Болезни Военный билет Призыв

Токи фуко полезное и вредное. Токи фуко полезное и вредное действие. Моделирование потерь на вихревые токи в двигателе с постоянными магнитами с помощью COMSOL Multiphysics®

В электрических аппаратах, приборах и машинах металлические детали иногда движутся в магнитном поле или неподвижные металлические детали пересекаются силовыми линиями меняющегося по величине магнитного поля. В этих металлических деталях индуктируется .

Под действием этих э. д. с. в массе металлической детали протекают вихревые токи (токи Фуко) , которые замыкаются в массе, образуя вихревые контуры токов.

Вихревыми токами (также токами Фуко) называются электрические токи, возникающие вследствие электромагнитной индукции в проводящей среде (обычно в металле) при изменении пронизывающего ее магнитного потока.

Вихревые токи порождают свои собственные магнитные потоки, которые, по , противодействуют магнитному потоку катушки и ослабляют его. Кроме того, они вызывают нагрев сердечника, что является бесполезной тратой энергии.

Пусть имеется сердечник из металлического материала. Поместим на этот сердечник катушку, по которой пропустим . Вокруг катушки окажется переменный магнитный ток, пересекающий сердечник. При этом в сердечнике станет наводиться индуцированная ЭДС, которая, в свою очередь, вызывает в сердечнике токи, называемые вихревыми. Эти вихревые токи нагревают сердечник. Так как электрическое сопротивление сердечника невелико, то наводимые в сердечниках индуцированные токи могут оказываться достаточно большими, а нагрев сердечника - значительным.



Впервые вихревые токи были обнаружены французским учёным Д.Ф. Араго (1786 - 1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M. Фарадеем с позиций открытого им .

Вихревые токи были подробно исследованы французским физиком Фуко (1819-1868) и названы его именем. Он назвал явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.

В качестве примера на рисунке показаны вихревые токи, индуктируемые в массивном сердечнике, помещенном в катушку, обтекаемую переменным током. Переменное магнитное поле индуктирует токи, которые замыкаются по путям, лежащим в плоскостях, перпендикулярных направлению поля.

Вихревые токи: а - в массивном сердечнике, б - в пластинчатом сердечнике

Способы уменьшения токов Фуко

Мощность, затрачиваемая на нагрев сердечника вихревыми токами, бесполезно снижает КПД технических устройств электромагнитного типа.

Чтобы уменьшить мощность вихревых токов, увеличивают электрическое сопротивление магнитопровода, для этого сердечники набирают из отдельных тонких (0,1- 0,5 мм) пластин, изолированных друг от друга с помощью специального лака или окалины.

Магнитопроводы всех машин и аппаратов переменного тока и сердечники якорей машин постоянного тока собирают из изолированных друг от друга лаком или поверхностной непроводящей пленкой (фосфатированных) пластин, выштампованных из листовой электротехнической стали. Плоскость пластин должна быть параллельна направлению магнитного потока.

При таком делении сечения сердечника магнитопровода вихревые токи существенно ослабляются, так как уменьшаются магнитные потоки, которыми сцепляются контуры вихревых токов, а следовательно, понижаются и индуктируемые этими потоками э. д. с, создающие вихревые токи.

В материал сердечника также вводят специальные добавки, также увеличивающие его . Для увеличения электрического сопротивления ферромагнетика электротехническую сталь приготовляют с присадкой кремния.

Сердечники некоторых катушек (бобин) набирают из кусков отожженной железной проволоки. Полоски железа располагают параллельно линиям магнитного потока. Вихревые же токи, протекающие в плоскостях, перпендикулярных направлению магнитного потока, ограничиваются изолирующими прокладками. Для магнитопроводов приборов и устройств, работающих на высокой частоте, применяют магнетодиэлектрики. Чтобы снизить вихревые токи в проводах, последние изготавливают в виде жгута из отдельных жил, изолированных друг от друга.

Применение токов Фуко

Полезное применение вихревые токи нашли в устройстве магнитного тормоза диска электрического счетчика. Вращаясь, диск пересекает . В плоскости диска возникают вихревые токи, которые, в свою очередь, создают свои магнитные потоки в виде трубочек вокруг вихревого тока. Взаимодействуя с основным полем магнита, эти потоки тормозят диск.

В ряде случаев, применяя вихревые токи, можно использовать технологические операции, которые невозможно применить без токов высокой частоты. Например, при изготовления вакуумных приборов и устройств из баллона необходимо тщательно откачать воздух и иные газы. Однако в металлической арматуре, находящейся внутри баллона, имеются остатки газа, которые можно удалить только после заваривания баллона. Для полного обезгаживания арматуры вакуумный прибор помещают в поле высокочастотного генератора, в результате действия вихревых токов арматура нагревается до сотен градусов, остатки газа при этом нейтрализуются.

Вихревые токи находят полезное применение также при и поверхностной закалке токами высокой частоты.

Использование вихревых токов при индукционной закалке металлов

Содержание:

В некоторых случаях движение металлических деталей в электрических машинах и устройствах происходит через магнитные поля. В других ситуациях возможны пересечения неподвижных металлических элементов с силовыми линиями магнитного поля, изменяющегося по величине. В результате, внутри металлических деталей происходит индуктирование ЭДС самоиндукции. Под влиянием ЭДС в них образуются вихревые токи Фуко, замыкающиеся в массе и вызывающие образование вихревых токовых контуров.

Физические свойства и определение токов Фуко

К вихревым токам относятся электрические токи, которые возникают , появляющейся в металлической или другой проводящей среде. Эта индукция появляется под воздействием изменяющегося магнитного потока.

В свою очередь вихревые токи способствуют появлению собственных магнитных потоков. В соответствии с , они оказывают противодействие магнитному потоку катушки и делают его слабее. Это приводит к нагреву сердечника и бесполезным тратам электрической энергии.

Данный процесс можно рассмотреть подробнее на примере металлического сердечника. На него помещается катушка, с пропущенным переменным током. Вокруг катушки происходит образование переменного магнитного тока, пересекающего сердечник. Одновременно в нем наводится индуцированная электродвижущая сила, вызывающая, в свою очередь, вихревые токи. Их действие вызывает нагревание сердечника. При незначительном сопротивлении сердечника, наведенные токи могут иметь довольно большое значение и привести к существенному нагреву.

Как уменьшить действие токов Фуко

Действие вихревых токов необходимо снизить, поскольку мощности, бесполезно расходуемые для нагрева сердечника, приводят к снижению КПД электромагнитных устройств. С целью уменьшения этой мощности, в магнитопроводе необходимо увеличить сопротивление. Поэтому для набора сердечников используются отдельные тонкие пластины, толщиной от 0,1 до 0,5 мм. Изоляция пластин между собой осуществляется специальными лаками или окалиной.

Набор магнитопроводов для всей аппаратуры переменного тока и сердечников для устройств постоянного тока также осуществляется из пластин, изолированных между собой. Для их изготовления применяется штампованная листовая электротехническая сталь. Плоскости пластин размещаются параллельно с направлением магнитного потока. Таким образом, сечение сердечника оказывается разделенным, что приводит к ослаблению и уменьшению магнитных потоков. Соответственно, наблюдается снижение ЭДС, индуктируемых этими потоками. Именно они способствуют появлению вихревых токов. Практикуется ввод в материал сердечника специальных добавок, способствующих росту его электрического сопротивления.

В некоторых конструкциях катушек для набора сердечников используется отожженная железная проволока. Расположение железных полосок осуществляется параллельно с линиями магнитного потока. Ограничение вихревых токов, протекающих в перпендикулярных плоскостях с магнитным потоком, выполняется с помощью изолирующих прокладок. Снижение токов Фуко в проводах происходит следующим образом: в состав жгутов входят отдельные жилы, изолированные между собой.

Использование вихревых токов

Несмотря на большое количество отрицательных моментов, токи Фуко нашли свое применение в различных областях. Например, они успешно используются в электрических счетчиках как магнитный тормоз диска.

Токи Фуко применяются во многих технологических операциях, связанных с токами высокой частоты. Без них не обходится изготовление вакуумных устройств и приборов, где требуется тщательная откачка воздуха и газов. Металлическая арматура, помещенная внутрь баллона, содержит остатки газа, удаляющиеся только после заваривания колбы. Полное удаление газов производится высокочастотным генератором, в поле которого помещается прибор.

Двигатели с постоянными магнитами используются в различных высокотехнологичных устройствах, но они имеют некоторые конструктивные ограничения. Одним из таких примеров является чувствительность к высоким температурам, которые могут быть вызваны выделением тепла от протекающих токов, и в частности, вихревых токов. Версия 5.3 программного обеспечения COMSOL® включает в себя функцию учета потерь на вихревые токи в постоянных магнитах таких двигателей. Инженеры могут использовать эти результаты, чтобы в полной мере изучить характеристики двигателей с постоянными магнитами и определить способы оптимизации их производительности.

Использование электродвигателей с постоянными магнитами в высокотехнологичных устройствах.

Экономия энергии — общая цель, к которой стремятся все производители по всему миру. Например, рассмотрим транспортный сектор. Только в прошлом году в Китае представили новую высокоскоростную систему метрополитена , которая обеспечивает значительную экономию энергии. Между тем, у самого старого действующего парома в Финляндии заменили оригинальные дизельные двигатели на новые электрические. А на улицах Лондона известный автомобильный бренд класса "Люкс" впервые представил полностью электрический автомобиль .

Эти примеры демонстрируют развитие транспорта в сторону более экологичного будущего. Также указанные примеры объединяет тот факт, что для данной цели, они используют двигатели с постоянными магнитами (ПМ). Такие типы двигателей с магнитами вместо обмоток в роторе, как правило, находят применение в высокотехнологичных устройствах. Наиболее важным является их использование в электрических и гибридных транспортных средствах.

Электротранспорт — одно из применений двигателей с постоянными магнитами. Изображение, предоставленное Mariodo. Доступно по лицензии Creative Commons 2.0 из Wikimedia Commons .

Двигатели с ПМ высоко ценятся за счет их экономичности, но наряду с тем существуют некоторые ограничения при их проектировании. К примеру, постоянные магниты очень чувствительны к высоким температурам. Такие температуры могут достигаться, когда токи, в частности, вихревые токи, при протекании вызывают выделение тепла. Хотя ламинирование стальных/железных секций ротора помогает уменьшить потери на вихревые токи в этих областях, производственные ограничения делают этот процесс сложным. Таким образом, нагрев постоянных магнитов может быть довольно существенным.

Давайте рассмотрим новую учебную модель, доступную в версии 5.3 COMSOL Multiphysics®, которая учитывает потери на вихревые токи в двигателях с ПМ

Моделирование потерь на вихревые токи в двигателе с постоянными магнитами с помощью COMSOL Multiphysics®.

Начнем с геометрии нашей модели. В этом примере мы используем трехмерную модель 18-ти полюсного двигателя с ПМ. Для одновременного сокращения вычислительных затрат и учёта всей трехмерной геометрии модели, мы будем моделировать один полюс, используя продольную и зеркальную симметрии.

Вы можете видеть анимацию работы всего двигателя ниже. На ней изображены ротор и железный статор (серым цветом), обмотка статора (из меди) и постоянные магниты (синие и красные в зависимости от радиальной намагниченности).

Конструкция двигателя с постоянными магнитами.

Для моделирования проводящей части ротора мы используем узел Ampère’s law (закон Ампера). Для непроводящих частей ротора и статора мы используем узел Magnetic flux conservation (Закон сохранения магнитной индукции) относительно скалярного магнитного потенциала.

Используя встроенный физический интерфейс Rotating Machinery (Магнитные вращающиеся механизмы), легко смоделировать вращение двигателя. В модели мы рассматриваем центральный верхний полюс, в котором располагаются ротор вместе с участком воздушного зазора, вращающиеся относительно системы координат статора. Обратите внимание, что в данном случае требуется формирование сборки (Assembly) при завершении построения геометрии, поскольку ротор и статор являются двумя отдельными частями конструкции.

Чтобы вычислить и дальше использовать значение потерь на вихревые токи в магнитах с течением времени, мы введем дополнительную переменную. Хотя в рамках данной модели она не потребуется, переменная может использоваться в последующем анализе теплопередачи в качестве усредненного по времени и распределенного источника тепла. Так как тепловые процессы устанавливаются гораздо дольше, чем происходит изменение направления вихревых токов и вызванных ими потерь, необходимо разделять электромеханический и тепловой расчеты для большей эффективности расчёта.

Анализ результатов моделирования.

По результатам моделирования на первом рисунке мы можем видеть распределение магнитной индукции в двигателе в неподвижном стационарном состоянии, другими словами, на графике показаны начальные условия для нестационарного исследования. Ток катушки в начальном состоянии равен нулю. На рисунке справа показано распределение магнитной индукции после того, как двигатель повернулся на один сектор. Для лучшей наглядности можно исключить на рисунке области воздуха и катушек.

Слева: Распределение магнитной индукции в стационарном начальном состоянии. Справа: Распределение магнитной индукции в двигателе после поворота на один сектор.

На приведенном ниже графике мы можем видеть, как с течением времени происходит изменение потерь на вихревые токи в магнитах. Анимация справа показывает изменение потерь на вихревые токи при повороте статора на один сектор. Вихревые токи изображены стрелками.

Слева: График потерь на вихревые токи в зависимости от времени. Справа: Изменение плотности потерь на вихревые токи при повороте на один сектор.

Вышеприведенные примеры дают более полное представление о характеристиках двигателей с ПМ c учетом потерь на вихревые токи в постоянных магнитах. Эта информация будет полезной для улучшения конструкции двигателей с ПМ и, следовательно, технологии, в которой они используются.

Токи Фуко это токи, которые возникают в массивном проводнике, находящемся в переменном магнитном поле. Токи Фуко имеют вихревой характер. Если обычные индукционные токи движутся по тонкому замкнутому проводнику, то вихревые токи замыкаются внутри толщи массивного проводника. Хотя при этом они больше не чем не отличаются от обычных индукционных токов.

Токи Фуко замыкаются в толще проводника в виде круговых контуров маленьких вихрей. Величина этих токов тем выше, чем выше скорость изменения магнитного потока. Это может быть переменное магнитное поле либо сам массивный проводник может, двигается в неизменном магнитном поле.

Направление токов Фуко определяется по правилу Ленца также как и направление обычных токов возникших вследствие электромагнитной индукции. Они всегда направлены встречно потоку, вызвавшему их, и стремятся ему противодействовать.

Можно провести такой эксперимент. Создать постоянный магнитный поток. Например, между двумя постоянными магнитами. И вносить в поле между ними медную или алюминиевую пластину. Будет видно, что пластина движется с усилием. Поскольку в ней при движении возникают токи Фуко, которые взаимодействуют с полем магнитов. Поскольку поле этих токов будет направлено встречно внешнему полю, то они будут отталкиваться друг от друга. Рекомендуется брать именно медную или алюминиевую пластины, так как у этих материалов мало удельное сопротивление. Следовательно сила тока в них будет большей и эффект проявится более явно.

Рисунок 1 — схема опыта

Такое проявление вихревых токов используется в технике. Например, в асинхронном электродвигателе. Статор, которого создает вращающееся магнитное поле. А ротор выполнен в виде массивной болванки. В результате, когда вокруг болванки начинает вращаться магнитное поле, она как бы цепляется за него и тоже начинает вращаться вслед за ним.

Поскольку сопротивление проводника, конечно, то токи, текущие в его толще приводят к нагреву проводника. Это явление используется для плавки металлов в металлургии. Металл помещают в тигель вокруг которого находится индуктор, по которому пропускают переменный ток большой силы. Магнитное поле, которое возникает в контуре, пронизывает металл, который в свою очередь плавится.

Но кроме полезного тепла при плавке токи Фуко приносят и вред в других электрических машинах. Например, в трансформаторах или электродвигателях. В которых энергия магнитного поля не должна расходоваться на тепло. Для борьбы с вихревыми токами ферромагнитные сердечники выполняют шихтованными, то есть набирают из тонких пластин изолированных между собой. При этом магнитный поток должен быть направлен перпендикулярно плоскости пластин. Таким образом, минимизируются потери энергии на нагрев.

Обмотка лабораторного регулировочного автотрансформатора (ЛАТР) намотана на железном сердечнике, имеющем форму прямоугольного тороида (рис.). Для защиты от вихревых токов Фуко сердечник делают из тонких железных пластин, покрытых изолирующим слоем лака. Такой сердечник можно сделать разными способами:
 а) набирая его из тонких колец, положенных стопкой одно на другое;
 б) свертывая в рулон тонкую длинную ленту шириной h ;
 в) собирая из прямоугольных пластин размером l × h , расположив их вдоль радиусов цилиндра.

Эксперимент.
 Наблюдать возникновение токов Фуко можно с помощью следующей установки. Маятник, состоящий из куска металла, подвешенного на нити между полюсами электромагнита, выведенный из положения равновесия при отсутствии тока в электромагните, совершает слабо затухающие колебания. При включении тока колебания почти мгновенно затухают, и движение маятника до его остановки напоминает движение в вязкой среде. Это объясняется тем, что возникшие при движении маятника в магнитном поле токи Фуко имеют такое направление, что действующие на них со стороны магнитного поля силы тормозят движение маятника.

 Если сплошной сектор маятника заменить гребенкой с длинными зубцами, то возбуждение токов Фуко будет сильно затруднено. Маятник будет колебаться в магнитном поле почти без затухания. Этот опыт объясняет, почему сердечники электромагнитов и рамы трансформаторов делают не из сплошного куска железа, а из многих листов, наложенных друг на друга. В результате токи Фуко возбуждаются слабо и сильно уменьшается вредное влияние джоулева тепла, выделяемого ими.
Теория.
Токи Фуко − индукционные токи, возникающие в массивных проводниках
в переменном магнитном поле, называются токами Фуко. Иногда они играют полезную роль, а иногда вредную.
 Токи Фуко играют полезную роль в роторе асинхронного двигателя, приводимого в движение вращающимся магнитным полем, поскольку само осуществление принципа работы асинхронного двигателя требует возникновения токов Фуко. Являясь токами проводимости, токи Фуко рассеивают часть энергии на выделение джоулевой теплоты. Эта потеря энергии в роторе асинхронного двигателя является бесполезной , но с ней приходится мириться, избегая лишь чрезмерного перегревания ротора. Но одновременно с этим в сердечниках электромагнитов асинхронного двигателя, выполненных обычно из ферромагнетиков, являющихся проводниками, также возникают токи Фуко, которые не имеют никакого значения для принципа работы электромагнитов, но нагревают эти сердечники, ухудшая тем самым их характеристики . С ними необходимо бороться, как с вредным фактором. Борьба заключается в том, что сердечники изготовляют из тонких пластин, отделенных одна от другой слоями изолятора, причем их устанавливают так, чтобы токи Фуко были направлены поперек пластин. Благодаря этому при достаточно малой толщине пластин токи Фуко не могут развиваться и имеют незначительную объемную плотность.
 Джоулева теплота, выделяемая токами Фуко, полезно используется в процессах разогрева или даже плавки металлов , когда это оказывается более выгодным или целесообразным по сравнению с другими методами разогрева. Если производить разогрев металла токами очень высокой частоты, то в результате скин-эффекта раскаляется только поверхностный слой проводника.

(б, в) Сплошной кусок металла , находящийся в переменном магнитном поле, представляет собой проводник сопротивления, вследствие чего сила индукционных токов достигает в нем больших значений.
 Так как ЭДС индукции пропорциональна быстроте изменения потока магнитной индукции, то величина токов Фуко тем больше, чем быстрее меняется то магнитное поле, в которое внесен данный проводник. Поэтому возникновение токов Фуко легче наблюдать, если внести проводник в полость соленоида, по обмотке которого пропускается быстро переменный ток, вызывающий также быстро меняющееся по величине магнитное поле. В этом случае токи Фуко в массивных хорошо проводящих телах достигают такой силы, что выделяющегося тепла оказывается достаточно, чтобы раскалить тело. Этот метод широко используется в вакуумной технике для прогрева внутри откачиваемого прибора металлических частей для их обезгаживания. Этот же способ употребляется для плавки металлов под вакуумом.
В кусках достаточно толстых , т. е. имеющих большие размеры в направлении , перпендикулярном к направлению индукционного тока , вихревые токи вследствие малости сопротивления могут быть очень большими и вызывать очень значительное нагревание . Если, например, поместить внутрь катушки массивный металлический сердечник и пропустить по катушке переменный ток, который 100 раз в секунду изменяет свое направление и силу, доходя до нуля и вновь усиливаясь, то этот сердечник нагреется очень сильно. Нагревание это вызывается индукционными (вихревыми) токами, возникающими вследствие непрерывного изменения магнитного потока, пронизывающего сердечник. Если же этот сердечник сделать из отдельных тонких проволок, изолированных друг от друга слоем лака или окислов, то сопротивление сердечника в направлении, перпендикулярном к его оси, т. е. сопротивление для вихревых токов, возрастет, и нагревание значительно уменьшится. Этим приемом − разделением сплошных кусков железа на тонкие изолированные друг от друга слои − постоянно пользуются во всех электрических машинах для уменьшения нагревания их индукционными токами, возникающими в переменном магнитном поле. С другой стороны, токи Фуко иногда используются в так называемых индукционных печах для сильного нагревания или даже плавления металлов.

Трансформаторы.
 Однако во многих случаях нагревание, вызываемое токами Фуко, является вредным. К таким случаям относится нагревание сердечников трансформаторов и вообще металлических сердечников всякого рода обмоток, по которым идет переменный ток. Чтобы избежать такого нагревания, сердечники делают слоистыми, отделяя слои друг от друга тонкой прослойкой изоляции, расположенной перпендикулярно к направлению токов Фуко.
 Появление ферритов (магнитных материалов с большим электрическим сопротивлением) сделало возможным изготовление сердечников сплошными.
 (в) В трансформаторах малой мощности магнитопровод собирают из пластин П- , Ш- и О- образной формы (рис. а, б, в).


 Широкое применение получили магнитопроводы, навитые из узкой ленты электротехнической стали или из специальных железоникелевых сплавов типа пермаллой. Их можно использовать для стержневых, броневых, тороидальных и трёхфазных трансформаторов (г, д, е, ж).

Скин-эффект.
 Токи Фуко могут возникать и в самом проводнике, по которому течет переменный ток. Появление таких токов ведет к особому поверхностному эффекту (называемому также скин-эффектом от английского слова skin , что значит кожа). Если переменный ток идет по цилиндрическому проводнику , то в моменты увеличения тока индукционные токи Фуко будут направлены как показано на рисунке.

 Эти токи направлены у поверхности проводника в направлении первичного электрического тока, а у оси проводника − навстречу току. В результате внутри проводника ток ослабнет, у поверхности увеличится. Таким образом, вследствие возникновения индукционных токов Фуко, ток будет распределен неравномерно по сечению проводника.
 При быстропеременных токах плотность тока вблизи оси проводника практически оказывается равной нулю, и весь ток идет по поверхности проводника. Вследствие этого и магнитное поле внутри проводника делается равным нулю. Это явление вызывает увеличение сопротивления проводника, так как по внутренним частям проводника ток не идет. Так как эти внутренние части оказываются бесполезными, то в целях экономии металла провода для быстропеременных токов делаются полыми. Токи Фуко приводят также к уменьшению коэффициента самоиндукции проводника. Это можно пояснить на примере цилиндрического проводника.
 В силу скин-эффекта проводники в высокочастотных схемах не имеет смысла делать сплошными. Для уменьшения сопротивления нужно увеличивать их поверхность, а не сечение, т. е. изготовлять проводники в виде трубок . В электропечах этим обстоятельством пользуются, охлаждая трубки катушки, по которым идет ток высокой частоты, с помощью воды, циркулирующей внутри трубок.

Генераторы.
 Генераторы обычно приводятся в движение сравнительно тихоходными водяными турбинами или двигателями внутреннего сгорания. При работе же с паровыми турбинами, вращающимися с частотой 1500 − 3000 оборотов в минуту, применяется несколько иная конструкция ротора (индуктора). Ротор не имеет выступов, а представляет собой гладкий цилиндр, на наружной поверхности которого в пазах уложена обмотка. При большой частоте вращения это выгоднее, потому что выступы на роторе создают воздушные вихри и увеличивают механические потери.
 Форма полюсных наконечников на выступах ротора специально рассчитывается так, чтобы индуцированная в обмотке ЭДС изменялась со временем по закону синуса, т. е. чтобы форма напряжения и тока, даваемого генератором, была синусоидальной.
 Статор генератора − его неподвижная часть − представляет собой железное кольцо, в пазах которого уложены обмотки якоря. Для уменьшения потерь на токи Фуко это кольцо делается не сплошным, а состоящим из отдельных тонких листов железа, изолированных друг от
друга.

Смотрите еще :