Болезни Военный билет Призыв

Смотреть страницы где упоминается термин стохастический процесс. Стохастические процессы с непрерывным временем

Материал из synset

Эти материалы являются сокращённой электронной версией книги "Стохастический мир". После конвертации из LaTex появились неизбежные артефакты, которые будут постепенно устраняться. Об ошибках или опечатках, найденных в последней версии убедительная просьба сообщать, например, в закладке "обсуждение" вверху на этой странице или почтой mathсайт. Вы этим очень поможете в улучшении книги. Приветствуются также комментарии общего плана: что понравилось, а что нет. Для чтения книги в web-браузере стоит прочитать совет по настройке браузера для более комфортного просмотра формул.

С уважением, Степанов Сергей Сергеевич.

Случайные события

Стохастические уравнения

Средние значения стохастических процессов

Вероятности стохастических процессов

Стохастические интегралы

Системы уравнений

Стохастическая природа

Стохастическое общество

Краткое содержание

Случайные события

Абсолютно детерминированных событий и процессов не бывает. Вселенная разговаривает с нами на языке теории вероятностей. Предполагается, что Читатель хорошо знаком с ней, поэтому напоминаются только факты, необходимые для дальнейшего изучения предмета.

Первый раздел является вводным, он подводит к необходимости использования стохастических дифференциальных уравнений при исследовании различных систем. Затем обсуждается понятие плотности вероятностей, позволяющей вычислять наблюдаемые в среднем величины. Гауссова вероятность лежит в основе шума, воздействующего на детерминированную динамику. Стохастическая связь между случайными величинами и, наоборот, их независимость важны при обнаружении закономерностей между различными объектами и их характеристиками. Ключевым разделом главы является Модель аддитивного блуждания . Именно обобщение этой простой модели приведёт нас в следующей главе к стохастическим дифференциальным уравнениям. Последний раздел Мартингалы и бесплатный сыр содержит ряд формальных определений, которые при желании можно опустить.

Стохастические уравнения

Эта глава является ключевой. В ней вводится основной математический объект нашего интереса -- стохастические дифференциальные уравнения. Мы будем использовать максимально неформальный, интуитивный путь, считая, что получение конкретных практических результатов важнее, чем математически строгое их обоснование.

Стохастические уравнения представляют собой достаточно естественный непрерывный по времени предел дискретных случайных процессов, рассмотренных в предыдущей главе. Даже решая непрерывное уравнение, мы будем постоянно возвращаться к его дискретному аналогу, как для получения общих аналитических результатов, так и для численного моделирования. Исключительно важным результатом главы является лемма Ито, при помощи которой мы научимся находить точные решения уравнений в некоторых простых, но важных для практических приложений задачах. Затем обсуждаются способы вычисления автокорреляционной функции случайного процесса и его спектральные свойства. В заключение мы затронем тему систем уравнений, к которой более последовательно вернёмся в шестой главе.

Средние значения

Дифференциальное уравнение для случайной функции x(t) - это лишь один из возможных языков описания стохастического процесса. В ситуации, когда система эволюционирует со временем, средние значения также изменяются и подчиняются определённым дифференциальным уравнениям. Фактически, их решение является наиболее прямым способом получения практически полезных результатов.

Мы начнём эту главу с вывода динамического уравнения для средних. С его помощью будет получено простое выражение для плотности вероятности в ситуации, когда система имеет стационарный режим. Затем мы подробно проанализируем две стохастические задачи: уравнение Феллера и логистическое уравнение. В заключение будут рассмотрены метод разложения средних величин в степенной ряд по времени и квазидетерминированное приближение.

Вероятности

Ещё одним способом получения информации о поведении стохастического процесса является решение уравнений для условной плотности вероятности которым посвящена эта глава.

На простых примерах будут продемонстрированы методы решения подобных уравнений. Затем мы рассмотрим вопрос о граничных условиях, которые наиболее естественным образом учитываются при помощи уравнения Фоккера-Планка. Будет вычислено среднее время достижения границы и построен простой метод решения уравнения Фоккера-Планка при наличии граничных условий. Решения уравнений x(t) мы часто записываем при помощи гауссовой случайной переменной.

Стохастические интегралы

Как и в обычном анализе, если определено стохастическое дифференцирование, то естественно ввести и стохастическое интегрирование. Соответствующая техника даст нам ещё один инструмент получения соотношений для иногда достаточно общих случайных процессов. Это очень красивый раздел стохастической математики, который к тому же активно используется в учебной и научной литературе.

В дифференциальных уравнениях присутствуют два бесконечно малых изменения -- снос, пропорциональный dt, и волатильность шума. Соответственно, возможно два вида интегралов. В первом разделе мы рассмотрим стохастические интегралы по dt, изучим их основные свойства и найдём представление некоторых интегралов через обычные случайные величины. Во втором разделе рассматривается интеграл Ито по . Далее будут получены условия, при которых решение стохастического дифференциального уравнения единственно, и рассмотрен итерационный метод построения этого решения.

Системы уравнений

Одномерные стохастические уравнения позволяют описывать только сравнительно простые системы. Даже для обычного физического осциллятора необходимо решать систему из двух уравнений первого порядка. Реальность в общем случае -- многомерна. Она даёт нам множество примеров достаточно сложных, но исключительно интересных случайных процессов.

Как и в одномерном случае, мы начнём с дискретных процессов, обобщение которых на непрерывный случай приведёт нас к системе стохастических дифференциальных уравнений. Фактически, эта глава повторяет большинство результатов предыдущих глав. Для тех, кто уверенно владеет тензорной и матричной алгеброй, соответствующие обобщения служат лишь способом повторения уже известного материала. После вывода основных многомерных уравнений будут рассмотрены решения некоторых задач.

Стохастическая природа

В этой главе приведены примеры природных систем, которые естественным образом описываются при помощи стохастических дифференциальных уравнений. Эти системы охватывают широкий спектр приложений от физики до биологии, однако не требуют глубоких познаний в соответствующих областях. Большинство разделов не связаны друг с другом и могут быть прочитаны в любом порядке, независимо друг от друга. Первое стохастическое дифференциальное уравнение в 1908 году записал Поль Ланжевен (Paul Langevin). Именно с него начинается эта глава.

Стохастическое общество

В этой главе собраны некоторые примеры применения стохастических методов к финансовым рынкам и экономике. Волатильный характер цен и экономических индикаторов приводит к тому, что динамика соответствующих систем является существенно стохастической, и член в уравнениях Ито играет ведущую роль.

Сначала мы сделаем небольшой экскурс в финансовые рынки и эмпирические свойства цен финансовых инструментов. Затем рассмотрим теорию диверсификации и бета - коэффициенты. Стохастические методы оказываются очень полезными при изучении сложных финансовых инструментов. Примером такого инструмента является опцион. Мы рассмотрим основные его свойства и двумя различными способами выведем формулу Блэка-Шоулза. После этого будет рассмотрена простая однофакторная модель кривой доходности.

Временные ряды . Временной ряд – это множество наблюдений, генерируемых последовательно во времени. Если время непрерывно, временно ряд называется непрерывным. Если время изменяется дискретно, временной ряд дискретен. Наблюдения дискретного временного ряда, сделанные в моменты времени могут быть обозначены через . В этой книге рассматриваются только дискретные временные ряды, в которых наблюдения делаются через фиксированный интервал . Когда имеется последовательных значений такого ряда, доступных для анализа, мы пишем , обозначая так наблюдения, сделанные в равноотстоящие моменты времени . Во многих случаях значения и не важны, но если необходимо точно определить времена наблюдений, нужно указать эти два значения. Если мы принимаем за начало и за единицу времени, мы можем рассматривать как наблюдение в момент времени .

Дискретные временные ряды могут появляться двумя путями.

1) Выборкой из непрерывных временных рядов, например, в ситуации, показанной на рис. 1.2, где значения непрерывных входа и выхода газовой печи считываются с интервалом 9 с.

2) Накоплением переменной в течение некоторого периода времени; примерами могут служить дождевые осадки, которые обычно накапливаются за такие периоды, как день или месяц, или выход партий продукта, накапливающегося за время цикла. Например, на рис. 2.1 показан временной ряд, состоящий из значений выхода 70 последовательных партий продукта химического процесса.

Рис. 2.1 Выход 70 последовательных партий продукта химического процесса.

Детерминированные и случайные временные ряды . Если будущие значения временного ряда точно определены какой-либо математической функцией, например, такой, как

,

временной ряд называют детерминированным. Если будущие значения могут быть описаны только с помощью распределения вероятностей, временной ряд называют недетерминированным, или просто случайным. Данные о партиях продукта на рис. 2.1 – это пример случайного временного ряда. Хотя в этом ряду имеется отчетливая тенденция к чередованию «вверх-вниз», невозможно точно предсказать выход следующей партии. В этой книге мы будем исследовать именно такие случайные временные ряды.

Стохастические процессы . Статическое явление, развивающееся во времени согласно законам теории вероятности, называется стохастическим процессом. Мы часто будем называть его просто процессом, опуская слово «стохастический». Подлежащий анализу временной ряд может быть рассматриваться как одна частная реализация изучаемой системы, генерируемая скрытым вероятностным механизмом. Другими словами, анализируя временной ряд, мы рассматриваем его как реализацию стохастического процесса.

Рис. 2.2 Наблюденный временной ряд (жирная линия) и другие временные ряды, являющиеся реализациями одного и того же стохастического ряда.

Рис. 2. 3. Изолинии плотности двумерного распределения вероятности, описывающего стохастический процесс в моменты времени и , там же маргинальное распределение в момент .

Например, анализирую данные о выходе партии продукта на рис 2.1, мы можем представить себе другие множества наблюдений (другие реализации порождающего эти наблюдения стохастического процесса), которые могут быть генерированы той же самой химической системой, за те же циклов. Так, например, на рис. 2.2 показаны выходы партий продукта с по (жирная линия) вместе с другими временными рядами, которые могли бы быть получены из популяции временных рядов, определяемых тем же стохастическим процессом. Отсюда следует, что мы можем рассматривать наблюдение в данное время , скажем , как реализацию случайной величины с плотностью вероятности . с плотностью вероятности .

Как давно уже заметил Росс Эшби, никакая система (ни компьютер, ни организм) не может произвести чего-либо нового , если эта система не содержит некоторого источника случайности. В компьютере это будет генератор случайных чисел, благодаря которому «поиски» машины по методу проб и ошибок в конечном счете исчерпывают все возможности изучаемой области.

Иными словами, все создающие новое, то есть творческие системы являются, на языке Главы 2, расходящимися ; напротив, последовательности событий, которые предсказуемы, являются, ipso facto*, сходящимися.

Кстати, это не значит, что все расходящиеся системы стохастичны. Для этого процессу требуется не только доступ к случайности, но также и встроенное сравнивающее устройство, называемое в эволюции «естественным отбором», а в мышлении «предпочтением» или «подкреплением».

Вполне возможно, что с точки зрения вечности, то есть в космическом и вечном контексте, все последовательности событий становятся стохастическими. С этой точки зрения, или даже с точки зрения спокойно сочувствующего таоистского святого, может быть, ясно, что для направления всей системы нет надобности в каком-либо конечном предпочтении. Но мы живем в ограниченной области вселенной, и каждый из нас существует в ограниченном времени. Для нас расходимость реальна и является потенциальным источником беспорядка или новшества.

Иногда я даже подозреваю, что мы, хотя и связанные иллюзией, выполняем за таоиста, который смотрит со стороны, эту работу выбора и предпочтения. (Мне вспоминается некий поэт, отказывавшийся от воинской повинности. Он якобы утверждал: «Я и есть та цивилизация, за которую борются эти ребята». Может быть, он был в каком-то смысле прав?).

Так или иначе, по-видимому, мы существуем в ограниченной биосфере, где главное направление определяется двумя сцепленными стохастическими процессами. Такая система не может долго оставаться без изменения. Но скорость изменения ограничена тремя факторами:

а. Вейсмановский барьер, отделяющий соматическое изменение от генетического, о котором была речь в разделе 1 этой главы, гарантирует, что соматическое приспособление не станет опрометчиво необратимым.

б. В каждом поколении половая репродукция гарантирует, что план новой клетки, заключенный в ДНК, не вступит в резкий конфликт с планом старой, то есть с формой естественного отбора, действующей на уровне ДНК, независимо от того, чтó может означать для фенотипа этот отклоняющийся новый план.

в. Эпигенез действует как сходящаяся и консервативная система; развитие эмбриона, само по себе, образует контекст отбора, благоприятствующий консерватизму.


Тот факт, что естественный отбор есть консервативный процесс, впервые осознал Элфред Рассел Уоллес. Мы уже упомянули ранее, по другому поводу, относящуюся сюда квазикибернетическую модель из его письма Дарвину, объясняющего его идею:

«Этот принцип действует в точности наподобие принципа центробежного регулятора паровой машины, который проверяет и исправляет все отклонения чуть ли не прежде, чем они становятся очевидными; подобным же образом в животном царстве никакое отступление от равновесия никогда не может достигнуть сколько-нибудь заметной величины, поскольку оно стало бы ощущаться на самом первом шаге, затруднив существование и сделав почти неизбежным последующее вымирание.»

9. сравнение и сочетание обеих стохастических систем

В этом разделе я попытаюсь уточнить описание обеих систем, исследовать функции каждой из них и, наконец, исследовать характер большей системы всеобщей эволюции, представляющей сочетание этих двух подсистем.

Каждая подсистема имеет две компоненты (как это вытекает из слова стохастическая ) (см. Словарь): случайную компоненту и процесс отбора, действующий на продукты случайной компоненты.

В той стохастической системе, которой дарвинисты уделили наибольшее внимание, случайной компонентой является генетическое изменение, путем мутации или путем перегруппировки генов между членами популяции. Я предполагаю, что мутация не реагирует на требования окружающей среды или на внутренние напряжения организма. Но при этом я предполагаю, что механизм отбора, действующий на случайно меняющийся организм, включает и внутренние напряжения каждого существа, и, далее, условия среды, действующей на это существо.

Прежде всего необходимо заметить, что, поскольку эмбрионы защищены яйцом или материнским телом, внешняя среда не имеет сильного селекционного влияния на генетические новшества до того, как эпигенез не пройдет ряд этапов. В прошлом, как и до сих пор, внешний естественный отбор предпочитал изменения, защищающие эмбрион и молодую особь от внешних опасностей. Результатом было все возрастающее разделение двух стохастических систем.

Альтернативный метод, обеспечивающий выживание по крайней мере некоторых потомков, состоит в большом умножении их числа. Если в каждом цикле репродукции индивид производит миллионы зародышей, то подрастающее поколение может вынести случайное умерщвление, особенно оставляющее в живых лишь несколько особей из миллиона. Это означает вероятностное отношение к внешним причинам смерти, без каких-либо попыток приспособиться к их частной природе. При этой стратегии внутренний отбор также получает возможность беспрепятственно контролировать изменение.

Таким образом, благодаря защите незрелых потомков, или благодаря астрономическому умножению их числа, получилось, что в наше время для многих организмов новая форма должна прежде всего подчиниться ограничениям, происходящим от внутренних условий. Будет ли новая форма жизнеспособна в этом окружении? Сможет ли развивающийся эмбрион вынести новую форму, или изменение повлечет за собой летальные отклонения в развитии эмбриона? Ответ будет зависеть от соматической гибкости эмбриона.

Сверх того, при половой репродукции сочетание хромосом в ходе оплодотворения неизбежно приводит к процессу сравнения. Все новое в яйце или в сперматозоиде должно встретиться со старым в своем партнере, и это испытание благоприятствует конформности и неизменности. Слишком резкое новшество будет устранено, как несовместимое.

За процессом слияния в репродукции следуют все сложности развития, и здесь комбинаторный аспект эмбриологии, подчеркиваемый термином эпигенез* , требует дальнейших испытаний конформности. Как мы знаем, в status quo ante¦ все требования совместимости были удовлетворены, чтобы произвести половозрелый фенотип. Если бы это было не так, то status quo ante никогда бы не существовал.

Очень легко впасть в заблуждение, будто жизнеспособность нового означает, что со старым что-то было не в порядке. Этот взгляд, к которому неизбежно склонны организмы, уже страдающие от патологий слишком быстрого, безрассудного социального изменения, конечно, большей частью ошибочен. Всегда необходима уверенность, что новое не хуже старого. У нас все еще нет уверенности, что общество с двигателями внутреннего сгорания жизнеспособно, или что электронные средства связи вроде телевизора совместимы с агрессивной внутривидовой конкуренцией, порожденной Промышленной Революцией. При прочих равных условиях (что бывает редко), старое, в некоторой мере проверенное, можно считать более жизнеспособным, чем совсем не проверенное новое.

Таким образом, внутренний отбор – первая серия испытаний любой новой генетической компоненты или комбинации.

В противоположность этому, вторая стохастическая система имеет свои прямые корни во внешнем приспособлении (т.е. во взаимодействии между фенотипом и средой). Случайная компонента доставляется здесь системой, состоящей из фенотипа, взаимодействующего со средой.

Частные приобретенные признаки, вызванные реакцией на некоторое данное изменение среды, могут быть предсказуемы. Если уменьшается доставка пищи, то организм, вероятно, теряет вес, главным образом вследствие метаболизма собственных жиров. Упражнение и неупражнение вызывают изменения в развитии или недоразвитость отдельных органов, и так далее. Подобным же образом, часто можно предсказать отдельные изменения в среде: изменение климата в сторону похолодания, как можно предсказать, уменьшит местную биомассу, и тем самым уменьшит доставку пищи многим видам организмов. Но вместе фенотип и организм порождают нечто непредсказуемое. Ни организм, ни его окружающая среда не имеет информации о том, что сделает на следующем шаге партнер. Но в этой подсистеме уже есть компонента отбора, в той мере, насколько соматические изменения, вызванные привычкой и средой (в том числе сама привычка), адаптивны. (Широкий класс изменений, вызванных средой и опытом и не адаптивных, а также не способствующих выживанию, известен под именем аддикции ).

Среда и физиология вместе предлагают соматические изменения, которые могут быть жизнеспособны или нет, и жизнеспособность их определяется текущим состоянием организма, которое определяет генетика . Как я объяснил в разделе 4, границы, которых может достигнуть соматическое изменение или обучение, в конечном счете задаются генетикой.

В итоге, сочетание фенотипа и среды составляет случайную компоненту стохастической системы, которая предлагает изменение; а генетическое состояние располагает , разрешая некоторые изменения и запрещая другие. Ламаркистам хотелось бы, чтобы соматические изменения контролировали генетику, но дело обстоит как раз наоборот. Это генетика ограничивает соматические изменения, делая некоторые из них возможными, а другие невозможными.

Более того, геном индивидуального организма, где и содержатся возможности изменения, есть то, что компьютерные инженеры назвали бы банком данных – он доставляет запас доступных альтернативных путей приспособления. В данном индивиде большинство этих альтернатив остается неиспользованным, а потому незаметным.

Подобным же образом, в другой стохастической системе геном популяции , как теперь думают, чрезвычайно неоднороден. Все возможные генетические сочетания, даже редкие, создаются перегруппировкой генов в половой репродукции. Таким образом, имеется обширный запас альтернативных генетических путей, которые естественная популяция может избрать под давлением отбора, как показали исследования Уоддингтона о генетической ассимиляции (рассмотренные в разделе 3).

Если эта картина верна, то и популяция, и индивид готовы к изменению. Можно полагать, что нет надобности ждать надлежащих мутаций, и это представляет некоторый исторический интерес. Как известно, Дарвин поколебался в своих взглядах на ламаркизм, считая, что геологического времени было недостаточно для процесса эволюции, действующего без ламарковой наследственности. Поэтому в дальнейших изданиях «Происхождения видов» он принял позицию Ламарка. Открытие Феодосия Добжанского, что единицей эволюции вляется популяция, и что популяция представляет собой неоднородное хранилище генных возможностей, весьма сокращает время, требуемое эволюционной теорией. Популяция способна немедленно отвечать на давление среды. Индивидуальный организм обладает способностью к адаптивному соматическому изменению, но именно популяция, посредством выборочного устранения особей, совершает изменение, передающееся будущим поколениям. Предметом отбора становится возможность соматического изменения. Отбор, осуществляемый средой, действует на популяции .

Мы переходим теперь к исследованию отдельных вкладов в общий процесс эволюции каждой из этих двух стохастических систем. Ясно, что в каждом случае направление изменений, в конечном счете входящих в общую картину, задается селективной компонентой.

Временнáя структура двух стохастических процессов по необходимости различна. В случайном генетическом изменении новое состояние ДНК существует с момента оплодотворения, но, возможно, внесет свой вклад во внешнее приспособление лишь много позже. Иными словами, первое испытание генетического изменения есть проверка консервативности . Следовательно, именно эта внутренняя стохастическая система гарантирует столь заметное во всех случаях формальное сходство внутренних отношений между частями (т.е. гомологию). Вдобавок, можно предсказать, какой из многих видов гомологии будет наиболее предпочтителен для внутреннего отбора; ответ прежде всего – цитологический: это поразительнейшее сходство, соединяющее весь мир клеточных организмов. Куда ни посмотрим, везде находим в клетках сравнимые формы и процессы. Танец хромосом, митохондрии и другие органеллы цитоплазмы, однородная ультрамикроскопическая структура жгутиков везде, где они встречаются, и у растений, и у животных – все эти глубочайшие формальные сходства являются результатом внутреннего отбора, настаивающего на консерватизме на этом элементарном уровне.

К подобному же заключению приводит нас вопрос о дальнейшей судьбе изменений, переживших первые цитологические испытания. Изменение, подействовавшее на более раннем этапе жизни эмбриона, должно нарушить более продолжительную и, соответственно, более сложную цепь дальнейших событий. Трудно или невозможно указать какие-либо количественные оценки распределения гомологий в истории организмов. Когда говорят, что гомология наиболее выражена на самых ранних стадиях продукции гамет, оплодотворения, и так далее, это означает некоторое количественное утверждение о степенях гомологии, придающее значение таким характеристикам, как число хромосом, паттерны митоза, двусторонняя симметрия, конечности с пятью пальцами, центральная нервная система со спинным мозгом, и так далее. Такие оценки, конечно, весьма искусственны в мире, где (как отмечено в Главе 2) количество никогда не определяет паттерн. Но интуитивное ощущение все же остается. Единственные формальные паттерны, разделяемые всеми клеточными организмами – и растениями, и животными – находятся на клеточном уровне.

Из этого направления мысли вытекает интересное заключение: После всех споров и сомнений, теория повторения заслуживает поддержки. Есть априорная причина ожидать, что эмбрионы будут в своих формальных паттернах ближе напоминать эмбриональные формы своих предков, чем взрослые особи – формы своих взрослых предков. Это далеко от того, о чем мечтали Геккель и Герберт Спенсер, представлявшие себе, что эмбриология должна следовать пути филогенеза. Современная формулировка более негативна: Отклонение от начала пути более трудно (менее вероятно), чем отклонение от более поздних стадий. Если мы, в качестве эволюционных инженеров, оказались бы перед задачей выбрать путь филогенеза от свободно плавающих организмов, похожих на головастика, к сидячему, червеобразному, живущему в грязи Balanoglossus , то мы нашли бы, что самый легкий путь эволюции состоял бы в том, чтобы избегать слишком ранних или слишком резких нарушений на эмбриональной стадии. Может быть, мы даже нашли бы, что эволюционный процесс упрощается подразделением эпигенеза посредством разграничения отдельных стадий. Тогда мы пришли бы к организму со свободно плавающими, напоминающими головастиков зародышами, которые в определенный момент совершают метаморфозу в червеобразных, сидячих взрослых.

Механизм изменчивости не просто разрешает, и не просто творит. В нем имеется непрерывный детерминизм, где возможные изменения составляют класс изменений, подходящих для данного механизма. Система случайных генетических изменений, фильтруемых селективным процессом внутренней жизнеспособности, и придает филогенезу характер вездесущей гомологии.

Если мы теперь рассмотрим вторую стохастическую систему, то придем к совсем иной картине. Хотя никакое обучение или соматическое изменение не может прямо повлиять на ДНК, дело происходит очевидным образом так, что соматические изменения (т.е. пресловутые приобретенные признаки) обычно адаптивны. В смысле индивидуального выживания и (или) репродукции и (или) простого удобства и снижения стресса, полезно приспособление к изменениям среды. Такое приспособление происходит на многих уровнях, но на каждом уровне имеется реальное или кажущееся преимущество. Хорошая идея – учащенное дыхание, когда вы попадаете на большую высоту; хорошая идея также – научиться обходиться без одышки, если вам приходится долго оставаться в горах. Хорошая идея – иметь физиологическую систему, способную адаптироваться к физиологическому стрессу, хотя такое приспособление приводит к акклиматизации, а акклиматизация может стать аддикцией.

Иными словами, соматическое приспособление всегда создает контекст для генетического изменения, но совсем другое дело, произойдет ли затем такое генетическое изменение. Я оставлю пока этот вопрос в стороне и рассмотрю, какой спектр генетических изменений может быть предложен соматическим изменением. Конечно, этот спектр или это множество возможностей устанавливает внешний предел тому, чего может достигнуть данная стохастическая компонента эволюции.

Одна общая черта соматической изменчивости сразу же очевидна: все такие изменения – количественные или – как сказали бы компьютерные инженеры – аналоговые . В теле животного центральная нервная система и ДНК в значительной степени (может быть, полностью) дискретные, но остальная физиология – аналоговая.

Таким образом, сравнивая случайные генетические изменения первой стохастической системы с реактивными соматическими изменениями второй, мы опять встречаемся с обобщением, подчеркнутым в Главе 2: Количество не определяет паттерн . Генетические изменения могут быть в высшей степени абстрактными, могут действовать на расстоянии многих ступеней от их конечного фенотипического выражения, и, несомненно, в своем конечном выражении могут быть и количественными, и качественными. Но соматические изменения гораздо более непосредственны и, как я полагаю, исключительно количественны. Насколько я знаю, описательные предложения, вводящие в описание вида общие с другими видами паттерны (т.е. гомологии), никогда не нарушаются соматическими изменениями, какие могут произвести привычка и среда.

Иными словами, контраст, продемонстрированный Д’Арси Томпсоном (см. рис. 9), по-видимому, имеет корни в контрасте между двумя великими стохастическими системами (т.е. следует из него).

Наконец, я должен сравнить процессы мышления с двойной стохастической системой биологической эволюции. Присуща ли такая двойная система также мышлению? (Если это не так, то вся структура этой книги становится сомнительной).

Прежде всего важно заметить, что «платонизм», как я его назвал в Главе 1, стал возможен в наши дни благодаря аргументам, почти противоположным тем, какие предпочла бы дуалистическая теология. Параллелизм между биологической эволюцией и разумом (mind) создается не постулированием Инженера или Мастера, прячущегося в механизме эволюционного процесса, а, напротив, постулированием стохастичности мышления. Критики Дарвина девятнадцатого века (в особенности Сэмюэл Батлер) хотели ввести в биосферу то, что они называли «разумом» («mind») (т.е. сверхъестественную энтелехию*). В наше время я подчеркнул бы, что творческая мысль всегда содержит случайную компоненту. Процесс исследования – бесконечный процесс проб и ошибок психического (mental) прогресса – может достигнуть нового лишь вступая на случайно возникающие пути; некоторые из них при испытании каким-то образом отбираются для чего-то вроде выживания.

Если мы допускаем фундаментально стохастический характер творческого мышления, то возникает позитивная аналогия с несколькими аспектами человеческого психического (mental) процесса. Мы ищем бинарное разделение процесса мышления, стохастическое в обеих своих половинах и такое, что случайная компонента одной половины должна быть дискретной, а случайная компонента другой половины – аналоговой.

По-видимому, простейший путь к этой проблеме – рассмотреть сначала процессы отбора, определяющие и ограничивающие его результаты. Здесь мы встречаемся с двумя главными способами испытания мыслей или идей.

Первый из них – это испытание на логическую связность: имеет ли новая идея смысл в свете того, что уже известно, или того, чему мы верим? Хотя есть много видов смысла, и хотя «логика», как мы уже видели, представляет лишь убогую модель того, как обстоят дела в мире, все же первым требованием мыслителя к понятиям, возникающим в его уме, остается нечто вроде согласованности или связности – строгой или воображаемой. Напротив, порождение новых понятий почти полностью (хотя, может быть, и не полностью) зависит от перестановки и нового сочетания уже имевшихся идей.

В самом деле, имеется замечательно близкая параллель между стохастическим процессом, происходящим внутри мозга, и другим стохастическим процессом – генезисом случайных генетических изменений, над результатами которых работает процесс внутреннего отбора, обеспечивающий некоторое соответствие между старым и новым. И при более внимательном изучении этого предмета формальное сходство, по-видимому, возрастает.

Обсуждая контраст между эпигенезом и творческой эволюцией, я указал, что в эпигенезе вся новая информация должна быть оставлена в стороне, и что этот процесс больше напоминает вывод теорем в рамках некоторой исходной тавтологии. Как я отметил в этой главе, весь процесс эпигенеза может рассматриваться как фильтр, точно и безусловно требующий от растущего индивида подчинения определенным стандартам.

Так вот, мы замечаем, что во внутричерепном процессе мышления есть аналогичный фильтр, который, подобно эпигенезу в индивидуальном организме, требует подчинения и навязывает это требование с помощью процесса, более или менее напоминающего логику (т.е. похожего на построение тавтологии для создания теорем). В процессе мышления строгость аналогична внутренней связности в эволюции.

Резюмируя, можно сказать, что внутричерепная стохастическая система мышления или обучения близко напоминает ту компоненту эволюции, в которой случайные генетические изменения отбираются эпигенезом. Наконец, историк культуры имеет в своем распоряжении мир, где формальное сходство сохраняется в течение многих поколений истории культуры, так что он может разыскивать там соответствующие паттерны точно так же, как зоолог ищет гомологии.

Обратившись теперь к другому процессу обучения или творческого мышления, включающему не только мозг индивида, но и мир вокруг организма, мы находим аналог этого процесса в эволюции, где опыт создает то отношение между организмом и средой, которое мы называем приспособлением , навязывая организму изменения привычек и сомы.

Каждое действие живого организма включает в себя некоторую долю проб и ошибок, а чтобы проба была новой, она должна быть в некоторой степени случайной. Даже если новое действие – лишь элемент некоторого хорошо изученного класса действий, все же, поскольку оно ново, оно должно стать в некоторой степени подтверждением или исследованием предложения «это делается вот так».

Но при обучении, как и при соматическом изменении, есть ограничения и облегчения, отбирающие то, что может быть выучено. Некоторые из них – внешние для организма, другие – внутренние. В первом случае то, что может быть выучено в данный момент, ограничивается или облегчается тем, что было выучено раньше. В действительности, есть еще обучение тому, как учиться – с конечным пределом, определяемым генетическим строением – тому, что может быть сразу же изменено в ответ на требования окружения. И на каждом шаге, в конечном счете, действует генетический контроль (как это было указано при обсуждении соматической изменчивости в разделе 4).

Наконец, необходимо сопоставить оба стохастических процесса, которые я разделил с целью анализа. Какие формальные отношения существуют между ними?

Как я понимаю, суть дела состоит в контрасте между дискретным и аналоговым, или, на другом языке, между именем и именуемым процессом .

Но именование есть само по себе процесс, и притом такой процесс, который происходит не только в нашем анализе, но также – глубоким и значительным образом – в самих системах, которые мы пытаемся анализировать. Каковы бы ни были кодирование и механические отношения между ДНК и фенотипом, все же ДНК есть некоторым образом распорядительный орган, предписывающий – и в этом смысле называющий – отношения, которые должны проявиться в фенотипе.

Но если мы допускаем, что именование есть явление, встречающееся в изучаемых нами явлениях и организующее их, то мы признаём ipso facto, что мы ожидаем найти в этом явлении иерархию логических типов.

До этого места мы можем обойтись Расселом и Principia .¦ Но теперь мы уже не находимся в расселовом мире абстрактной логики и математики, и не можем принять пустую иерархию имен или классов. Математику легко говорить об именах имен имен или о классах классов классов . Но для ученого этот пустой мир недостаточен+. Мы пытаемся разобраться в переплетении или взаимодействии дискретных ступеней (т.е. наименований) с аналоговыми ступенями. Процесс наименования сам по себе именуем , и этот факт вынуждает нас заменить чередованием простую лестницу логических типов, предлагаемую Principia .

Иными словами, для воссоединения двух стохастических систем, на которые я подразделил с целью анализа и эволюцию, и психический процесс, мне придется рассмотреть обе в чередующемся порядке . То, что в Principia появляется как лестница из ступеней одного вида (имена имен имен, и так далее), становится чередованием ступеней двух видов. Чтобы придти от имени к имени имени , нам надо пройти через процесс именования имен. Всегда должен быть процесс порождения, создающий классы прежде, чем они могут быть названы.

Этот весьма обширный и сложный предмет будет рассмотрен в Главе 7.

Стохастичность (др.-греч. στόχος - цель, предположение) означает случайность. Стохастический процесс - это процесс, поведение которого не является детерминированным, и последующее состояние такой системы описывается как величинами, которые могут быть предсказаны, так и случайными. Однако, по М. Кацу и Э. Нельсону, любое развитие процесса во времени (неважно, детерминированное или вероятностное) при анализе в терминах вероятностей будет стохастическим процессом (иными словами, все процессы, имеющие развитие во времени, с точки зрения теории вероятностей, стохастические).

Примером реального стохастического процесса в нашем мире может служить моделирование давления газа при помощи Винеровского процесса. Несмотря на то, что каждая молекула газа движется по своему строго определённому пути (в данной модели, а не в реальном газе), движение совокупности таких молекул практически нельзя просчитать и предсказать. Достаточно большой набор молекул будет обладать стохастическими свойствами, такими как наполнение сосуда, выравнивание давление, движение в сторону меньшего градиента концентрации и т. д. Таким образом проявляется эмерджентность системы.

Метод Монте-Карло получил распространение благодаря физикам Станиславу Уламу, Энрико Ферми, Джону фон Нейману и Николасу Метрополису. Название произошло от казино в городе Монте Карло, Монако, где дядя Улама занимал деньги для игры. Использование природы случайностей и повторов для изучения процессов аналогично деятельности, происходящей в казино.

Методы проведения расчётов и экспериментов на основе случайных процессов как формы стохастического моделирования применялись ещё на заре развития теории вероятностей (напр. Задача Буффона и работах по оценке малых выборок Уильяма Госсета), но наиболее развились в предкомпьютерную эру. Отличительной чертой методов моделирования Монте-Карло является то, что сначала идёт поиск вероятностного аналога (см. алгоритм имитации отжига). До этого методы моделирования шли в противоположном направлении: моделирование использовалось для того, чтобы проверить результат полученной ранее детерминированной проблемы. И хотя подобные подходы существовали до этого, они не были общими и популярными до тех пор, пока не появился метод Монте-Карло.

Возможно, наиболее известное из ранних применений подобных методом принадлежит Энрико Ферми, который в 1930 году использовал стохастические методы для расчёта свойств только что открытого нейтрона. Методы Монте-Карло широко использовались в ходе работы над манхэттенским проектом, несмотря на то, что возможности вычислительных машин были сильно ограничены. По этой причине только с появлением компьютеров методы Монте-Карло начали широко распространяться. В 1950х их использует Лос-Аламосская национальная лаборатория для создания водородной бомбы. Широкое распространения методы получили в таких областях, как Физика, Физическая химия и Исследование операций.

Использование методов Монте-Карло требует большого числа случайных величин, что, как следствие, привело к развитию генераторов псевдослучайных чисел, которые были намного быстрее, чем табличные методы генерации, которые ранее использовались для статистической выборки.

Изучение статистических закономерностей - важнейшая познавательная задача статистики, которую она решает с помощью особых методов, видоизменяющихся в зависимости от характера исходной информации и целей познания. Знание характера и силы связей позволяет управлять социально-экономическими процессами и предсказывать их развитие.

Среди многих форм связей важнейшей является причинная, определяющая все другие формы. Сущность причинности состоит в порождении одного явления другим. Вместе с тем, причина сама по себе еще не определяет следствия, она зависит также от условий, в которых протекает действие причины. Для возникновения следствия нужны все определяющие его факторы - причина и условия. Необходимая обусловленность явлений множеством факторов называется детерминизмом.

Объектами исследования при статистическом измерении связей служит, как правило, детерминированность следствия факторами (причиной и условиями). Признаки по их значению для изучения взаимосвязи делятся на два класса. Признаки, являющиеся причиной изменения других, связанных с ними признаков, называют факторными, или просто факторами. Признаки, изменяющиеся под действием факторных признаков, называют результативными.

Связи между явлениями и их признаками классифицируют по степени тесноты связи, направлению и аналитическому выражению.

Между различными явлениями и их признаками необходимо, прежде всего, выделить два типа связей: функциональную (жестко детерминированную) и статистическую (стохастически детерминированную).

Связь признака "y" с признаком "x" называется функциональной, если каждому возможному значению независимого признака "x" соответствует одно или несколько строго определенных значений зависимого признака "y". Определение функциональной связи может быть легко обобщено для случая многих признаков x 1 ,x 2 ,...,x n .

Характерной особенностью функциональных связей является то, что в каждом отдельном случае известен полный перечень факторов, определяющих значение зависимого (результативного) признака, а также точный механизм их влияния, выраженный определенным уравнением.

Функциональную связь можно представить уравнением: y i =f(x i), где y i - результативный признак (i = 1, ...,n); f(x i) - известная функция связи результативного и факторного признаков; x i - факторный признак.

Чаще всего функциональные связи наблюдаются в явлениях, описываемых математикой, физикой и другими точными науками. Имеют место функциональные связи и в социально-экономических процессах, но довольно редко (они отражают взаимосвязь только отдельных сторон сложных явлений общественной жизни). В экономике примером функциональной связи может служить связь между оплатой труда у и количеством изготовленных деталей х при простой сдельной оплате труда.

В реальной общественной жизни, ввиду неполноты информации жестко детерминированной системы, может возникнуть неопределенность, из-за которой эта система по своей природе должна рассматриваться как вероятностная, при этом связь между признаками становится стохастической.

Стохастическая связь – это связь между величинами, при которой одна из них, случайная величина у, реагирует на изменение другой величины х или других величин x 1 ,x 2 ,...,x n , (случайных или неслучайных) изменением закона распределения. Это обусловливается тем, что зависимая переменная (результативный признак), кроме рассматриваемых независимых, подвержена влиянию ряда неучтенных или неконтролируемых (случайных) факторов, а также некоторых неизбежных ошибок измерения переменных. Поскольку значения зависимой переменной подвержены случайному разбросу, они не могут быть предсказаны с достаточной точностью, а только указаны с определенной вероятностью.

Характерной особенностью стохастических связей является то, что они проявляются во всей совокупности, а не в каждой ее единице (причем не известен ни полный перечень факторов, определяющих значение результативного признака, ни точный механизм их функционирования и взаимодействия с результативным признаком).

Модель стохастической связи может быть представлена в общем виде уравнением: ŷ i = f(x i) + ε i , где ŷ i - расчетное значение результативного признака; f(x i ) - часть результативного признака, сформировавшаяся под воздействием учтенных известных факторных признаков (одного или множества), находящихся в стохастической связи с признаком; ε i - часть результативного признака, возникшая вследствие действия неконтролируемых или неучтенных факторов, а также измерения признаков, неизбежно сопровождающегося некоторыми случайными ошибками.

Проявление стохастических связей подвержено действию закона больших чисел: лишь в достаточно большом числе единиц индивидуальные особенности сгладятся, случайности взаимопогасятся и зависимость, если она имеет существенную силу, проявится достаточно отчетливо.

В социально-экономической жизни приходится сталкиваться со многими явлениями, имеющими вероятностный характер. Например, уровень производительности труда рабочих стохастически связан с целым комплексом факторов: квалификацией, стажем работы, уровнем механизации и автоматизации производства, интенсивностью труда, простоями, состоянием здоровья работника, его настроением, атмосферным давлением и другими. Полный перечень факторов определить практически невозможно.

Частным случаем стохастической связи является корреляционная связь, при которой среднее значение (математическое ожидание) случайной величины результативного признака у закономерно изменяется в зависимости от изменения другой величины х или других случайных величин x 1 ,x 2 ,...,x n . Корреляционная связь проявляется не в каждом отдельном случае, а во всей совокупности в целом. Только при достаточно большом количестве случаев каждому значению случайного признака х будет соответствовать распределение средних значений случайного признака у. Наличие корреляционных связей присуще многим общественным явлениям.

В зависимости от направления действия функциональные и стохастические связи могут быть прямыми и обратными. При прямой связи направление изменения результативного признака совпадает с направлением изменения признака-фактора, т.е. с увеличением факторного признака увеличивается и результативный, и наоборот, с уменьшением факторного признака уменьшается и результативный признак. В противном случае между рассматриваемыми величинами существуют обратные связи. Например, чем выше квалификация рабочего (разряд), тем выше уровень производительности труда – прямая связь. А чем выше производительность труда, тем ниже себестоимость единицы продукции – обратная связь.

По аналитическому выражению (форме) связи могут быть прямолинейными и нелинейными (криволинейными). При прямолинейной связи с возрастанием значения факторного признака происходит непрерывное возрастание (или убывание) значений результативного признака. Математически такая связь представляется уравнением прямой, а графически - прямой линией. Отсюда ее более короткое название - линейная связь.

При криволинейных связях с возрастанием значения факторного признака возрастание (или убывание) результативного признака происходит неравномерно или же направление его изменения меняется на обратное. Геометрически такие связи представляются кривыми линиями (гиперболой, параболой и т.д.).

По количеству факторов, действующих на результативный признак, связи различаются однофакторные (один фактор) и многофакторные (два и более факторов). Однофакторные (простые) связи обычно называются парными (так как рассматривается пара признаков). Например, корреляционная связь между прибылью и производительностью труда. В случае многофакторной (множественной) связи имеют в виду, что все факторы действуют комплексно, т.е. одновременно и во взаимосвязи, например, корреляционная связь между производительностью труда и уровнем организации труда, автоматизации производства, квалификации рабочих, производственным стажем, простоями и другими факторными признаками.

С помощью множественной корреляции можно охватить весь комплекс факторных признаков и объективно отразить существующие множественные связи.

Не может быть определен по изначальному состоянию системы.

  • В математике стохастическая матрица - это матрица , в которой все столбцы и/или строки - ряды неотрицательных действительных чисел, дающих в сумме.
  • В физике, стохастический резонанс - это проявление эффекта допорогового периодического сигнала, из-за добавления беспорядочного (шумового) воздействия, имеющего определённую оптимальную амплитуду, при которой проявление наиболее сильно́.
  • В музыке. Стохастическая музыка - по Хиллеру - это название такого вида композиционной техники, при котором законы теории вероятности определяют факт появления тех или иных элементов композиции при заранее обусловленных общих формальных предпосылках. В 1956 году, Янис Ксенакис ввел свой термин «стохастическая музыка», для описания музыки, основанной на законах вероятностей и законах больших чисел.
  • Стохастические системы - это системы, изменение в которых носит случайный характер. При случайных воздействиях данных о состоянии системы недостаточно для предсказания в последующий момент времени.

    Стохастический: Определение процесса, определяемого рядом наблюдений.

    См. также


    Wikimedia Foundation . 2010 .

    Синонимы :

    Смотреть что такое "Стохастический" в других словарях:

      - [гр. stochastikos умеющий угадывать] случайный, вероятностный, беспорядочный, непредсказуемый. Словарь иностранных слов. Комлев Н.Г., 2006. стохастический (гр. stochasis догадка) случайный, или вероятностный, напр, с. процесс процесс, характер… … Словарь иностранных слов русского языка

      Вероятностный, случайный; непредсказуемый. Ant. закономерный, обязательный Словарь русских синонимов. стохастический прил., кол во синонимов: 4 беспорядочный (44) … Словарь синонимов

      Большой Энциклопедический словарь

      Управляемый законами теории вероятностей, случайный. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

      Англ. stochastic; нем. stochastisch. В статистике случайный или вероятный; напр., С. процесс процесс, характер изменения к рого во времени точно предсказать невозможно. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии

      стохастический - ая, ое. stochastique, нем. stochastisch <гр. stochasis догадка. мат. Случайный, происходящий с вероятностью, которую невозможно предсказать. С.процесс. Стохастичность и, ж. Крысин 1998. Лекс. БСЭ 2: стохасти/ческий … Исторический словарь галлицизмов русского языка

      стохастический - tikimybinis statusas T sritis automatika atitikmenys: angl. stochastic vok. stochastisch rus. стохастический pranc. stochastique ryšiai: sinonimas – stochastinis … Automatikos terminų žodynas

      Ая, ое [греч. stochasis догадка] Книжн. Случайный, вероятностный, возможный. С ие изменения в экономике. С. процесс эволюции природы. * * * стохастический (от греч. stochastikós умеющий угадывать), случайный, вероятностный … Энциклопедический словарь

      Стохастический - то есть случайный, не имеющий очевидной закономерной причины … Физическая Антропология. Иллюстрированный толковый словарь.

      Стохастический - (от греч. stochastikos умеющий угадывать) случайный, вероятностный … Начала современного естествознания

    Книги

    • , Ф. С. Насыров. Книга посвящена применению методов теории функций вещественной переменной и теории дифференциальных уравнений в стохастическом анализе. Материал охватывает общую теорию локальных времен для…
    • Локальные времена, симметричные интегралы и стохастический анализ , Насыров Ф.С.. Книга посвящена применению методов теории функций вещественной переменной и теории дифференциальных уравнений в стохастическом анализе. Материал охватывает общую теорию локальных времен для…