Болезни Военный билет Призыв

Sr какой элемент. Стронций

Его название происходит от деревни Strontian в Шотландии, где был обнаружен минерал, содержащий стронций. В 1790 году стронций был идентифицирован как индивидуальный элемент А. Крофордом и В. Крюикшенком. Впервые выделил металлический стронций Г. Дэви в 1808 году.

Получение:

На долю стронция приходится 0,008 % общего числа атомов земной коры. Помимо силикатных пород стронций встречается в виде своих труднорастворимых углекислых и сернокислых солей: SrCO 3 - стронцианит, SrSO 4 - целестин.
В свободном состоянии может быть получен накаливанием оксида с металлическим алюминием в высоком вакууме:
3SrO+2Al=Al 2 O 3 +3Sr

Физические свойства:

Как и кальций, стронций представляет собой ковкий золотисто-желтый металл, он значительно мягче кальция. Летучие соединения стронция окрашивают пламя в карминово-красный цвет.

Химические свойства:

На воздухе стронций покрывается пленкой, содержащей, наряду с оксидом, пероксид и нитрид стронция. Вследствие быстрого окисления металл хранят в минеральном масле или запаянным в ампулы.
Реагирует при нагревании с водородом и азотом, галогенами. Легко вытесняет водород не только из разбавленных кислот, но и из воды. Растворяется в жидком аммиаке. В своих соединениях двухвалентен.

Важнейшие соединения:

Оксид стронция представляет собой белое тугоплавкое вещество, энергично присоединяющее воду с образованием белого гидроксида. Наряду с оксидом известен белый пероксид стронция(II)
Гидроксид стронция, Sr(OH) 2 - сильное основание, хорошо растворимое в воде. При взаимодействии с кислотами оксид и гидроксид легко образуют соли, как правило, бесцветные.
Нитрат стронция, Sr(NO 3) 2 выделяется в виде кристаллогидратов, которые очень легко растворимы в воде. Нитратам аналогичны по составу хлораты, броматы, иодаты.
Растворимость солей в воде уменьшается в ряду: Ca - Sr - Ba и Cl - Br - I.
Сульфид стронция представляет собой твердое белое вещество. Известны полисульфиды стронция SrS n .

Применение:

Стронций - геттер в электровакуумных приборах, модификатор сплавов, чугунов и сталей. Радиоактивные изотопы 89 Sr и 90 Sr используются как источники b -излучения.
Нитрат стронция служит в пиротехнике для изготовления составов, дающих при сгорании ярко окрашенное пламя красного цвета (фейерверки и сигнальные ракеты).
Многие соединения стронция используются как компоненты керамик, люминофоры, оптические материалы.
Стронций способен накапливаться в организме человека, замещая кальций, что ведет к повышению хрупкости костей. Но если это не природный стронций, а образующийся в результате ядерных взрывов 90 Sr, то последствия гораздо тяжелее: поражение костного мозга, лейкемия, лучевая болезнь.

Эльмик Галина

См. также:
С.И. Венецкий. О редких и рассеянных. Рассказы о металлах.

Еще задолго до открытия стронция его нерасшифрованные соединения применяли в пиротехнике для получения красных огней. И до середины 40-х годов прошлого века стронций был прежде всего металлом фейерверков, потех и салютов. Атомный век заставил взглянуть на него по-иному. Во-первых, как на серьезную угрозу всему живому на Земле; во-вторых, как на материал, могущий быть очень полезным при решении серьезных проблем медицины и техники. Но об этом позже, а начнем с истории «потешного» металла, с истории, в которой встречаются имена многих больших ученых.

Четырежды открытая «земля»

В 1764 г. в свинцовом руднике близ шотландской деревни Стронциан был найден минерал, который назвали стронцианитом . Долгое время его считали разновидностью флюорита CaF 2 или витерита BaCO 3 , но в 1790 г. английские минералоги Кроуфорд и Крюикшенк проанализировали этот минерал и установили, что в нем содержится новая «земля», а говоря нынешним языком, окисел.

Независимо от них тот же минерал изучал другой английский химик - Хоп. Придя к таким же результатам, он объявил, что в стронцианите есть новый элемент - металл стронций .

Видимо, открытие уже «витало в воздухе», потому что почти одновременно сообщил об обнаружении новой «земли» и видный немецкий химик Клапрот.

В те же годы на следы «стронциановой земли» натолкнулся и известный русский химик - академик Товий Егорович Ловиц. Его издавна интересовал минерал, известный под названием тяжелого шпата. В этом минерале (его состав BaSO 4) Карл Шееле открыл в 1774 г. окись нового элемента бария . Не знаем, отчего Ловиц был неравнодушен именно к тяжелому шпату; известно только, что ученый, открывший адсорбционные свойства угля и сделавший еще много в области общей и органической химии, коллекционировал образцы этого минерала. Но Ловиц не был просто собирателем, вскоре он начал систематически исследовать тяжелый шпат и в 1792 г. пришел к выводу, что в этом минерале содержится неизвестная примесь. Он сумел извлечь из своей коллекции довольно много - больше 100 г новой «земли» и продолжал исследовать ее свойства. Результаты исследования были опубликованы в 1795 г. Ловиц писал тогда: «Я был приятно поражен, когда прочел... прекрасную статью г-на профессора Клапрота о стронциановой земле, о которой до этого имелось очень неясное представление. Все указанные им свойства солекислых и селитрокислых средних солей во всех пунктах совершеннейшим образом совпадают со свойствами моих таких же солей. Мне оставалось только проверить. замечательное свойство стронциановой земли - окрашивать спиртовое пламя в карминовокрасный цвет, и, действительно, моя соль. обладала в полной мере этим свойством».

Так почти одновременно несколько исследователей в разных странах вплотную подошли к открытию стронция. Но в элементном виде его выделили лишь в 1808 г.

Выдающийся ученый своего времени Хэмфри Дэви понимал уже, что элемент стронциановой земли должен быть, по-видимому, щелочноземельным металлом, и получил его электролизом, т. е. тем же способом, что и кальций , магний , барий. Л если говорить конкретнее, то первый в мире металлический стронций был получен при электролизе его увлажненной гидроокиси . Выделявшийся на катоде стронций мгновенно соединялся с , образуя амальгаму. Разложив амальгаму нагреванием, Дэви выделил чистый металл.

Металл этот белого цвета, не тяжелый (плотность 2,6 г/см 3), довольно мягкий, плавящийся при 770°C. По химическим свойствам он типичный представитель семейства щелочноземельных металлов. Сходство с кальцием, магнием, барием настолько велико, что в монографиях и учебниках индивидуальные свойства стронция, как правило, не рассматриваются - их разбирают на примере кальция или магния.

И в области практических применений эти металлы не раз заступали дорогу стронцию, потому что они более доступны и дешевы. Так произошло, например, в сахарном производстве. Когда-то один химик обнаружил, что с помощью дисахарата стронция (C 12 H 22 O 4 *2SrO), нерастворимого в воде, можно выделять сахар из мелассы. Внимание к стронцию сразу же возросло, получать его стали больше, особенно в Германии и Англии. Но скоро другой химик нашел, что аналогичный сахарат кальция тоже нерастворим. И интерес к стронцию тут же пропал. Выгоднее ведь использовать дешевый, чаще встречающийся кальций.

Это не значит, конечно, что стронций совсем «потерял свое лицо». Есть качества, которые отличают и выделяют его среди других щелочноземельных металлов. О них-то мы и расскажем подробнее.

Стронций металл красных огней

Так называл стронций академик А. Е. Ферсман. Действительно, стоит бросить в пламя щепотку одной из летучих солей стронция, как пламя тотчас окрасится в яркий карминово-красный цвет. В спектре пламени появятся линии стронция.

Попробуем разобраться в сущности этого простейшего опыта. На пяти электронных оболочках атома стронция 38 электронов. Заполнены целиком три ближайшие к ядру оболочки, а на двух последних есть «вакансии». В пламени горелки электроны термически возбуждаются и, приобретая более высокую энергию, переходят с нижних энергетических уровней на верхние. Но такое возбужденное состояние неустойчиво, и электроны возвращаются на более выгодные нижние уровни, выделяя при этом энергию в виде световых квантов. Атом (или ион) стронция излучает преимущественно кванты с такими частотами, которые соответствуют длине красных и оранжевых световых волн. Отсюда карминово-красный цвет пламени.

Это свойство летучих солей стронция сделало их незаменимыми компонентами различных пиротехнических составов. Красные фигуры фейерверков, красные огни сигнальных и осветительных ракет - «дело рук» стронция.

Чаще всего в пиротехнике используют нитрат Sr(NO 3) 2 , оксалат SrC 2 O 4 и карбонат SrCO 3 стронция. Нитрату стронция отдают предпочтение: он не только окрашивает пламя, но и одновременно служит окислителем. Разлагаясь в пламени, он выделяет свободный кислород:

Sr(NO 3) 2 → SrO + N2 + 2,502

Окись стронция SrO окрашивает пламя лишь в розовый цвет. Поэтому в пиротехнические составы вводят хлор в том или ином виде (обычно в виде хлорорганических соединений), чтобы его избыток сдвинул равновесие реакции вправо:

2SrO + CI 2 → 2SrCl + O 2 .

Излучение монохлорида стронция SrCl интенсивнее и ярче излучения SrO. Кроме этих компонентов, в пиротехнические составы входят органические и неорганические горючие вещества, назначение которых - давать большое неокрашенное пламя.

Рецептов красных огней довольно много. Приведем для примера два из них. Первый: Sr(NO 3) 2 - 30%, Mg - 40%, смолы - 5%,

гексахлорбензола - 5%, перхлората калия KClO 4 - 20%. Второй: хлората калия KClO 3 - 60%, SrC2O 4 - 25%, смолы - 15%. Такие составы приготовить несложно, но следует помнить, что любые, даже самые проверенные, пиротехнические составы требуют «обращения на вы». Самодеятельная пиротехника опасна...


Стронций, глазурь и эмаль

Первые глазури появились чуть ли не на заре гончарного производства. Известно, что еще в IV тысячелетии до н.э. ими покрывали изделия из глины . Заметили, что если покрыть гончарные изделия взвесью тонкоизмельченных песка, поташа и мела в воде, а затем высушить их и отжечь в печи, то грубый глиняный порошок покроется тонкой пленкой стекловидного вещества и станет гладким, блестящим. Стекловидное покрытие закрывает поры и делает сосуд непроницаемым для воздуха и влаги. Это стекловидное вещество и есть глазурь. Позже изделия из глины стали сначала покрывать красками, а затем глазурью. Оказалось, что глазурь довольно долго не дает краскам тускнеть и блекнуть. Еще позже глазури пришли в фаянсовое и фарфоровое производство. В наши дни глазурью покрывают керамику и металл, фарфор и фаянс, различные строительные изделия.

Какова же здесь роль стронция?

Чтобы ответить на этот вопрос, придется еще раз обратиться к истории. Основу глазурей составляют различные окислы. Издавна известны щелочные (поташные) и свинцовые глазури. Основу первых составляют окислы кремния , щелочных металлов (К и Na) и кальция . Во вторых присутствует еще и окись свинца . Позже стали широко использовать глазури, содержащие бор . Добавки свинца и бора придают глазурям зеркальный блеск, лучше сохраняют подглазурные краски. Однако соединения свинца ядовиты, а бор дефицитен.

В 1920 г. американец Хилл впервые применил матовую глазурь, в состав который входили окислы стронция (система Sr-Ca-Zn). Однако этот факт остался незамеченным, и только в годы второй мировой войны, когда свинец стал особо дефицитным, вспомнили об открытии Хилла. И хлынула лавина исследований: в разных странах появились десятки (!) рецептур стронциевых глазурей. Предпринимались попытки и здесь заменить стронций кальцием, но кальциевые глазури оказались неконкуренто способными.

Стронциевые глазури не только безвредны, но и доступны (карбонат стронция SrCO 3 в 3,5 раза дешевле свинцового сурика). Все положительные качества свинцовых глазурей свойственны и им. Более того, изделия, покрытые такими глазурями, приобретают дополнительную твердость, термостойкость, химическую стойкость.

На основе окислов кремния и стронция готовят также эмали - непрозрачные глазури. Непрозрачными их делают добавки окислов титана и цинка . Изделия из фарфора, особенно вазы, часто украшают глазурью «кракле». Такая ваза словно покрыта сеткой окрашенных трещин. Основа технологии «кракле» - разные коэффициенты термического расширения глазури и фарфора. Фарфор, покрытый глазурью, обжигают при температуре 1280-1300°C, затем температуру снижают до 150-220°C и еще не до конца остывшее изделие опускают в раствор красящих солей (например, солей кобальта , если нужно получить черную сетку). Эти соли заполняют возникающие трещины. После этого изделие сушат и вновь нагревают до 800-850°C - соли плавятся в трещинах и герметизируют их. Глазурь «кракле» популярна и широко распространена во многих странах мира. Произведения декоративно-прикладного искусства, выполненные в этой манере, ценят любители. Остается добавить, что использование стронциевых безборных глазурей дает большой экономический эффект.


Стронций радиоактивный

Еще одна особенность стронция, резко выделяющая его среди щелочноземельных металлов, - существование радиоактивного изотопа стронция-90, который волнует биофизиков, физиологов, радиобиологов, биохимиков и просто химиков уже давно.

В результате цепной ядерной реакции из атомов плутония и урана образуются около 200 радиоактивных изотопов. Большинство из них короткоживущие. Но в тех же процессах рождаются и ядра стронция-90, период полураспада которого 27,7 года. Стронций-90 - чистый бета-излучатель. Это значит, что он испускает потоки энергичных электронов, которые действуют на все живое на сравнительно небольших расстояниях, но очень активно. Стронций как аналог кальция активно участвует в обмене веществ и вместе с кальцием откладывается в костной ткани.

Стронций-90, а также образующийся при его распаде дочерний изотоп иттрий-90 (с периодом полураспада 64 часа, излучает бета-частицы) поражают костную ткань и, самое главное, особо чувствительный к действию радиации костный мозг. Под действием облучения в живом веществе происходят химические изменения. Нарушаются нормальная структура и функции клеток. Это приводит к серьезным нарушениям обмена веществ в тканях. А в итоге развитие смертельно опасных болезней - рака крови (лейкемия) и костей. Кроме того, излучение действует на молекулы ДНК и, следовательно, влияет на наследственность. Влияет пагубно.

Содержание стронция-90 в человеческом организме находится в прямой зависимости от общей мощности взорванного атомного оружия. Он попадает в организм при вдыхании радиоактивной пыли, образующейся в процессе взрыва и разносимой ветром на большие расстояния. Другим источником заражения служат питьевая вода, растительная и молочная пища. Но и в том и в другом случаях природа ставит естественные препоны на пути стронция-90 в организм. В тончайшие структуры дыхательных органов могут попасть лишь частицы величиной до 5 мкм, а таких частиц при взрыве образуется немного. Во-вторых, стронций при взрыве выделяется в виде окиси SrO, растворимость которой в жидкостях организма весьма ограничена. Проникновению стронция через пищевую систему препятствует фактор, который называют «дискриминацией стронция в пользу кальция». Он выражается в том, что при одновременном присутствии кальция и стронция организм предпочитает кальций. Соотношение Ca: Sr в растениях вдвое больше, чем в почвах. Далее, в молоке и сыре содержание стронция в 5-10 раз меньше, чем в траве, идущей на корм скоту.

Однако целиком полагаться на эти благоприятные факторы не приходится - они способны лишь в какой-то степени предохранить от стронция-90. Не случайно до тех пор, пока не были запрещены испытания атомного и водородного оружия в трех средах, число пострадавших от стронция росло из года в год. Но те же страшные свойства стронция-90 - и мощную ионизацию, и большой период полураспада - удалось обратить на благо человека.

Радиоактивный стронций нашел применение в качестве изотопного индикатора при исследовании кинетики различных процессов. Именно этим методом в опытах с животными установили, как ведет себя стронций в живом организме: где преимущественно он локализуется, каким образом участвует в обмене веществ и так далее. Тот же изотоп применяют в качестве источника излучения при лучевой терапии. Аппликаторами со стронцием-90 пользуются при лечении глазных и кожных болезней. Препараты стронция-90 применяют также в дефектоскопах, в устройствах для борьбы со статическим электричеством, в некоторых исследовательских приборах, в атомных батареях. Нет открытий принципиально вредных - все дело в том, в чьих руках окажется открытие. История радиоактивного стронция - тому подтверждение.

СТРОНЦИЙ (Strontium), Sr (а. strontium; н. Strontium; ф. strontium; и. estroncio), — химический элемент II группы периодической системы Менделеева , атомный номер 38, атомная масса 87,62, относится к щёлочноземельным металлам.

Свойства стронция

Природный стронций состоит из 4 стабильных изотопов; 84 Sr (0,56%), 86 Sr (9,84%), 87 Sr (7,0%) и 88 Sr (82,6%); известно свыше 20 искусственных радиоактивных изотопов стронция с массовыми числами от 77 до 99, из которых наиболее важное значение имеет 90 Sr (ТЅ 29 лет), образующийся при делении урана . Стронций открыт в 1790 шотландским учёным А. Крофордом в виде оксида.

В свободном состоянии стронций — мягкий золотисто-жёлтый металл. При t ниже 248°С для него характерна гранецентрированная кубическая решётка (а-Sr с периодом а=0,60848 нм), в интервале 248-577°С — гексагональная (b-Sr с периодами а=0,432 нм, с=0,706 нм); при более высокой температуре переходит в объёмноцентрированную кубическую модификацию (g-Sr с периодом а=0,485 нм). Плотность а-Sr 2540 кг/м 3 ; t плавления 768°С, t кипения 1381°С; молярная теплоёмкость 26,75 Дж/(моль.К); удельное электрическое сопротивление 20,0.10 -4 (Ом.м), температурный коэффициент линейного расширения 20,6.10 -6 К -1 . Стронций парамагнитен, атомная магнитная восприимчивость при комнатной температуре 91,2.10 -6 . Пластичен, мягок, легко режется ножом.

Стронций по химическим свойствам сходен с Ca и Ba. В соединениях имеет степень окисления +2. Быстро окисляется на воздухе, при комнатной температуре взаимодействует с водой , при повышенной — с водородом , азотом , фосфором , серой и галогенами.

Среднее содержание стронция в земной коре 3,4.10 -2 % (по массе). Магматические средние горные породы содержат несколько больше стронция (8,0.10 -2 %), чем (4,5.10 -2 %), (4,4.10 -2 %), (3.10 -2 %) и (1.10 -3 %) горные породы . Известно около 30 минералов стронция, важнейшими из которых являются целестин SrSO 4 и стронцианит SrCO 3 ; помимо этого практически всегда присутствует в минералах кальция , калия и бария , входя в виде изоморфной примеси в их кристаллической решётке. Поскольку из 4 природных изотопов стронция один (87 Sr) постоянно накапливается в результате Я-распада 87 Rb, изотопный состав стронция (отношение 87 Sr/ 86 Sr) используется в геохимических исследованиях для установления генетических взаимоотношений между различными комплексами пород, а также для определения их радиометрического возраста (при условии одновременного определения содержания рубидия в исследуемых объектах). Радиоактивный 90 Sr служит загрязнения окружающей среды (до прекращения атмосферных ядерных испытаний был одним из главных факторов радиоактивного загрязнения).

Применение и использование

Основное сырьё для получения стронция — целестиновые и стронцианитовые руды . Металлический стронций получают алюмотермическим восстановлением оксида стронция в вакууме. Применяют при изготовлении алюминиевых сплавов и некоторых сталей, электровакуумных приборов и некоторых оптических стёкол. Соли стронция, окрашивающие пламя в интенсивный красный цвет, используются в пиротехнике. 90 Sr применяют в медицине как источник ионизирующего излучения.

Номер атома 38 с массой 87,62. В природе встречается в стабильном состоянии в виде 4-х изотопов: 84, 86, 87, 88. Самый распространенный в природе 88. В связи с распадом природного рубидия 87 точное количество стронция с течением времени меняется. Человеком были получены радиоактивные атомы с номерами 80-97.

Причем из урана получен самый часто применяемый изотоп – Стронций 90 . История открытия элемента уходит в далекие 90-е годы восемнадцатого века. Еще в 1787 году стронций был впервые выделен из минерала стронцианита близ деревни Стронциана в Шотландии.

Первые изучения провели ученые-химики Адер Кроуфорд и Мартин Генрих Клапот. В России исследования стронциановой земли проводил Тобиаш Ловиц. Отличительной характеристикой стало горение ярко-красным пламенем.

Описание и свойства стронция

Стронций формула – Sr. Представляет собой полиморфный металл белой окраски с серебристым отливом. В связи с быстрой реакцией в чистом виде с кислородом воздуха приобретает оксидную пленку с желтым оттенком. Стронций металл очень мягкий и легко поддается ковке.

Представлен в трех модификациях: кубическая гранецентрированная кристаллическая решетка – до 231 °С, гексагональная – от 231 до 623 °С, кубическая объемоцентрированная – при температуре выше 623 °С. Атом стронция имеет строение внешней электронной оболочки 5s2. В реакциях окисляется и принимает форму +2, иногда + 1. Строение атома стронция : 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 5s2

Основные физические показатели:

    Атомный объем – 34 см 3 /г×атом;

    Радиус атома – 2,15 А;

    Плотность – 2,63 г/см 3 при 20 °С;

    Тпл. = 770 °С;

    Ткип. = 1380 °С;

    Уд. тепл-сть 0,176 кал/г×град при 20 °С;

    Давление пара 10-3 мм ртутного столба при 462 °С, 1 мм ртутного столба 733 °С и 100 мм ртутного столба при 1092 °С;

    Поверхностное натяжение 165 дин/см;

    Твердость по Бринеллю 13 кГ/мм2;

Химическая характеристика стронция . По реакционной способности стронций близок к своим братьям о группе барию и кальцию. При обычных условиях быстро взаимодействует с кислородом атмосферного воздуха. Образуется оксид стронция SrO и SrO 2 с желтоватым оттенком.

Как и все щелочноземельные металлы реагирует с водой – образуется гидроксид стронция . Очень активно проходит взаимодействие с галогенами — образуются галогениды. Порошкообразная форма металла очень быстро воспламеняется даже при комнатной температуре и атмосферном давлении.

Особо важными при этом являются йодид и хлорид стронция . При нагревании активно соединяется с углекислым газом, образуется карбонат и гидрокарбонат. В газовой фазе при добавлении водорода образуется гидрид SrH 2 . Наиболее распространены также следующие соединения: карбид – соединения на основе углерода (SrC 2), амид – с аммиаком в газообразном состоянии (Sr(NH 2) 2), сульфид – с серой (SrS), селенид – с селеном (SrSe) и некоторые другие.

Стронций в расплавленном состоянии легко смешивается с такими металлами, как алюминий, железо, барий, и другие. Происходит гомогенезация расплава с получением интерметаллидов. Стронций легко реагирует с разбавленными кислотами. Огромное количество разнообразных солей получается в реакциях с органическими и минеральными кислотами.

Однако проявляя высокую реакционную способность со слабыми кислотами, с концентрированными, напротив, активности не проявляет. Поэтому сульфаты, нитраты, нитриты и другие соли стронция получают в реакции с разбавленными кислотами. Основная масса солей окрашены в белый цвет с различной степенью растворимости в воде (на основе минеральных кислот, как правило, растворяются лучше).

Характеристика стронция как радиоактивного элемента. Радиоактивный изотоп получают в ядерных реакторах в течение β — -распада рубидия 90, после чего стронций проходит стадию β — -распада с получением нуклида иттрия 90. Период полураспада стронция равен 28,79 лет.

Месторождения и добыча стронция

Стронций широко распространен в природе. Элемент в виде руд залегает в земной коре. В мировом океане находится более 24% общего запаса элемента. Природные запасы существует только в связанном состоянии и представляют собой минералы, общее количество которых насчитывает не менее 40. В земле стран СНГ, Западной Европы, Северной Америке, преимущественно в Канаде, найдены самые большие залежи руды: стронцианита — стронция карбонат и — стронция сульфат .

Промышленные способы получения металла основаны на обработке минеральных руд различными соединениями. После чего осуществляют термическое разложение соединений, либо электролитическое воздействие. Однако в результате подобных реакций образуется порошкообразная форма металла, которая очень легко воспламеняется, либо выход элемента очень низок и получают с примесями. Поэтому в настоящее время вышеописанные методы не используются.

Наиболее популярным остается восстановление оксида стронция с добавлением металлического алюминия и кремневого песка. Реакция проходит в вакуумной трубке, выполненной из стали при очень высоких температурах выше 1 000 °С. Очистку элемента осуществляют перегонкой также под вакуумом. Для атомной энергетики чрезвычайно важно получение радиоактивных изотопов.

Их получают в реакторах в течение полураспада Урана 235. Изотоп Sr 89 (полураспад стронция 50,5 суток) образуется после распада с выделением огромного количества энергии из стабильного изотопа. Стронций является незаменимой частью животного и растительного мира. Многие организмы накапливают элемент в себе совместно с кальцием и фосфором.

Применение стронция

В виде металла используют в качестве легирующего агента. Добавляет ковкость и пластичность. В смеси с барием и кальцием взрывоопасен. Является частью термитных смесей.

Использование соединений стронция:

SrO — часть оксидных катодов, пиротехнических смесей.

SrCO 3 — получают специальные покрытия – химическистабильные и термическистойкие глазури.

Sr(NO 3) 2 – компонент пиротехнических веществ для сигнальных ракет.

SrSO 4 – наполнитель для красок и резины.

SrCrO 4 — компонент лаков и грунтовок в авиастроении.

SrTiO 3 – материал производства диэлектрических антенн, проводников и датчиков.

SrF 2 — используют при производстве специализированных .

SrCl 2 – компонент пиротехнических составов, косметических средств и медицинских препаратов.

SrS используют в производстве добавок при изготовлении кожи.

90 Стронций 137 цезий используют как компонент радиоактивного топлива.

Самое полезное вещество на основе органических соединений — стронция ранелат — стимулятор роста костной ткани. Данным препаратом проводят лечение остеопороза.

Цена стронция

Металлический стронций чаще всего продают в виде соединений. Цены на соединения стронция варьируется в широких пределах: Нитрат – 3,8 USD, Хлорид – 500-800 рублей, Ранелат в виде препаратов от 1500 до 2500 рублей.

Стронций - элемент главной подгруппы второй группы, пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 38. Обозначается символом Sr (лат. Strontium ). Простое вещество стронций - мягкий, ковкий и пластичный щёлочноземельный металл серебристо-белого цвета. Обладает высокой химической активностью, на воздухе быстро реагирует с влагой и кислородом, покрываясь жёлтой оксидной плёнкой.

Атомный номер - 38

Атомная масса - 87,62

Плотность, кг/м³ - 2600

Температура плавления, °С - 768

Теплоемкость, кДж/(кг·°С) - 0,737

Электроотрицательность - 1,0

Ковалентный радиус, Å - 1,91

1-й ионизац. потенциал, эв - 5,69

История открытия стронция

В 1764 г. в свинцовом руднике близ шотландской деревни Стронциан был найден минерал, который назвали стронцианитом. Долгое время его считали разновидностью флюорита CaF 2 или витерита ВаCO 3 , но в 1790 г. английские минералоги Кроуфорд и Крюикшенк проанализировали этот минерал и установили, что в нем содержится новая «земля», а говоря нынешним языком, окисел.

Независимо от них тот же минерал изучал другой английский химик – Хоп. Придя к таким же результатам, он объявил, что в стронцианите есть новый элемент – металл стронций.

Видимо, открытие уже «витало в воздухе», потому что почти одновременно сообщил об обнаружении новой «земли» и видный немецкий химик Клапрот.

В те же годы на следы «стронциановой земли» натолкнулся и известный русский химик – академик Товий Егорович Ловиц. Его издавна интересовал минерал, известный под названием тяжелого шпата. В этом минерале (его состав BaSО 4) Карл Шееле открыл в 1774 г. окись нового элемента бария. Не знаем, отчего Ловиц был неравнодушен именно к тяжелому шпату; известно только, что ученый, открывший адсорбционные свойства угля и сделавший еще много в области общей и органической химии, коллекционировал образцы этого минерала. Но Ловиц не был просто собирателем, вскоре он начал систематически исследовать тяжелый шпат и в 1792 г. пришел к выводу, что в этом минерале содержится неизвестная примесь. Он сумел извлечь из своей коллекции довольно много – больше 100 г новой «земли» и продолжал исследовать ее свойства. Результаты исследования были опубликованы в 1795 г.

Так почти одновременно несколько исследователей в разных странах вплотную подошли к открытию стронция. Но в элементарном виде его выделили лишь в 1808 г.

Выдающийся ученый своего времени Хэмфри Дэви понимал уже, что элемент стронциановой земли должен быть, по-видимому, щелочноземельным металлом, и получил его электролизом, т.е. тем же способом, что и кальций, магний, барий. А если говорить конкретнее, то первый в мире металлический стронций был получен при электролизе его увлажненной гидроокиси. Выделявшийся на катоде стронций мгновенно соединялся с ртутью, образуя амальгаму. Разложив амальгаму нагреванием, Дэви выделил чистый металл.

Присутствие стронция в природе

Стронций содержится в морской воде (0,1 мг/л), в почвах (0,035 масс%). По массе, в геохимических процессах он является спутником кальция. В магматических породах Стронций находится преимущественно в рассеянном виде и входит в виде изоморфной примеси в кристаллическую решетку кальциевых, калиевых и бариевых минералов. В биосфере Стронций накапливается в карбонатных породах и особенно в осадках соленых озер и лагун.

Стронций - составная часть микроорганизмов, растений и животных. У морских радиолярий (акантарий) скелет состоит из сульфата Стронция - целестина. Морские водоросли содержат 26-140 мг Стронция на 100 г сухого вещества, наземные растения - 2,6, морские животные - 2-50, наземные животные - 1,4, бактерии - 0,27-30. Накопление Стронция различными организмами зависит не только от их вида, особенностей, но и от соотношения в среде Стронция с другими элементами, главным образом с Ca и P, а также от адаптации организмов к определенной геохимической среде.

В природе стронций встречается в виде смеси 4 стабильных изотопов 84 Sr (0,56 %), 86 Sr (9,86 %), 87 Sr (7,02 %), 88 Sr (82,56 %). Искусственно получены радиоактивные изотопы с массовыми числами от 80 до 97, в т.ч. 90 Sr (T ½ = 27,7 года), образующийся при делении урана.

Получение стронция

Существуют 3 способа получения металлического стронция:

  • термическое разложение некоторых соединений
  • электролиза расплава, содержащего 85% SrCl 2 и 15% KCl, однако при этом процессе выход по току невелик, а металл оказывается загрязненным солями, нитридом и оксидом. В промышленности электролизом с жидким катодом получают сплавы Стронция, например, с оловом.
  • восстановление оксида или хлорида

Основным сырьем для получения соединений Стронция служат концентраты от обогащения целестина и стронцианита. Металлический Стронций получают восстановлением оксида Стронция алюминием при 1100-1150 °C:

4SrO+ 2Al = 3Sr+ SrO·Al 2 O 3 .

Процесс ведут в электровакуумных аппаратах [при 1 н/м 2 (10 -2 мм рт. ст.)] периодического действия. Пары Стронция конденсируются на охлажденной поверхности вставленного в аппарат конденсатора; по окончании восстановления аппарат заполняют аргоном и расплавляют конденсат, который стекает в изложницу.

Электролитическое получение стронция электролизом расплава смеси SrCl 2 и NaCl не получило широкого распространения из-за малого выхода по току и загрязнения стронция примесями.

Физические свойства стронция

При комнатной температуре решетка Стронция кубическая гранецентрированная (α-Sr) с периодом а = 6,0848Å; при температуре выше 248 °С превращается в гексагональную модификацию (β-Sr) с периодами решетки а = 4,32Å и с = 7,06 Å; при 614 °C переходит в кубическую объемно-центрированную модификацию (γ-Sr) с периодом а = 4,85Å. Атомный радиус 2,15Å, ионный радиус Sr 2+ 1,20Å. Плотность α-формы 2,63 г/см 3 (20 °C); t пл 770 °С, t кип 1383 °C; удельная теплоемкость 737,4 кдж/(кг·К) ; удельное электросопротивление 22,76·10 -6 ом·см -1 . Стронций парамагнитен, атомная магнитная восприимчивость при комнатной температуре 91,2·10 -6 . Стронций - мягкий пластичный металл, легко режется ножом.

Полиморфен - известны три его модификации. До 215 о С устойчива кубическая гранецентрированная модификация (α-Sr), между 215 и 605 о С - гексагональная (β-Sr), выше 605 о С - кубическая объемно-центрированная модификация (γ-Sr).

Температура плавления - 768 о С, Температура кипения - 1390 о С.

Химические свойства стронция

Стронций в своих соединениях всегда проявляет валентность +2. По свойствам стронций близок к кальцию и барию, занимая промежуточное положение между ними.

В электрохимическом ряду напряжений стронций находится среди наиболее активных металлов (его нормальный электродный потенциал равен −2,89 В. Энергично реагирует с водой, образуя гидроксид:

Sr + 2H 2 O = Sr(OH) 2 + H 2

Взаимодействует с кислотами, вытесняет тяжёлые металлы из их солей. С концентрированными кислотами (H 2 SO 4 , HNO 3) реагирует слабо.

Металлический стронций быстро окисляется на воздухе, образуя желтоватую плёнку, в которой помимо оксида SrO всегда присутствуют пероксид SrO 2 и нитрид Sr 3 N 2 . При нагревании на воздухе загорается, порошкообразный стронций на воздухе склонен к самовоспламенению.

Энергично реагирует с неметаллами - серой, фосфором, галогенами. Взаимодействует с водородом (выше 200 о С), азотом (выше 400 о С). Практически не реагирует с щелочами.

При высоких температурах реагирует с CO 2 , образуя карбид:

5Sr + 2CO 2 = SrC 2 + 4SrO

Легкорастворимы соли стронция с анионами Cl - , I - , NO 3 - . Соли с анионами F - , SO 4 2- , CO 3 2- , PO 4 3- малорастворимы.

Применение стронция

Основные области применения стронция и его химических соединений - это радиоэлектронная промышленность, пиротехника, металлургия, пищевая промышленность.

Стронций применяется для легирования меди и некоторых ее сплавов, для введения в аккумуляторные свинцовые сплавы, для обессеривания чугуна, меди и сталей.

Стронций чистотой 99,99-99,999 % применяется для восстановления урана.

Магнитотвёрдые ферриты стронция широко употребляются в качестве материалов для производства постоянных магнитов.

Еще задолго до открытия стронция его нерасшифрованные соединения применяли в пиротехнике для получения красных огней. До середины 40-х годов 20го века стронций был, прежде всего, металлом фейерверков, потех и салютов. Сплав магний-стронций обладает сильнейшими пирофорными свойствами и находит применение в пиротехнике для зажигательных и сигнальных составов.

Радиоактивный 90 Sr (период полураспада 28,9 лет) применяется в производстве радиоизотопных источников тока в виде титаната стронция (плотность 4,8 г/см³, а энерговыделение около 0,54 Вт/см³).

Уранат стронция играет важную роль при получении водорода (стронций-уранатный цикл, Лос-Аламос, США) термохимическим способом (атомно-водородная энергетика), и в частности разрабатываются способы непосредственного деления ядер урана в составе ураната стронция для получения тепла при разложении воды на водород и кислород.

Оксид стронция применяется в качестве компонента сверхпроводящих керамик.

Фторид стронция используется в качестве компонента твердотельных фторионных аккумуляторных батарей с громадной энергоемкостью и энергоплотностью.

Сплавы стронция с оловом и свинцом применяются для отливки токоотводов аккумуляторных батарей. Сплавы стронций-кадмий для анодов гальванических элементов.

Металл применяют в глазурях и эмалях для покрытия посуды. Стронциевые глазури не только безвредны, но и доступны (карбонат стронция SrCO 3 в 3,5 раза дешевле свинцового сурика). Все положительные качества свинцовых глазурей свойственны и им. Более того, изделия, покрытые такими глазурями, приобретают дополнительную твердость, термостойкость, химическую стойкость.

Стронций – активный металл. Это препятствует его широкому применению в технике. Но, с другой стороны, высокая химическая активность стронция позволяет использовать его в определенных областях народного хозяйства. В частности, его применяют при выплавке меди и бронз – стронций связывает серу, фосфор, углерод и повышает текучесть шлака. Таким образом, стронций способствует очистке металла от многочисленных примесей. Кроме того, добавка стронция повышает твердость меди, почти не снижая ее электропроводности. В электровакуумные трубки стронций вводят, чтобы поглотить остатки кислорода и азота, сделать вакуум более глубоким.

Влияние стронция на организм человека

Соли и соединения стронция малотоксичны; при работе с ними следует руководствоваться правилами техники безопасности с солями щелочных и щелочноземельных металлов.

Не следует путать действие на организм человека природного (нерадиоактивного, малотоксичного и более того, широко используемого для лечения остеопороза) и радиоактивных изотопов стронция. Изотоп стронция 90 Sr является радиоактивным с периодом полураспада 28.9 лет. 90 Sr претерпевает β-распад, переходя в радиоактивный 90 Y (период полураспада 64 ч.) Полный распад стронция-90, попавшего в окружающую среду, произойдет лишь через несколько сотен лет. 90 Sr образуется при ядерных взрывах и выбросах с АЭС.

Радиоактивный стронций практически всегда негативно воздействует на организм человека:

1. Откладывается в скелете (костях), поражает костную ткань и костный мозг, что приводит к развитию лучевой болезни, опухолей кроветворной ткани и костей.

2. Вызывает лейкемию и злокачественные опухоли (рак) костей, а также поражение печени и мозга.

Стронций с большой скоростью накапливается в организме детей до четырехлетнего возраста, когда идет активное формирование костной ткани. Обмен стронция изменяется при некоторых заболеваниях органов пищеварения и сердечно-сосудистой системы. Пути попадания:

  1. вода (предельно допустимая концентрация стронция в воде в РФ - 8 мг/л, а в США - 4 мг/л )
  2. пища (томаты, свёкла, укроп, петрушка, редька, редис, лук, капуста, ячмень, рожь, пшеница)
  3. интратрахеальное поступление
  4. через кожу (накожное)
  5. ингаляционное (через воздух)
  6. из растений или через животных стронций-90 может непосредственно перейти в организм человека.

Влияние нерадиоактивного стронция проявляется крайне редко и только при воздействии других факторов (дефицит кальция и витамина Д, неполноценное питание, нарушения соотношения микроэлементов таких как барий, молибден, селен и др.). Тогда он может вызывать у детей «стронциевый рахит» и «уровскую болезнь» - поражение и деформация суставов, задержка роста и другие нарушения.

Стронций-90.

Попадая в окружающую среду, 90 Sr характеризуется способностью включаться (главным образом вместе с Ca) в процессы обмена веществ у растений, животных и человека. Поэтому при оценке загрязнения биосферы 90 Sr принято рассчитывать отношение 90 Sr/Ca в стронциевых единицах (1 с. е. = 1 мк мккюри 90 Sr на 1 г Ca). При передвижении 90 Sr и Ca по биологическим и пищевым цепям происходит дискриминация Стронций, для количественного выражения которой находят "коэффициент дискриминации", отношение 90 Sr/Ca в последующем звене биологической или пищевой цепи к этой же величине в предыдущем звене. В конечном звене пищевой цепи концентрация 90 Sr, как правило, значительно меньше, чем в начальном.

В растения 90 Sr может поступать непосредственно при прямом загрязнении листьев или из почвы через корни. Относительно больше накапливают 90 Sr бобовые растения, корне- и клубнеплоды, меньше - злаки, в т. ч. зерновые, и лен. В семенах и плодах накапливается значительно меньше 90 Sr, чем в других органах (например, в листьях и стеблях пшеницы 90 Sr в 10 раз больше, чем в зерне). У животных (поступает в основном с растительной пищей) и человека (поступает в основном с коровьим молоком и рыбой) 90 Sr накапливается главным образом в костях. Величина отложения 90 Sr в организме животных и человека зависит от возраста особи, количества поступающего радионуклида, интенсивности роста новой костной ткани и других. Большую опасность 90 Sr представляет для детей, в организм которых он поступает с молоком и накапливается в быстро растущей костной ткани.

Для человека период его полувыведения стронция-90 - 90-154 суток.

Заключение в 1963 году в Москве Договора о запрещении испытаний ядерного оружия в атмосфере, космосе и под водой привело к почти полному освобождению атмосферы от 90 Sr и уменьшению его подвижных форм в почве.

После аварии на чернобыльской АЭС вся территория со значительным загрязнением стронцием-90 оказалась в пределах 30- километровой зоны. Большое количество стронция-90 попало в водоемы, но в речной воде его концентрация нигде не превышала предельно допустимой для питьевой воды (кроме р. Припять в начале мая 1986 г. в ее нижнем течении).

Во время аварии на Чернобыльской АЭС во внешнюю среду его попало сравнительно немного - суммарный выброс оценивается в 0,22 МКи. Исторически сложилось так, что в радиационной гигиене уделяется много внимания этому радионуклиду. Причин тому несколько. Во-первых - на стронций-90 приходится значительная часть активности в смеси продуктов ядерного взрыва: 35% суммарной активности сразу после взрыва и 25% через 15-20 лет, во-вторых - ядерные аварии на ПО «Маяк» на Южном Урале в 1957 и 1967 годах, когда в окружающую среду было выброшено значительное количество стронция-90.