно, что свет является совокупностью прямолинейных лучей, определенным образом распространяющихся в пространстве. Однако для объяснения свойств некоторых явлений мы не можем пользоваться представлениями геометрической оптики, то есть не можем игнорировать волновые свойства света. Например, при прохождении солнечного света через стеклянную призму на экране возникает картина чередующихся цветных полос (рис. 1), которые называют спектром; при внимательном рассмотрении мыльного пузыря видна его причудливая окраска (рис. 2), постоянно меняющаяся с течением времени. Для объяснения этих и других подобных примеров мы будем использовать теорию, которая опирается на волновые свойства света, то есть волновую оптику.

Рис. 1. Разложение света в спектр

Рис. 2. Мыльный пузырь

На этом уроке мы рассмотрим явление, которое называется интерференцией света. С помощью этого явления ученые в XIX веке доказали, что свет имеет волновую природу, а не корпускулярную.

Явление интерференции заключается в следующем : при наложении друг на друга в пространстве двух или более волн возникает устойчивая картина распределения амплитуд, при этом в некоторых точках пространства результирующая амплитуда является суммой амплитуд исходных волн, в других точках пространства результирующая амплитуда становится равной нулю. При этом на частоты и фазы исходно складывающихся волн должны быть наложены определенные ограничения.

Пример сложения двух световых волн

Увеличение или уменьшение амплитуды зависит от того, с какой разностью фаз две складывающиеся волны приходят в данную точку.

На рис. 3 показан случай сложения двух волн от точечных источников и , находящихся на расстоянии и от точки M , в которой производят измерения амплитуды. Обе волны имеют в точке M в общем случае различные амплитуды, так как до попадания в эту точку они проходят разные пути и их фазы различаются.

Рис. 3. Сложение двух волн

На рис. 4 показано, как зависит результирующая амплитуда колебания в точке M от того, в каких фазах приходят ее две синусоидальные волны. Когда гребни совпадают, то результирующая амплитуда максимально увеличивается. Когда гребень совпадает со впадиной, то результирующая амплитуда обнуляется. В промежуточных случаях результирующая амплитуда имеет значение между нулем и суммой амплитуд складывающихся волн (рис. 4).

Рис. 4. Сложение двух синусоидальных волн

Максимальное значение результирующей амплитуды будет наблюдаться в том случае, когда разность фаз между двумя складывающимися волнами равна нулю. То же самое должно наблюдаться, когда разность фаз равна , так как - это период функции синуса (рис. 5).

Рис. 5. Максимальное значение результирующей амплитуды

Амплитуда колебаний в данной точке максимальна , если разность хода двух волн, возбуждающих колебание в этой точке, равна целому числу длин волн или четному числу полуволн (рис. 6).


Рис. 6. Максимальная амплитуда колебаний в точке M

Амплитуда колебаний в данной точке минимальна, если разность хода двух волн, возбуждающих колебание в этой точке, равна нечетному числу полуволн или полуцелому числу длин волн (рис. 7).


Рис. 7. Минимальная амплитуда колебаний в точке M

, где .

Интерференцию можно наблюдать только в случае сложения когерентных волн (рис. 8).


Рис. 8. Интерференция

Когерентные волны - это волны, которые имеют одинаковые частоты, постоянную во времени в данной точке разность фаз (рис. 9).


Рис. 9. Когерентные волны

Если волны не когерентны, то в любую точку наблюдения две волны приходят со случайной разностью фаз. Таким образом, амплитуда после сложения двух волн также будет случайной величиной, которая изменяется с течением времени, и эксперимент будет показывать отсутствие интерференционной картины.

Некогерентные волны - это волны, у которых разность фаз непрерывно меняется (рис. 10).


Рис. 10. Некогерентные волны

Существует много ситуаций, когда можно наблюдать интерференцию световых лучей. Например, бензиновое пятно в луже (рис. 11), мыльный пузырь (рис. 2).

Рис. 11. Бензиновое пятно в луже

Пример с мыльными пузырями относится к случаю так называемой интерференции в тонких пленках. Английский ученый Томас Юнг (рис. 12) первым пришел к мысли о возможности объяснения цветов тонких пленок сложением волн, одна из которых отражается от наружной поверхности пленки, а другая – от внутренней.

Рис. 12. Томас Юнг (1773-1829)

Результат интерференции зависит от угла падения света на пленку, ее толщины и длины волны света. Усиление произойдет в том случае, если преломленная волна отстанет от отраженной на целое число длин волн. Если же вторая волна отстанет на половину волны или на нечетное число полуволн, то произойдет ослабление света (рис. 13).


Рис. 13. Отражение световых волн от поверхностей пленки

Когерентность волн, отраженных от внешней и внутренней поверхности пленки, объясняется тем, что обе эти волны являются частями одной и той же падающей волны.

Различие в цветах соответствует тому, что свет может состоять из волн различной частоты (длины). Если свет состоит из волн с одинаковыми частотами, то он называется монохроматическим и наш глаз воспринимает его как один цвет.

Монохроматический свет (от др.-греч. μόνος – один, χρῶμα – цвет) – электромагнитная волна одной определенной и строго постоянной частоты из диапазона частот, непосредственно воспринимаемых человеческим глазом. Происхождение термина связано с тем, что различие в частоте световых волн воспринимается человеком как различие в цвете. Однако по своей физической природе электромагнитные волны видимого диапазона не отличаются от волн других диапазонов (инфракрасного, ультрафиолетового, рентгеновского и т. д.), и по отношению к ним также используют термин «монохроматический» («одноцветный»), хотя никакого ощущения цвета эти волны не дают. Свет, состоящий из волн с различными длинами, называется полихроматическим (свет от солнца).

Таким образом, если на тонкую пленку падает монохроматический свет, то интерференционная картина будет зависеть от угла падения (при некоторых углах волны будут усиливать друг друга, при других углах – гасить). При полихроматическом свете для наблюдения интерференционной картины удобно использовать пленку переменной толщины, при этом волны с разными длинами будут интерферировать в разных точках, и мы можем получить цветную картинку (как в мыльном пузыре).

Существуют специальные приборы – интерферометры (рис. 14, 15), с помощью которых можно измерять длины волн, показатели преломления различных веществ и другие характеристики.

Рис. 14. Интерферометр Жамена

Рис. 15. Интерферометр Физо

К примеру, в 1887 году два американских физика, Майкельсон и Морли (рис. 16), сконструировали специальный интерферометр (рис. 17), с помощью которого они собирались доказать или опровергнуть существование эфира. Этот опыт является одним из самых знаменитых экспериментов в физике.

Рис. 17. Звездный интерферометр Майкельсона

Интерференцию применяют и в других областях человеческой деятельности (для оценки качества обработки поверхности, для просветления оптики, для получения высокоотражающих покрытий).

Условие

Два полупрозрачных зеркала расположены параллельно друг другу. На них перпендикулярно плоскости зеркал падает световая волна частотой (рис. 18). Чему должно быть равно минимальное расстояние между зеркалами, чтобы наблюдался минимум интерференции проходящих лучей первого порядка?

Рис. 18. Иллюстрация к задаче

Дано :

Найти :

Решение

Один луч пройдет сквозь оба зеркала. Другой пройдет сквозь первое зеркало, отразится от второго и первого и пройдет сквозь второе. Разность хода этих лучей составит удвоенное расстояние между зеркалами.

Номер минимума соответствует значению целого числа .

Длина волны равна:

где – скорость света.

Подставим в формулу разности хода значение и значение длины волны:

Ответ : .

Для получения когерентных световых волн при использовании обычных источников света применяют методы деления волнового фронта. При этом световая волна, испущенная каким-либо источником, делится на две или более частей, когерентных между собой.

1. Получение когерентных волн методом Юнга

Источником света служит ярко освещенная щель, от которой световая волна падает на две узкие щели и параллельные исходной щели S (рис. 19). Таким образом, щели и служат когерентными источниками. На экране в области BC наблюдается интерференционная картина в виде чередующихся светлых и темных полос.

Рис. 19. Получение когерентных волн методом Юнга

2. Получение когерентных волн с помощью бипризмы Френеля

Данная бипризма состоит из двух одинаковых прямоугольных призм с очень малым преломляющим углом, сложенных своими основаниями. Свет от источника преломляется в обеих призмах, в результате этого за призмой распространяются лучи, как бы исходящие из мнимых источников и (рис. 20). Эти источники являются когерентными. Таким образом, на экране в области BC наблюдается интерференционная картина.

Рис. 20. Получение когерентных волн с помощью бипризмы Френеля

3. Получение когерентных волн с помощью разделения по оптической длине пути

Две когерентные волны создаются одним источником, но до экрана проходят разные геометрические пути длины и (рис. 21). При этом каждый луч идет в среде со своим абсолютным показателем преломления. Разность фаз между волнами, приходящими в точку на экране, равна следующей величине:

где и – длины волн в средах, показатели преломления которых равны соответственно и .

Рис. 21. Получение когерентных волн с помощью разделения по оптической длине пути

Произведение геометрической длины пути на абсолютный показатель преломления среды называется оптической длиной пути .

,

– оптическая разность хода интерферирующих волн.

С помощью интерференции можно оценить качество обработки поверхности изделия с точностью до длины волны. Для этого нужно создать тонкую клиновидную прослойку воздуха между поверхностью образца и очень гладкой эталонной пластиной. Тогда неровности поверхности до см вызовут заметное искривление интерференционных полос, образующихся при отражении света от проверяемых поверхностей и нижней грани (рис. 22).

Рис. 22. Проверка качества обработки поверхности

Множество современной фототехники использует большое количество оптических стекол (линзы, призмы и т. д.). Проходя через такие системы, световой поток испытывает многократное отражение, что пагубно влияет на качество изображения, поскольку при отражении теряется часть энергии. Чтобы избежать этого эффекта, необходимо применять специальные методы, одним из которых является метод просветления оптики.

Просветление оптики основано на явлении интерференции. На поверхность оптического стекла, например линзы, наносят тонкую пленку с показателем преломления, меньшим показателя преломления стекла.

На рис. 23 показан ход луча, падающего на поверхность раздела под небольшим углом. Для упрощения все вычисления делаем для угла, равного нулю.

Рис. 23. Просветление оптики

Разность хода световых волн 1 и 2, отраженных от верхней и нижней поверхности пленки, равна удвоенной толщине пленки:

Длина волны в пленке меньше длины волны в вакууме в n раз (n - показатель преломления пленки):

Для того чтобы волны 1 и 2 ослабляли друг друга, разность хода должна быть равна половине длины волны, то есть:

Если амплитуды обеих отраженных волн одинаковы или очень близки друг к другу, то гашение света будет полным. Чтобы добиться этого, подбирают соответствующим образом показатель преломления пленки, так как интенсивность отраженного света определяется отношением коэффициентов преломления двух сред.

  • Где используется явление интерференции?
  • Каково условие максимумов интерференции?
  • В некоторую точку на экране приходит два когерентных излучения с оптической разностью хода 1,2 мкм. Длина волны этих лучей в вакууме - 600 нм. Определите, что произойдет в этой точке в результате интерференции в трех случаях: а) свет идет в воздухе; б) свет идет в воде; в) свет идет в стекле с показателем преломления 1,5.
  • Результат сложения световых волн будет иным, если разность фаз для всех цугов, приходящих в данную точку, будет иметь постоянное значение. Для этого необходимо использовать когерентные источники света.

    Когерентными называются источники света одинаковой частоты, обеспечивающие постоянство разности фаз для волн, приходящих в данную точку пространства.

    Световые волны, испущенные когерентными источниками, также называют когерентными волнами.

    Рассмотрим сложение двух когерентных волн, испущенных источниками S 1 и S 2 (рис. 11.1).

    Рис. 11.1.Сложение когерентных волн.

    Пусть точка, для которой рассматривается сложение этих волн, удалена от источников на расстояния s 1 и s 2 соответственно, а среды, в которых распространяются волны, имеют различные показатели преломления n 1 и n 2 . Длины волн в этих средах будут равны: λ 1 = λ/n 1 , λ 2 = λ /n 2 ,

    где λ – длина волны в вакууме.

    Произведение длины пути, пройденного волной, на показатель преломления среды (s n) называется оптической длиной пути. Абсолютная величина разности оптических длин путей двух волн, приходящих в данную точку называется оптической разностью хода.

    Выражение для разности фаз имеет вид: = 2πδ/λ.

    Мы видим, что при сложении когерентных волн величина разности фаз в данной точке пространства остается постоянной и определяется оптической разностью хода и длиной волны. В тех точках, где выполняется условие

    2kπ (k- целое число) cosΔφ = 1, следовательно, формула для интенсивности результирующей волны иметь вид:

    Таким образом, при сложении когерентных волн происходит пространственное перераспределение энергии - в одних точках энергия волны увеличивается, а в других уменьшается. Это явление называется интерференцией.

    Интерференция света - сложение когерентных световых волн, в результате которого происходит пространственное перераспределение энергии, приводящее к образованию устойчивой картины их усиления или ослабления.

    Условие максимума интерференции: , к = 0,1,2,...



    В этом случае интенсивность принимает максимально возможное значение.

    Максимум интенсивности при интерференции наблюдается тогда, когда оптическая разность хода равна целому числу длин волн (четному числу полуволн).

    Условие минимума интерференции: k = 0,1,2,...

    Минимум интенсивности при интерференции наблюдается тогда, когда оптическая разность хода равна нечетному числу полуволн.

    Четкая интерференционная картина наблюдается, когда интенсивности волн близки. В области максимума интенсивность увеличивается в 4 раза интенсивности каждой волны, а в области минимума интенсивность почти равна нулю.

    Получение двух когерентных источников из одного точечного источника естественного света.

    Рассмотрим два случая получения двух когерентных источников из одного точечного источника естественного света.

    Метод Юнга. На пути точечного источника устанавливают непрозрачную преграду с двумя точечными отверстиями. Эти отверстия являются когерентными источниками, поскольку, эти 2 источниками принадлежат одному фронту волны. В области перекрытия их наблюдается интерференция. Обычно отверстия в непрозрачной преграде делают в виде параллельных штрихов. Тогда интерференционная картина на экране представляет собой систему светлых полос разделенных темными промежутками. Светлая полоса, соответствующая максимуму нулевого порядка, располагается в центре экрана. Справа и слева от него, на равных расстояниях, располагается максимумы второго, третьего и т.д. порядков. При использовании белого света максимум нулевого порядка имеет белый цвет, а остальные имеют радужную окраску, так как максимуму одного порядка для разных длин волн образуются в разных местах.

    Зеркало Ллойда. Точечный источник находится на небольшом расстоянии от поверхности плоского зеркала. Интерферирует прямой и отраженный от зеркало лучи, поскольку, они принадлежат одному фронту волны (когерентные).

    Интерферометры, интерференционный микроскоп.

    Интерферометр - прибор, основанный на явлении интерференции. Он предназначен для измерения показателей преломления прозрачных сред, для контроля формы, микрорельефа и деформации поверхностей оптических деталей; для обнаружения примесей в газах.

    Принцип работы заключается в следующем:

    Две одинаковые кюветы К 1 и К 2 заполненные веществами с различными показателями преломления, один из которых известен, освещают лучами света выходящих через отверстия (Метод Юнга). Если бы показатели преломления были одинаковы, то максимум нулевого порядка располагался бы в центре экрана. Различие в показателях преломлений приводят появлению разности хода при прохождении кювет лучами света. По величине смещения максимуму нулевого порядка от центра определяют второй (неизвестный) показатель преломления по формуле:

    где к - число полос, на которое сместился ахроматический максимум;

    Длина кюветы.

    Интерференционный микроскоп представляет собой сочетание интерферометра и оптического микроскопа. В связи с разницей показателей преломления объекта М и среды лучи приобретают разность хода. В результате объектом и средой образуется световой контраст (при монохроматическом свете) или объект станет окрашенным (при белом свете). Интерференционный микроскоп применяется для измерения концентрации сухого вещества, малых размеров (прозрачных неокрашенных микрообъектов), которые неконтрастны в проходящем свете. Разность хода определяется толщиной объекта с точностью до сотых долей длины волны, что дает возможность количественно исследовать структуру живой клетки.

    Интерференция в тонких пленках. Просветление оптики.

    Интерференция на тонких пленках возникает в результате отражения от передней и задней сторон. Падающий луч, под некоторым углом α, частично преломляется, частично отражается. Преломленный луч отражается от внутренней (задней) поверхности пленки и, преломившись от передней поверхности пленки, выходит в воздух. Пройдя через оптическую систему глаза оба, отраженных, луча пересекаются на сетчатке глаза, где и происходит их интерференция.

    Разность хода мыльной пленки определяется по формуле:

    2L - λ/2,

    Разность хода пленки бензина определяется по формуле:

    2L

    где разность хода, – длина волны, L – толщина пленки, – показатель преломления вещества пленки.

    Для уменьшения потери света при отражении объектив покрывают прозрачной пленкой, Просветление оптики толщина, которой равна 1/4 длины волны света в ней: L = λ п /4 = λ/4

    Дифракция света.

    Дифракция - волновое явление, которое наиболее отчетливо проявляется в том случае, когда размеры препятствия соизмеримы (одного порядка) с длиной волны света.

    Дифракция света. Принцип Гюйгенса-Френеля

    Дифракцией светаназывается комплекс явлений, которые обусловлены его волновой природой и наблюдаются при распространении света в среде с резкими неоднородностями.

    Качественное объяснение дифракции дает принцип Гюйгенса, который устанавливает способ построения фронта волны в момент времени t + Δt если известно его положение в момент времени t.

    1. Согласно принципу Гюйгенса,каждая точка волнового фронта является центром когерентных вторичных волн. Огибающая этих волн дает положение фронта волны в следующий момент времени.

    Поясним применение принципа Гюйгенса на следующем примере. Пусть на преграду с отверстием падает плоская волна, фронт которой параллелен преграде (рис. 11.2).

    Рис. 11.2.Пояснение принципа Гюйгенса

    Каждая точка волнового фронта, выделяемого отверстием, служит центром вторичных сферических волн. На рисунке видно, что огибающая этих волн проникает в область геометрической тени, границы которой помечены штриховой линией.

    Принцип Гюйгенса ничего не говорит об интенсивности вторичных волн. Этот недостаток был устранен Френелем, который дополнил принцип Гюйгенса представлением об интерференции вторичных волн и их амплитудах. Дополненный таким образом принцип Гюйгенса получил название принципа Гюйгенса-Френеля.

    2. Согласно принципу Гюйгенса-Френелявеличина световых колебаний в некоторой точке О есть результат интерференции в этой точке когерентных вторичных волн, испускаемых всемиэлементами волновой поверхности. Амплитуда каждой вторичной волны пропорциональна площади элемента dS, обратно пропорциональна расстоянию r до точки О и убывает при возрастании угла αмежду нормалью nк элементу dS и направлением на точку О (рис. 21.3).

    Рис. 11.3.Испускание вторичных волн элементами волновой поверхности

    Не так давно мы довольно подробно обсуждали свойства световых волн и их интерференцию, т. е. эффект суперпозиции двух волн от различных источников. Но при этом предполагалось, что частоты источников одинаковы. В этой же главе мы остановимся на некоторых явлениях, возникающих при интерференции двух источников с различными частотами.

    Нетрудно догадаться, что при этом произойдет. Действуя так же, как прежде, давайте предположим, что имеются два одинаковых осциллирующих источника с одной и той же частотой, причем фазы их подобраны так, что в некоторую точку сигналы приходят с одинаковой фазой. Если это свет, то в этой точке он очень ярок, если это звук, то он очень громок, а если это электроны, то их очень много. С другой стороны, если приходящие волны отличаются по фазе на 180°, то в точке не будет никаких сигналов, ибо полная амплитуда будет иметь здесь минимум. Предположим теперь, что некто крутит ручку «регулировка фазы» одного из источников и меняет разность фаз в точке то туда, то сюда, скажем сначала он делает ее нулевой, затем - равной 180° и т. д. При этом, разумеется, будет меняться и сила приходящего сигнала. Ясно теперь, что если фаза одного из источников медленно, постоянно и равномерно меняется по сравнению с другим, начиная с нуля, а затем возрастает постепенно до 10, 20, 30, 40° и т. д., то в точке мы увидим ряд слабых и сильных «пульсаций», ибо когда разность фаз проходит через 360°, в амплитуде снова возникает максимум. Но утверждение, что один источник с постоянной скоростью меняет свою фазу по отношению к другому, равносильно утверждению, что число колебаний в 1 сек у этих двух источников несколько различно.

    Итак, теперь известен ответ: если взять два источника, частоты которых немного различны, то в результате сложения получаются колебания с медленно пульсирующей интенсивностью. Иначе говоря, все сказанное здесь действительно имеет отношение к делу!

    Этот результат легко получить и математически. Предположим, например, что у нас есть две волны и забудем на минуту о всех пространственных соотношениях, а просто посмотрим, что приходит в точку . Пусть от одного источника приходит волна , а от другого - волна , причем обе частоты и не равны в точности друг другу. Разумеется, амплитуды их тоже могут быть различными, но сначала давайте предположим, что амплитуды равны. Общую задачу мы рассмотрим позднее. Полная амплитуда в точке при этом будет суммой двух косинусов. Если мы построим график зависимости амплитуды от времени, как это показано на фиг. 48.1, то окажется, что, когда гребни двух волн совпадают, получается большое отклонение, когда совпадают гребень и впадина - практически нуль, а когда гребни снова совпадают, вновь получается большая волна.

    Фиг. 48.1. Суперпозиция двух косинусообразных волн с отношением частот 8:10. Точное повторение колебаний внутри каждого биения для общего случая не типично.

    Математически нам нужно взять сумму двух косинусов и как-то ее перестроить. Для этого потребуются некоторые полезные соотношения между косинусами. Давайте получим их. Вы знаете, конечно, что

    и что вещественная часть экспоненты равна , а мнимая часть равна . Если мы возьмем вещественную часть , то получим , а для произведения

    мы получаем плюс некоторая мнимая добавка. Сейчас, однако, нам нужна только вещественная часть. Таким образом,

    Если теперь изменить знак величины , то, поскольку косинус при этом не изменяет знака, а синус изменяет знак на обратный, мы получаем аналогичное выражение для косинуса разности

    После сложения этих двух уравнений произведение синусов сократится, и мы находим, что произведение двух косинусов равно половине косинуса суммы плюс половина косинуса разности

    Теперь можно обернуть это выражение и получить формулу для , если просто положить , а , т. е. , а :

    Но вернемся к нашей проблеме. Сумма и равна

    Пусть теперь частоты приблизительно одинаковы, так что равна какой-то средней частоте, которая более или менее та же, что и каждая из них. Но разность гораздо меньше, чем и , поскольку мы предположили, что и приблизительно равны друг другу. Это означает, что результат сложения можно истолковать так, как будто есть косинусообразная волна с частотой, более или менее равной первоначальным, но что «размах» ее медленно меняется: он пульсирует с частотой, равной . Но та ли это частота, с которой мы слышим биения? Уравнение (48.0) говорит, что амплитуда ведет себя как , и это надо понимать так, что высокочастотные колебания заключены между двумя косинусоидами с противоположными знаками (пунктирная линия на фиг. 48.1). Хотя амплитуда действительно меняется с частотой однако если речь идет об интенсивности волн, то мы должны представлять себе частоту в два раза большую. Иначе говоря, модуляция амплитуды в смысле ее интенсивности происходит с частотой , хотя мы и умножаем на косинус половинной частоты.

    т. е. снова оказывается, что высокочастотная волна модулируется малой частотой.

    2.Малые колебания математического маятника. 8

    3.Свободные затухающие механические колебания. Коэффициент затухания, логарифмический декремент. 12

    4.Электрические колебания в электромагнитном контуре. Свободные гармонические колебания. 14

    5.Вынужденные колебания в электрических цепях. Явление резонанса. 23

    6.Волны в упругой среде. Энергия упругой волны. Фазовая скорость, длина волны. Плоские и сферические волны. Стоячие волны. 25

    7.Электромагнитные волны. Волновое уравнение. Свойства волн (поперечность, синфазность, волновой вектор, интенсивность). Вектор Пойнтинга. 31

    8.Когерентность волн. Сложение волн от двух когерентных источников. Разность фаз. Формула для суммарной интенсивности. Оптическая разность хода волн. Временная когерентность. 38

    9.Явление интерференции. Условия, при выполнении которых. Пример опыта по интерференции двух когерентных волн. (Опыт Юнга. Бипризма Френеля. Зеркало Ллойда – по выбору). 39

    10.Интерференционные кольца Ньютона. Вывод формул для радиусов темных и светлых колец. 41

    11.Интерференция волн, отраженных от плоскопараллельной пластинки. 42

    12.Принцип Гюйгенса-Френеля. Дифракция Френеля на круглом отверстии и на круглом диске. Метод зон Френеля. Векторная диаграмма (спираль Френеля). 42

    1. Понятие о колебательных процессах. Гармонические колебания. Амплитуда, частота и фаза гармонических колебаний. Уравнение гармонических колебаний. Колебания груза на пружине.

    Колебательным движением (или просто колебанием) называются процессы, повторяющиеся во времени. колебательное движение является периодическим.

    Колебания называются периодическими , если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени.

      Простейшим типом периодических колебаний являются так называемые гармонические колебания.

      Любая колебательная система, в которой возвращающая сила прямо пропорциональна смещению, взятому с противоположным знаком (например, F = – kx ), совершаетгармонические колебания .

      Саму такую систему часто называют гармоническим осциллятором .

    Периодический процесс можно описать уравнением:

    По определению, колебания называются гармони-ческими, если зависимость некоторой величины x = f ( t ) имеет вид

      Расстояние груза от положения равновесия до точки, в которой находится груз, называют смещением x .

    Максимальное смещение – наибольшее расстояние от положения равновесия – называетсяамплитудой и обозначается, буквойA .

    определяет смещение x в данный момент времениt и называетсяфазой колебания.

      называется начальной фазой колебания при.

    Фаза измеряется в радианах.

      Частота колебаний ν определяется, как число полных колебаний в 1 секунду. Частоту, измеряют в герцах (Гц):

      1 Гц = 1 колеб. в секунду.

    Т период колебаний – минимальный промежуток времени, по истечении которого повторяются значения всех физических величин, характеризующих колебание

    ω – циклическая (круговая ) частота – число полных колебаний за 2π секунд.

    Фаза φ не влияет на форму кривой х (t ), а влияет лишь на ее положение в некоторый произвольный момент времени t.

      Гармонические колебания являются всегда синусоидальными.

      Частота и период гармонических колебаний не зависят от амплитуды .

    Смещение описывается уравнением

    Уравнения колебаний запишем в следующем виде:


    1. Малые колебания математического маятника.


    1. Свободные затухающие механические колебания. Коэффициент затухания, логарифмический декремент.

    Отличия в следующем.

    При колебаниях, тело, возвращающееся в положении равновесия, имеет запас кинетической энергии. В случае апериодического движения энергия тела при возвращении в положение равновесия оказывается израсходованной на преодоление сил сопротивления трения.

    1. Электрические колебания в электромагнитном контуре.Свободные гармонические колебания.

    I = I 0 sin(t +)

    Период колебаний определяется поформуле Томсона :

    Свободные затухающие электрические колебания

    Всякий реальный контур обладает активным сопротивлением R . Энергия, запасенная в контуре, постепенно расходуется в этом сопротивлении на нагревание, вследствие чего колебания затухают.

    Физический смысл добротности – отношение энергий

    1. Вынужденные колебания в электрическихцепях. Явление резонанса.

    Решение уравнения при большихt :

    амплитуда колебаний заряда:

    1. Волны в упругой среде. Энергия упругой волны. Фазовая скорость, длина волны. Плоские и сферические волны. Стоячие волны.

    Процесс распространения колебаний в пространстве называется волной

    При распространении волны, частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице, передается лишь состояние колебательного движения и его энергия. Поэтому основным свойством всех волн независимо от их природы является перенос энергии без переноса вещества.

    Волны бывают поперечными (колебания происходят в плоскости, перпендикулярной направлению распространения), и продольными (сгущение и разряжение частиц среды происходят в направлении распространения).

    Если взаимосвязь между частицами среды осуществляется силами упругости , возникающими вследствие деформации среды при передаче колебаний от одних частиц к другим, то волны называются упругими (звуковые, ультразвуковые, сейсмические и др. волны).

    Упругие поперечные волны возникают в среде, обладающей сопротивлением сдвигу,

    вследствие этого:

      в жидкой и газообразной средах возможно возникновение только продольных волн;

      в твердой среде возможно возникновение как продольных, так и поперечных волн.


    Уравнением волны – называется выражение, которое дает смещение колеблющейся точки как функцию ее координат (x , y , z ) и времени t .

    Фазовая скорость. скорость распространения фазы есть

    скорость распространения волны

    1. Электромагнитные волны. Волновое уравнение. Свойства волн (поперечность, синфазность, волновой вектор, интенсивность). Вектор Пойнтинга.

    Движущийся с ускорением электрический заряд испускает электромагнитные волны.

      ЭМВ представляют собой поперечные волны и аналогичны другим типам волн.

      Однако в ЭМВ происходят колебания полей, а не вещества, как в случае волн на воде или в натянутом шнуре.

    Свойства волн!!!

    1. Когерентность волн. Сложение волн от двух когерентных источников. Разность фаз. Формула для суммарной интенсивности. Оптическая разность хода волн. Временная когерентность.

    Если частоты волн одинаковые, то зависимость от времени будет определяться только разностью начальных фаз колебаний и, каждая из которых в волнах от независимых источников случайным (хаотичным) образом меняется во времени. Если удастся каким-либо образом согласовать колебания так, чтобы эта разность не зависела от времени, или медленно менялась во времени, то интенсивность результирующей волны уже не будет равна сумме интенсивностей падающих волн и можно записать:

    Такие «согласованные» по фазе волны называют когерентными.

    Таким образом, две волны будут когерентными, если слагаемое , описывающее перераспределение интенсивности в пространстве, не обращается в нуль.

    Когерентными являются, например, одинаково поляризованные волны, если их частоты одинаковы, а разность начальных фаз не зависит от времени.

    Интерференция света явление перераспределения потока световой энергии в пространстве при наложении (суперпозиции) двух или более световых волн.

    1. Интерференционные кольца Ньютона. Вывод формул для радиусов темных и светлых колец.

    Кольцевые полосы равной толщины , наблюдаемые в воздушном зазоре

    между соприкасающимися выпуклой сферической поверхностью линзы малой кривизны и плоской поверхностью стекла , называют кольцами Ньютона .


    1. Интерференция волн, отраженных от плоскопараллельной пластинки.

    2. Принцип Гюйгенса-Френеля. Дифракция Френеля на круглом отверстии и на круглом диске. Метод зон Френеля. Векторная диаграмма (спираль Френеля).

    Каждый элемент поверхности, которой достигла в данный момент волна (т.е. каждая точка волнового фронта) является центром вторичных волн, огибающая которых становится волновым фронтом в более поздний момент времени –принцип Гюйгенса

    Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

    Характер наблюдаемой интерференционной картины зависит от взаимного расположения источников и плоскости наблюдения P (рис. 1.1). Интерференционные полосы могут иметь, например, вид семейства концентрических колец или гипербол. Наиболее простой вид имеет интерференционная картина, полученная при наложении двух плоских монохроматических волн, когда источникиS1 иS2 находятся на достаточном удалении от экрана. В этом случае интерференционная картина имеет вид чередующихся темных и светлых прямолинейных полос (интерференционные максимумы и минимумы), расположенных на одинаковом расстоянии друг от друга. Именно этот случай реализуется во многих оптических интерференционных схемах. Каждый интерференционный максимум (светлая полоса) соответствует разности хода, где m – целое число, которое называется порядком интерференции. В частности, привозникает интерференционный максимум нулевого порядка. В случае интерференции двух плоских волн ширина интерференционных полос l простым соотношением связана с углом схождения интерферерирующих лучей на экране (рис. 1.2).

    При симметричном расположении экрана по отношению к лучам 1 и 2 ширина интерференционных полос выражается соотношением: . Приближение, справедливое при малых углах, применимо ко многим оптическим интерференционным схемам.

    (Бизеркала Френеля

    Два плоских соприкасающихся зеркала ОМ и ОN (рис.2) располагаются так, что их отражающие поверхности образуют угол, отличающийся от 180 0 на доли одного градуса. Параллельно линии пересечения зеркал (точка 0 на рис. 2) на некотором расстоянии r от нее помещается узкая щель S, через которую свет попадает на зеркала. Непрозрачный экран Э1 преграждает свету путь от источника S к экрану Э. Зеркала отбрасывают на экран Э две когерентные цилиндрические волны, распространяющиеся так, как если бы они исходили из мнимых источников S1 и S2.

    Расстояние S1S 2 тем меньше, а значит, интерференционная картина тем крупнее, чем меньше угол между зеркалами? . Максимальный телесный угол, в пределах которого могут еще перекрываться интерферирующие пучки, определяется углом 2?=< KS1T =< RS 2 L . При этом экран располагается достаточно далеко. На основании законов отражения угол 2?= 2? . Таким образом,