Болезни Военный билет Призыв

Средняя мощность материковой земной коры. Типы строения земной коры. Почём энергия Земли

Cтраница 1


Мощность земной коры здесь не превышает 5 - 7 км, в ее составе отсутствует гранитный слой, а мощность осадочного слоя незначительна, что резко снижает перспективы нефтегазоносное этих территорий.  

Мощность земной коры в целом уменьшается, если геотерма смещается ближе к оси температур, что обеспечивается высокой теплопроводностью, связанной с циркуляцией масс воды от свободной поверхности вплоть до нижней коры, как, например, в случае Паннонского бассейна.  

В настоящее время мощность земной коры в среднем принимается равной / о диаметра Земли.  

Особенностью континентальной коры является наличие корней гор - резкого увеличения мощности земной коры под крупными горными системами. Под Гималаями, на-мощность коры, по-ви-достигает 70 - 80 км.  

Примерно такими же были условия и в последующий, катархейский, период развития Земли, продолжавшийся, вероятно, 0 5 млрд. лет (4 0 - 3 5 млрд. лет назад), когда постепенно увеличивалась мощность земной коры и, вероятно, происходила ее дифференциация на более мощные и стабильные и менее мощные и подвижные участки.  

Страна горы и низменности Дальнего Востока имеет условную границу: на западе и севере она совпадает с долинами рек Олек-ма, Алдан, Юдома и Охота, на востоке включает шельф Охотского и Японского морей, на юге проходит по государственной границе. Мощность земной коры достигает 30 - 45 км и зеркально отражает основные крупные орографические единицы.  

Южное крыло Большого Кавказа (на севере и северо-востоке региона) представляет собой веерообразную складчатую асимметричную структуру, сложенную преимущественно юрскими и меловыми отложениями, и характеризуется значительной сейсмичностью. Мощность земной коры составляет 45 - 80 км. Здесь расположены оба выделенных нами аномальных района. По данным магнитотеллурического зондирования [ Шолпо, 1978 ], слой повышенной проводимости расположен под Большим Кавказом в узкой полосе вдоль главного хребта и южного склона, но на востоке она расширяется и захватывает районы Дагестана, где развиты известняковые отложения. Этот слой имеет толщину порядка 5 - 10 км и расположен на глубине 20 - 25 км под осевой зоной мегантиклинория. По простиранию происходит постепенное погружение этого слоя до 60 - 75 км на периклиналях. Малый Кавказ (на юго-западе региона) с морфологически отчетливо выраженными вулканическими аппаратами делится на три крупных мегаблока. Западное крыло Малого Кавказа характеризуется развитием мезозойских вулканогенно-оса-дочных формаций и интрузий. Оно отличается пологой складчатостью.  

Структурно-тектоническая схема сверхглубокой части Тунгусской системы рифтов (составили Ю.Т. Афанасьев, Ю.С. Кувыкин с использованием Карты нефте-газоносности СССР.  

Для выделяемых массивов характерен континентальный тип разрезов земной коры, в системах рифтов ее мощность значительно уменьшена. Другие расчеты [ Коган, 1975 ] оценивают мощность земной коры до 25 - 20 км в центральных частях Тунгусской и Вилюйской впадин, до 25 - 30 км в Саяно-Енисейской впадине и до 30 - 35 км - в меридиональной системе рифтов, разделяющих Анабарский и Оленек-ский массивы.  

Южно-Каспийская депрессия имеет разрез земной коры океанического типа. Гранитный слой отсутствует в пределах глубоководных частей Южного Каспия, а мощность земной коры не превышает 50 км. В пределах СГД выявлены следующие крупные геоструктурные элементы: на море - это Апшероно-Прибалханская зона поднятий. Бакинский архипелаг, Туркменская структурная терраса и глубоководная зона Южного Каспия, а на суше - Куринская впадина, которая зоной Талыш-Вандам - ского максимума делится на Нижнекуринскую и Среднекуринскую депрессии. Апшероно-Прибалханская зона поднятий пересекает Южный Каспий в субширотном направлении.  

Возникновение в результате проявления эндогенных факторов крупных горных сооружений стимулирует деятельность поверхностных, экзогенных, агентов, направленную на разрушение гор. Вместе с тем, сглаживание, выравнивание рельефа действием экзогенных факторов приводит к сокращению мощности земной коры, уменьшению ее нагрузки на более глубокие оболочки Земли и часто сопровождается всплытием, возды-манием коры. Так, таяние мощного ледника и разрушение гор на севере Европы, по мнению ученых, является причиной ного воздымания Скандинавии.  

Мощность земной коры в разных частях земного шара не остается постоянной. Наибольшей мощности кора достигает на континентах, и особенно под горными сооружениями (здесь толщина гранитной оболочки достигает 30 - 40 км); предполагается, чтб под океанами мощность земной коры, лишенной гранитной оболочки, не превышает 6 - 8 км.  

И.М. Капитонов

Ядерное тепло Земли

Земное тепло

Земля – довольно сильно нагретое тело и является источником тепла. Она нагревается, прежде всего, за счёт поглощаемого ею солнечного излучения. Но Земля имеет и собственный тепловой ресурс сопоставимый с получаемым теплом от Солнца. Считается, что эта собственная энергия Земли имеет следующее происхождение. Земля возникла около 4.5 млрд лет назад вслед за образованием Солнца из вращающегося вокруг него и уплотняющегося протопланетного газо-пылевого диска. На раннем этапе своего формирования происходил разогрев земной субстанции за счёт сравнительно медленного гравитационного сжатия. Большую роль в тепловом балансе Земли играла также энергия, выделявшаяся при падении на неё мелких космических тел. Поэтому молодая Земля была расплавленной. Остывая, она постепенно пришла к своему нынешнему состоянию с твёрдой поверхностью, значительная часть которой покрыта океаническими и морскими водами. Этот твёрдый наружный слой называют земной корой и в среднем на участках суши его толщина около 40 км, а под океаническими водами – 5-10 км. Более глубокий слой Земли, называемый мантией , также состоит из твёрдого вещества. Он простирается на глубину почти до 3000 км и в нём содержится основная часть вещества Земли. Наконец самая внутренняя часть Земли – это её ядро . Оно состоит из двух слоёв – внешнего и внутреннего. Внешнее ядро это слой расплавленного железа и никеля при температуре 4500-6500 K толщиной 2000-2500 км. Внутреннее ядро радиусом 1000-1500 км представляет собой нагретый до температуры 4000-5000 K твёрдый железо-никелевый сплав плотностью около 14 г/см 3 , возникший при огромном (почти 4 млн бар) давлении.
Помимо внутреннего тепла Земли, доставшегося её в наследство от самого раннего горячего этапа её формирования, и количество которого должно уменьшаться со временем, существует и другой, – долговременный, связанный с радиоактивным распадом ядер с большим периодом полураспада – прежде всего, 232 Th, 235 U, 238 U и 40 K. Энергия, выделяющаяся в этих распадах – на их долю приходится почти 99% земной радиоактивной энергии – постоянно пополняет тепловые запасы Земли. Вышеперечисленные ядра содержатся в коре и мантии. Их распад приводит к нагреву как внешних, так и внутренних слоёв Земли.
Часть огромного тепла, содержащегося внутри Земли, постоянно выходит на её поверхность часто в весьма масштабных вулканических процессах. Тепловой поток, вытекающий из глубин Земли через её поверхность известен. Он составляет (47±2)·10 12 Ватт , что эквивалентно теплу, которое могут генерировать 50 тысяч атомных электростанций (средняя мощность одной АЭС около 10 9 Ватт). Возникает вопрос, играет ли какую-либо существенную роль радиоактивная энергия в полном тепловом бюджете Земли и если играет, то какую? Ответ на эти вопросы долгое время оставался неизвестным. В настоящее время появились возможности ответить на эти вопросы. Ключевая роль здесь принадлежит нейтрино (антинейтрино), которые рождаются в процессах радиоактивного распада ядер, входящих в состав вещества Земли и которые получили название гео-нейтрино .

Гео-нейтрино

Гео-нейтрино – это объединённое название нейтрино или антинейтрино, которые испускаются в результате бета-распада ядер, расположенных под земной поверхностью. Очевидно, что благодаря беспрецедентной проникающей способности, регистрация именно их (и только их) наземными нейтринными детекторами может дать объективную информацию о процессах радиоактивного распада, происходящих глубоко внутри Земли. Примером такого распада является β − -распад ядра 228 Ra, которое является продуктом α-распада долгоживущего ядра 232 Th (см. таблицу):

Период полураспада (T 1/2) ядра 228 Ra равен 5.75 лет, выделяющаяся энергия составляет около 46 кэВ. Энергетический спектр антинейтрино непрерывен с верхней границей близкой к выделяющейся энергии.
Распады ядер 232 Th, 235 U, 238 U представляют собой цепочки последовательных распадов, образующих так называемые радиоактивные ряды . В таких цепочках α-распады перемежаются β − -распадами, так как при α-распадах конечные ядра оказываются смещёнными от линии β-стабильности в область ядер, перегруженных нейтронами. После цепочки последовательных распадов в конце каждого ряда образуются стабильные ядра с близким или равным магическим числам количеством протонов и нейтронов (Z = 82, N = 126). Такими конечными ядрами являются стабильные изотопы свинца или висмута. Так распад T 1/2 завершается образованием дважды магического ядра 208 Pb, причем на пути 232 Th → 208 Pb происходит шесть α-распадов, перемежающихся четырьмя β − -распадами (в цепочке 238 U → 206 Pb восемь α- и шесть β − -распадов; в цепочке 235 U → 207 Pb семь α- и четыре β − -распада). Таким образом, энергетический спектр антинейтрино от каждого радиоактивного ряда представляет собой наложение парциальных спектров от отдельных β − -распадов, входящих в состав этого ряда. Спектры антинейтрино, образующихся в распадах 232 Th, 235 U, 238 U, 40 K, показаны на рис. 1. Распад 40 K это однократный β − -распад (см. таблицу). Наибольшей энергии (до 3.26 МэВ) антинейтрино достигают в распаде
214 Bi → 214 Po, являющемся звеном радиоактивного ряда 238 U. Полная энергия, выделяющаяся при прохождении всех звеньев распада ряда 232 Th → 208 Pb, равна 42.65 МэВ. Для радиоактивных рядов 235 U и 238 U эти энергии соответственно 46.39 и 51.69 МэВ. Энергия, освобождающаяся в распаде
40 K → 40 Ca, составляет 1.31 МэВ.

Характеристики ядер 232 Th, 235 U, 238 U, 40 K

Ядро Доля в %
в смеси
изотопов
Число ядер
относит.
ядер Si
T 1/2 ,
млрд лет
Первые звенья
распада
232 Th 100 0.0335 14.0
235 U 0.7204 6.48·10 -5 0.704
238 U 99.2742 0.00893 4.47
40 K 0.0117 0.440 1.25

Оценка потока гео-нейтрино, сделанная на основе распада ядер 232 Th, 235 U, 238 U, 40 K, содержащихся в составе вещества Земли, приводит к величине порядка 10 6 см -2 сек -1 . Зарегистрировав эти гео-нейтрино, можно получить информацию о роли радиоактивного тепла в полном тепловом балансе Земли и проверить наши представления о содержании долгоживущих радиоизотопов в составе земного вещества.


Рис. 1. Энергетические спектры антинейтрино от распада ядер

232 Th, 235 U, 238 U, 40 K, нормализованные к одному распаду родительского ядра

Для регистрации электронных антинейтрино используется реакция

P → e + + n, (1)

в которой собственно и была открыта эта частица. Порог этой реакции 1.8 МэВ. Поэтому только гео-нейтрино, образующиеся в цепочках распада, стартующих с ядер 232 Th и 238 U, могут быть зарегистрированы в вышеуказанной реакции. Эффективное сечение обсуждаемой реакции крайне мало: σ ≈ 10 -43 см 2 . Отсюда следует, что нейтринный детектор с чувствительным объёмом 1 м 3 будет регистрировать не более нескольких событий в год. Очевидно, что для уверенной фиксации потоков гео-нейтрино необходимы нейтринные детекторы большого объёма, размещённые в подземных лабораториях для максимальной защиты от фона. Идея использовать для регистрации гео-нейтрино детекторы, предназначенные для изучения солнечных и реакторных нейтрино, возникла в 1998 г. . В настоящее время имеется два нейтринных детектора большого объёма, использующих жидкий сцинтиллятор и пригодные для решения поставленной задачи. Это нейтринные детекторы экспериментов KamLAND (Япония, ) и Borexino (Италия, ). Ниже рассматривается устройство детектора Borexino и полученные на этом детекторе результаты по регистрации гео-нейтрино.

Детектор Borexino и регистрация гео-нейтрино

Нейтринный детектор Борексино расположен в центральной Италии в подземной лаборатории под горным массивом Гран Сассо, высота горных пиков которого достигает 2.9 км (рис. 2).


Рис. 2. Схема расположения нейтринной лаборатории под горным массивом Гран Сассо (центральная Италия)

Борексино это несегментированный массивный детектор, активной средой которого являются
280 тонн органического жидкого сцинтиллятора. Им заполнен нейлоновый сферический сосуд диаметром 8.5 м (рис. 3). Сцинтиллятором является псевдокумол (С 9 Н 12) со сдвигающей спектр добавкой РРО (1.5 г/л). Свет от сцинтиллятора собирается 2212 восьмидюймовыми фотоумножителями (ФЭУ), размещёнными на сфере из нержавеющей стали (СНС).


Рис. 3. Схема устройства детектора Борексино

Нейлоновый сосуд с псевдокумолом является внутренним детектором, в задачу которого и входит регистрация нейтрино (антинейтрино). Внутренний детектор окружён двумя концентрическими буферными зонами, защищающими его от внешних гамма-квантов и нейтронов. Внутренняя зона заполнена несцинтиллирующей средой, состоящей из 900 тонн псевдокумола с добавками диметилфталата, гасящими сцинтилляции. Внешняя зона располагается поверх СНС и является водным черенковским детектором, содержащим 2000 тонн сверхчистой воды и отсекающим сигналы от мюонов, попадающих в установку извне. Для каждого взаимодействия, происходящего во внутреннем детекторе, определяется энергия и время. Калибровка детектора с использованием различных радиоактивных источников позволила весьма точно определить его энергетическую шкалу и степень воспроизводимости светового сигнала.
Борексино является детектором очень высокой радиационной чистоты. Все материалы прошли строгий отбор, а сцинтиллятор был подвергнут очистке для максимального уменьшения внутреннего фона. Вследствие высокой радиационной чистоты Борексино является прекрасным детектором для регистрации антинейтрино.
В реакции (1) позитрон даёт мгновенный сигнал, за которым через некоторое время следует захват нейтрона ядром водорода, что приводит к появлению γ-кванта с энергией 2.22 МэВ, создающего сигнал, задержанный относительно первого. В Борексино время захвата нейтрона около 260 мкс. Мгновенный и задержанный сигналы коррелируют в пространстве и во времени, обеспечивая точное распознавание события, вызванного e .
Порог реакции (1) равен 1.806 МэВ и, как видно из рис. 1, все гео-нейтрино от распадов 40 K и 235 U оказываются ниже этого порога и лишь часть гео-нейтрино, возникших в распадах 232 Th и 238 U, может быть зарегистрирована.
Детектор Борексино впервые зарегистрировал сигналы от гео-нейтрино в 2010 г. и недавно опубликованы новые результаты, основанные на наблюдениях в течение 2056 дней в период с декабря 2007 г. по март 2015 г. Ниже мы приведём полученные данные и результаты их обсуждения, основываясь на статье .
В результате анализа экспериментальных данных были идентифицированы 77 кандидатов в электронные антинейтрино, прошедшие все критерии отбора. Фон от событий, имитирующих e , оценивался величиной . Таким образом, отношение сигнал/фон было ≈100.
Главным источником фона были реакторные антинейтрино. Для Борексино ситуация была достаточно благоприятной, так как вблизи лаборатории Гран Сассо нет ядерных реакторов. Кроме того, реакторные антинейтрино более энергичные по сравнению с гео-нейтрино, что позволяло отделить эти антинейтрино по величине сигнала от позитрона. Результаты анализа вкладов гео-нейтрино и реакторных антинейтрино в полное число зарегистрированных событий от e показаны на рис. 4. Количество зарегистрированных гео-нейтрино, даваемое этим анализом (на рис. 4 им соответствует затемнённая область), равно . В извлечённом в результате анализа спектре гео-нейтрино видны две группы – менее энергичная, более интенсивная и более энергичная, менее интенсивная. Эти группы авторы описываемого исследования связывают с распадами соответственно тория и урана.
В обсуждаемом анализе использовалось отношение масс тория и урана в веществе Земли
m(Th)/m(U) = 3.9 (в таблице эта величина ≈3.8). Указанная цифра отражает относительное содержание этих химических элементов в хондритах – наиболее распространённой группе метеоритов (более 90% метеоритов, упавших на Землю, относятся к этой группе). Считается, что состав хондритов за исключением лёгких газов (водород и гелий) повторяет состав Солнечной системы и протопланетного диска, из которого образовалась Земля.


Рис. 4. Спектр светового выхода от позитронов в единицах числа фотоэлектронов для событий-кандидатов в антинейтрино (экспериментальные точки). Затемнённая область – вклад гео-нейтрино. Сплошная линия – вклад реакторных антинейтрино.

Мощность слоя, кровля которого представлена современным рельефом, а подошва - границей «кора-мантия», чаще всего именуемой «поверхностью Мохоровичича», в пределах России и сопредельных акваторий изменяется в широких пределах - от 12 до 60 км Слой имеет сложное мозаичное строение, однако существуют четкие региональные закономерности. В глобальном плане выделяется центральная область, состоящая из четырех крупных суперблоков изометрической формы: Восточно-Европейского, Западно-Сибирского, Сибирского и Восточного. Этим суперблокам в тектоническом плане отвечают Восточно-Европейская и Сибирская древние платформы, разделяющая их Западно-Сибирская молодая плита и занимающая северо-восточную часть России Верхоянско-Чукотская складчатая область. По югу система суперблоков обрамляется широкой, ориентированной в широтном направлении гиперзоной, протягивающейся от до . С севера суперблоки континентальной части ограничены мощной полосой широтного простирания, охватывающей побережье арктических морей, моря . Она соответствует северной шельфовой зоне Евразийского континента. На востоке располагается Тихоокеанский пояс.

Суперблоки континентальной части России имеют следующие характеристики. Наименьшая средняя мощность земной коры соответствует Западно-Сибирскому суперблоку (36–38 км). В расположенном западнее его Восточно-Европейском суперблоке средняя мощность возрастает до 40–42 км, а Сибирский суперблок отличается наиболее мощной корой (в среднем 43–45 км). В восточном суперблоке, где положение границы Мохоровичича определено по очень скудным материалам и с использованием гравиметрической информации, мощность земной коры приблизительно оценивается в 40–42 км.

Суперблоки разделяются контрастными линейными структурами, либо широкими зонами резкого изменения мощности земной коры. Так, Восточно-Европейский суперблок отделен от Западно-Сибирского узкой протяженной меридиональной зоной с аномально высокой мощностью (45–55 км), соответствующей Уральской складчатой системе. Восточным ограничением Западно-Сибирского суперблока служит меридиональная система сближенных коротких линейных структур разного знака на фоне относительно широкой зоны резкого возрастания мощности. Она отвечает мощной системе прогибов и поднятий, которая разделяет Сибирскую и Западно-Сибирскую платфориы. Границей, отделяющей Сибирский суперблок от Восточного, служит протяженная, коленообразно изгибающаяся зона вдоль рек Лена и Алдан. Она трассируется цепочкой линейных и эллипсоидальных линз сокращенной мощности (до 36 км). В тектоническом отношении межблоковые зоны представляют собой складчатые системы и орогенные пояса фанерозоя.

Южная гиперзона представляет собой систему сближенных и кулисообразно расположенных линейных и эллипсоидальных структур широтного и близкого к нему направлений. Зона отличается дифференцированным строением и резкими контрастными перепадами мощности земной коры от 36 до 56 км

Северная шельфовая зона, сохраняя многие черты строения сопредельных суперблоков континентальной коры, отличается значительным сокращением мощности до 28–40 км. Строение шельфовой зоны западного арктического сектора отличается от восточного как по геометрическим параметрам, так и по мощности земной коры. Северной границей шельфовой области России с блоками маломощной океанической коры (10–20 км) служит «зона сочленения континент-океан» шириной 50–70 км, представляющая собой зону резкого перепада мощностей.

Земная кора в пределах Тихоокеанского пояса отличается сложной морфологией и большими перепадами мощности коры от 12 до 38 км Общей региональной закономерностью является резкое сокращение мощности земной коры при движении от континента к океану. Относительно мощной корой (26–32 км) характеризуются плиты в акваториях Охотского и . Сходными значениями данного параметра характеризуются геосинклинальные системы, при этом они имеют весьма неоднородное внутреннее строение. Значения мощности земной коры среднего уровня (24–26 км) присущи островной дуге (Курильской), самой тонкой корой характеризуются структуры океанической коры - глубоководные впадины (10–18 км).

В итоге можно констатировать, что мощность земной коры в целом коррелируется с возрастом структур: наиболее мощная кора (40–45км) наблюдается под холодными древними платформами - Восточно-Европейской и Сибирской; под Западно-Сибирской её мощность меньше (35–40км). Под складчатыми системами и орогенными поясами фанерозоя мощность коры колеблется в широких пределах (38–56км), являясь в среднем более мощной, чем кора платформ. Под молодыми горными сооружениями Алтае-Саянской области наблюдаются «корни» гор глубже 54 км


Буду благодарен, если Вы поделитесь этой статьей в социальных сетях:

На вопрос Какие типы географической коры бывают? заданный автором Анастасия Власова лучший ответ это Различают 2 основных вида земной коры: континентальный и океанический и 2 переходных типа - субконтинентальный и субокеанический.
Континентальный тип земной коры имеет мощность от 35 до 75 км. , в области шельфа – 20 – 25 км. , а на материковом склоне выклинивается. Выделяют 3 слоя континентальной коры:
1 – ый – верхний, сложенный осадочными горными породами мощностью от 0 до 10 км. на платформах и 15 – 20 км. в тектонических прогибах горных сооружений.
2 – ой – средний «гранитно – гнейсовый» или «гранитный» - 50 % граниты и 40 % гнейсы и др. метаморфизированные породы. Его средняя мощность – 15 – 20 км. (в горных сооружениях до 20 – 25 км.) .
3 – ий – нижний, «базальтовый» или «гранитно - базальтовый» , по составу близок к базальту. Мощность от 15 – 20 до 35 км. Граница между «гранитовым» и «базальтовым» слоями – раздел Конрада.
По современным данным океанический тип земной коры также имеет трехслойное строение мощностью от 5 до 9 (12) км. , чаще 6 –7 км.
1 – ый слой – верхний, осадочный, состоит из рыхлых осадков. Его мощность – от нескольких сот метров до 1 км.
2 – ой слой – базальты с прослоями карбонатных и кремниевых пород. Мощность от 1 – 1,5 до 2,5 – 3 км.
3 – ий слой – нижний, бурением не вскрыт. Сложен основными магматическими породами типа габрро с подчиненными, ультраосновными породами (серпентинитами, пироксенитами) .
Субконтинентальный тип земной поверхности по строению аналогичен континентальному, но не имеет четко выраженного раздела Конрада. Этот тип коры связан обычно с островными дугами – Курильскими, Алеутскими и окраинами материков.
1 – ый слой – верхний, осадочно – вулканогенный, мощность – 0,5 – 5 км. (в среднем 2 – 3 км.) .
2 – ой слой – островодужный, «гранитный» , мощность 5 – 10 км.
3 – ий слой – «базальтовый» , на глубинах 8 – 15 км. , мощностью от 14 – 18 до 20 – 40 км.
Субокеанический тип земной коры приурочен к котловинным частям окраинных и внутриконтинентальных морей (Охотское, Японское, Средиземное, Черное и др.) . По строению близок к океаническому, но отличается повышенной мощностью осадочного слоя.
1 – ый верхний – 4 – 10 и более км. , располагается непосредственно на третьем океаническом слое мощностью 5 – 10 км.
Суммарная мощность земной коры – 10 – 20 км. , местами до 25 – 30 км. за счет увеличения осадочного слоя.
Своеобразное строение земной коры отмечается в центральных рифтовых зонах срединно – океанических хребтов (срединно – атлантический) . Здесь, под вторым океаническим слоем располагается линза (или выступ) низкоскоростного вещества (V = 7,4 – 7,8 км / с) . Предполагают, что это либо выступ аномально разогретой мантии, или смесь корового и мантийного вещества.

Ответ от Невропатолог [гуру]
ни одного


Ответ от Порося [гуру]
Виды земной коры.
Оболочка Земли включает земную кору и верхнюю часть мантии. Поверхность земной коры имеет большие неровности, главные из которых - выступы материков и их понижения - огромные океанические впадины. Существование и взаимное расположение материков и океанических впадин связано с различиями в строении земной коры.
Материковая земная кора. Она состоит из нескольких слоев. Верхний - слой осадочных горных пород. Мощность этого слоя до 10-15 км. Под ним залегает гранитный слой. Горные породы, которые его слагают, по своим физическим свойствам сходны с гранитом. Толщина этого слоя от 5 до 15 км. Под гранитным слоем располагается базальтовый слой, состоящий из базальта и горных пород, физические свойства которых напоминают базальт. Толщина этого слоя от 10 км до 35 км. Таким образом, общая толщина материковой земной коры достигает 30-70 км.
Океаническая земная кора. Она отличается от материковой коры тем, что не имеет гранитного слоя или он очень тонок, поэтому толщина океанической земной коры всего лишь 6-15 км.
Для определения химического состава земной коры доступны только ее верхние части - до глубины не более 15-20 км. 97,2% от всего состава земной коры приходится на: кислород - 49,13%, алюминий - 7,45%, кальций - 3,25%, кремний - 26%, железо - 4,2%, калий - 2,35%, магний - 2,35%, натрий - 2,24%.
Строение материковой и океанической земной коры.
На другие элементы таблицы Менделеева приходится от десятых до сотых долей процента.
Большинство ученых полагают, что сначала на нашей планете появилась кора океанического типа. Под влиянием процессов, происходивших внутри Земли, в земной коре образовались складки, то есть горные участки. Толщина коры увеличивалась. Так образовались выступы материков, то есть начала формироваться материковая земная кора.
В последние годы в связи с исследованиями земной коры океанического и материкового типа создана теория строения земной коры, которая основана на представлении о литосферных плитах. Теория в своем развитии опиралась на гипотезу дрейфа материков, созданную в начале XX века немецким ученым А. Вегенером.

Существует два основных типа земной коры: океанская и материковая. Выделяется также переходный тип земной коры.

Океанская земная кора. Мощность океанской земной коры в современную геологическую эпоху колеблется от 5 до 10 км. Она состоит из следующих трех слоев:

  • 1) верхний тонкий слой морских осадков (мощность не более 1 км);
  • 2) средний базальтовый слой (мощность от 1,0 до 2,5 км);
  • 3) нижний слой габбро (мощность около 5 км).

Материковая (континентальная) земная кора. Материковая земная кора имеет более сложное строение и большую мощность, чем океанская земная кора. Ее мощность в среднем составляет 35-45 км, а в горных странах увеличивается до 70 км. Она состоит также их трех слоев, но существенно отличается от океанской:

  • 1) нижний слой, сложенный базальтами (мощность около 20 км);
  • 2) средний слой занимает основную толщу материковой коры и условно называется гранитным. Он сложен в основном гранитами и гнейсами. Под океаны этот слой не распространяется;
  • 3) верхний слой - осадочный. Его мощность в среднем составляет около 3 км. В некоторых районах мощность осадков достигает 10 км (например, в Прикаспийской низменности). В отдельных районах Земли осадочный слой отсутствует вообще и на поверхность выходят гранитный слой. Такие районы называются щитами (например, Украинский щит, Балтийский щит).

На материках в результате выветривания горных пород образуется геологическая формация, получившая название коры выветривания.

Гранитный слой от базальтового отделен поверхностью Конрада, на которой скорость сейсмических волн возрастает от 6,4 до 7,6 км/ сек.

Граница между земной корой и мантией (как на материках, так и на океанах) проходит по поверхности Мохоровичича (линия Мохо). Скорость сейсмических волн на ней скачкообразно увеличивается до 8 км/ час.

Кроме двух основных типов - океанского и материкового - есть также участки смешанного (переходного) типа.

На материковых отмелях или шельфах кора имеет мощность около 25 км и в целом сходна с материковой корой. Однако в ней может выпадать слой базальта. В Восточной Азии в области островных дуг (Курильские острова, Алеутские острова, Японские острова и др.) земная кора переходного типа. Наконец, весьма сложна и пока мало изучена земная кора срединных океанических хребтов. Здесь нет границы Мохо, и вещество мантии по разломам поднимается в кору и даже на ее поверхность.

Понятие «земная кора» следует отличать от понятия «литосфера». Понятие «литосфера» является более широким, чем «земная кора». В литосферу современная наука включает не только земную кору, но и самую верхнюю мантию до астеносферы, то есть до глубины примерно около 100 км.

Понятие об изостазии . Изучение распределения силы тяжести показало, что все части земной коры - материки, горные страны, равнины - уравновешены на верхней мантии. Это уравновешенное их положение называется изостазией (от лат. isoc - ровный, stasis - положение). Изостатическое равновесие достигается благодаря тому, что мощность земной коры обратно пропорциональна ее плотности. Тяжелая океаническая кора тоньше более легкой материковой.

Изостазия - в сущности это даже и не равновесие, а стремление к равновесию, непрерывно нарушаемое и вновь восстанавливаемое. Так, например, Балтийский щит после стаивания материковых льдов плейстоценового оледенения поднимается примерно на 1 метр в столетие. Площадь Финляндии все время увеличивается за счет морского дна. Территория Нидерландов, наоборот, понижается. Нулевая линия равновесия проходит в настоящее время несколько южнее 60 0 с.ш. Современный Санкт-Петербург находится примерно на 1,5 м выше, чем Санкт-Петербург времен Петра Первого. Как показывают данные современных научных исследований, даже тяжесть больших городов оказывается достаточной для изостатического колебания территории под ними. Следовательно, земная кора в зонах больших городов весьма подвижна. В целом же рельеф земной коры является зеркальным отражением поверхности Мохо, подошвы земной коры: возвышенным участкам соответствуют углубления в мантию, пониженным - более высокий уровень ее верхней границы. Так, под Памиром глубина поверхности Мохо составляет 65 км, а в Прикаспийской низменности - около 30 км.

Термические свойства земной коры . Суточные колебания температуры почвогрунтов распространяются на глубину 1,0-1,5 м, а годовые в умеренных широтах в странах с континентальным климатом до глубины 20-30 м. На той глубине, где прекращается влияние годовых колебаний температуры вследствие нагревания земной поверхности Солнцем, находится слой постоянной температуры грунта. Он называется изотермическим слоем. Ниже изотермического слоя вглубь Земли температура повышается, и это вызывается уже внутренней теплотой земных недр. В формировании климатов внутреннее тепло не участвует, но оно служит энергетической основой всех тектонических процессов.

Число градусов, на которое увеличивается температура на каждые 100 м глубины называется геотермическим градиентом. Расстояние в метрах, при опускании на которое температура возрастает на 1 0 С называется геотермической ступенью. Величина геотермической ступени зависит от рельефа, теплопроводности горных пород, близости вулканических очагов, циркуляции подземных вод и др. В среднем геотермическая ступень равна 33 м. В вулканических областях геотермическая ступень может быть равной всего около 5 м, а в геологически спокойных областях (например, на платформах) она может достигать 100 м.